From c7dff2f665bf3fba126caef45b88c6b4db4f5c66 Mon Sep 17 00:00:00 2001 From: Paul Eggert Date: Wed, 19 Mar 2014 14:21:01 -0700 Subject: [PATCH] * numbers.texi: Improve and clarify a bit, and fix some minor bugs. Remove now-obsolete hypothetical note about negative division, as the C standard has changed. --- doc/lispref/ChangeLog | 4 ++++ doc/lispref/numbers.texi | 42 ++++++++++++++++++---------------------- 2 files changed, 23 insertions(+), 23 deletions(-) diff --git a/doc/lispref/ChangeLog b/doc/lispref/ChangeLog index 25c4744c855..fb79a74405b 100644 --- a/doc/lispref/ChangeLog +++ b/doc/lispref/ChangeLog @@ -1,5 +1,9 @@ 2014-03-19 Paul Eggert + * numbers.texi: Improve and clarify a bit, and fix some minor bugs. + Remove now-obsolete hypothetical note about negative division, + as the C standard has changed. + Fix porting inconsistency about rounding to even. * numbers.texi (Numeric Conversions, Rounding Operations): Document that 'round' and 'fround' round to even. diff --git a/doc/lispref/numbers.texi b/doc/lispref/numbers.texi index 5526ea0860a..5da950e1601 100644 --- a/doc/lispref/numbers.texi +++ b/doc/lispref/numbers.texi @@ -116,8 +116,8 @@ use the @samp{...} notation to make binary integers easier to read.) @minus{}1 is represented as 30 ones. (This is called @dfn{two's complement} notation.) - The negative integer, @minus{}5, is creating by subtracting 4 from -@minus{}1. In binary, the decimal integer 4 is 100. Consequently, + Subtracting 4 from @minus{}1 returns the negative integer @minus{}5. +In binary, the decimal integer 4 is 100. Consequently, @minus{}5 looks like this: @example @@ -190,8 +190,8 @@ on 64-bit platforms. @end defvar In Emacs Lisp, text characters are represented by integers. Any -integer between zero and the value of @code{max-char}, inclusive, is -considered to be valid as a character. @xref{String Basics}. +integer between zero and the value of @code{(max-char)}, inclusive, is +considered to be valid as a character. @xref{Character Codes}. @node Float Basics @section Floating-Point Basics @@ -252,7 +252,7 @@ This function returns a cons cell @code{(@var{s} . @var{e})}, where @var{s} and @var{e} are respectively the significand and exponent of the floating-point number @var{x}. -If @var{x} is finite, @var{s} is a floating-point number between 0.5 +If @var{x} is finite, then @var{s} is a floating-point number between 0.5 (inclusive) and 1.0 (exclusive), @var{e} is an integer, and @ifnottex @var{x} = @var{s} * 2**@var{e}. @@ -260,9 +260,9 @@ If @var{x} is finite, @var{s} is a floating-point number between 0.5 @tex @math{x = s 2^e}. @end tex -If @var{x} is zero or infinity, @var{s} is the same as @var{x}. -If @var{x} is a NaN, @var{s} is also a NaN. -If @var{x} is zero, @var{e} is 0. +If @var{x} is zero or infinity, then @var{s} is the same as @var{x}. +If @var{x} is a NaN, then @var{s} is also a NaN. +If @var{x} is zero, then @var{e} is 0. @end defun @defun ldexp sig &optional exp @@ -275,9 +275,9 @@ This function copies the sign of @var{x2} to the value of @var{x1}, and returns the result. @var{x1} and @var{x2} must be floating point. @end defun -@defun logb number -This function returns the binary exponent of @var{number}. More -precisely, the value is the logarithm of |@var{number}| base 2, rounded +@defun logb x +This function returns the binary exponent of @var{x}. More +precisely, the value is the logarithm base 2 of @math{|x|}, rounded down to an integer. @example @@ -367,7 +367,7 @@ Here's a function to do this: @example (defvar fuzz-factor 1.0e-6) (defun approx-equal (x y) - (or (and (= x 0) (= y 0)) + (or (= x y) (< (/ (abs (- x y)) (max (abs x) (abs y))) fuzz-factor))) @@ -648,10 +648,6 @@ number or a marker. If all the arguments are integers, the result is an integer, obtained by rounding the quotient towards zero after each division. -(Hypothetically, some machines may have different rounding behavior -for negative arguments, because @code{/} is implemented using the C -division operator, which permits machine-dependent rounding; but this -does not happen in practice.) @example @group @@ -706,8 +702,7 @@ For any two integers @var{dividend} and @var{divisor}, @end example @noindent -always equals @var{dividend}. If @var{divisor} is zero, Emacs signals -an @code{arith-error} error. +always equals @var{dividend} if @var{divisor} is nonzero. @example (% 9 4) @@ -769,7 +764,8 @@ For any two numbers @var{dividend} and @var{divisor}, @noindent always equals @var{dividend}, subject to rounding error if either -argument is floating point. For @code{floor}, see @ref{Numeric +argument is floating point and to an @code{arith-error} if @var{dividend} is an +integer and @var{divisor} is 0. For @code{floor}, see @ref{Numeric Conversions}. @end defun @@ -1194,8 +1190,8 @@ non-integer, @code{expt} returns a NaN. @end defun @defun sqrt arg -This returns the square root of @var{arg}. If @var{arg} is negative, -@code{sqrt} returns a NaN. +This returns the square root of @var{arg}. If @var{arg} is finite +and less than zero, @code{sqrt} returns a NaN. @end defun In addition, Emacs defines the following common mathematical @@ -1244,8 +1240,8 @@ any integer representable in Lisp, i.e., an integer between @code{most-negative-fixnum} and @code{most-positive-fixnum} (@pxref{Integer Basics}). -If @var{limit} is @code{t}, it means to choose a new seed based on the -current time of day and on Emacs's process @acronym{ID} number. +If @var{limit} is @code{t}, it means to choose a new seed as if Emacs +were restarting. If @var{limit} is a string, it means to choose a new seed based on the string's contents. -- 2.39.2