From: Stefan Monnier Date: Mon, 20 Oct 2003 21:38:50 +0000 (+0000) Subject: Update for extra bit of integer range. X-Git-Tag: ttn-vms-21-2-B4~8508 X-Git-Url: http://git.eshelyaron.com/gitweb/?a=commitdiff_plain;h=e1e44180c1cfb20f00bc5c9db4d068746e9c7f73;p=emacs.git Update for extra bit of integer range. --- diff --git a/lispref/numbers.texi b/lispref/numbers.texi index 177b229e160..3dc686f452a 100644 --- a/lispref/numbers.texi +++ b/lispref/numbers.texi @@ -1,6 +1,6 @@ @c -*-texinfo-*- @c This is part of the GNU Emacs Lisp Reference Manual. -@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999 +@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2003 @c Free Software Foundation, Inc. @c See the file elisp.texi for copying conditions. @setfilename ../info/numbers @@ -36,22 +36,22 @@ exact; they have a fixed, limited amount of precision. @section Integer Basics The range of values for an integer depends on the machine. The -minimum range is @minus{}134217728 to 134217727 (28 bits; i.e., +minimum range is @minus{}268435456 to 268435455 (29 bits; i.e., @ifnottex --2**27 +-2**28 @end ifnottex @tex -@math{-2^{27}} +@math{-2^{28}} @end tex to @ifnottex -2**27 - 1), +2**28 - 1), @end ifnottex @tex -@math{2^{27}-1}), +@math{2^{28}-1}), @end tex but some machines may provide a wider range. Many examples in this -chapter assume an integer has 28 bits. +chapter assume an integer has 29 bits. @cindex overflow The Lisp reader reads an integer as a sequence of digits with optional @@ -86,10 +86,10 @@ inclusively). Case is not significant for the letter after @samp{#} bitwise operators (@pxref{Bitwise Operations}), it is often helpful to view the numbers in their binary form. - In 28-bit binary, the decimal integer 5 looks like this: + In 29-bit binary, the decimal integer 5 looks like this: @example -0000 0000 0000 0000 0000 0000 0101 +0 0000 0000 0000 0000 0000 0000 0101 @end example @noindent @@ -99,12 +99,12 @@ between groups of 8 bits, to make the binary integer easier to read.) The integer @minus{}1 looks like this: @example -1111 1111 1111 1111 1111 1111 1111 +1 1111 1111 1111 1111 1111 1111 1111 @end example @noindent @cindex two's complement -@minus{}1 is represented as 28 ones. (This is called @dfn{two's +@minus{}1 is represented as 29 ones. (This is called @dfn{two's complement} notation.) The negative integer, @minus{}5, is creating by subtracting 4 from @@ -112,24 +112,24 @@ complement} notation.) @minus{}5 looks like this: @example -1111 1111 1111 1111 1111 1111 1011 +1 1111 1111 1111 1111 1111 1111 1011 @end example - In this implementation, the largest 28-bit binary integer value is -134,217,727 in decimal. In binary, it looks like this: + In this implementation, the largest 29-bit binary integer value is +268,435,455 in decimal. In binary, it looks like this: @example -0111 1111 1111 1111 1111 1111 1111 +0 1111 1111 1111 1111 1111 1111 1111 @end example Since the arithmetic functions do not check whether integers go -outside their range, when you add 1 to 134,217,727, the value is the -negative integer @minus{}134,217,728: +outside their range, when you add 1 to 268,435,455, the value is the +negative integer @minus{}268,435,456: @example -(+ 1 134217727) - @result{} -134217728 - @result{} 1000 0000 0000 0000 0000 0000 0000 +(+ 1 268435455) + @result{} -268435456 + @result{} 1 0000 0000 0000 0000 0000 0000 0000 @end example Many of the functions described in this chapter accept markers for @@ -468,8 +468,8 @@ commonly used. if any argument is floating. It is important to note that in Emacs Lisp, arithmetic functions -do not check for overflow. Thus @code{(1+ 134217727)} may evaluate to -@minus{}134217728, depending on your hardware. +do not check for overflow. Thus @code{(1+ 268435455)} may evaluate to +@minus{}268435456, depending on your hardware. @defun 1+ number-or-marker This function returns @var{number-or-marker} plus 1. @@ -788,19 +788,19 @@ value of a positive integer by two, rounding downward. The function @code{lsh}, like all Emacs Lisp arithmetic functions, does not check for overflow, so shifting left can discard significant bits and change the sign of the number. For example, left shifting -134,217,727 produces @minus{}2 on a 28-bit machine: +268,435,455 produces @minus{}2 on a 29-bit machine: @example -(lsh 134217727 1) ; @r{left shift} +(lsh 268435455 1) ; @r{left shift} @result{} -2 @end example -In binary, in the 28-bit implementation, the argument looks like this: +In binary, in the 29-bit implementation, the argument looks like this: @example @group -;; @r{Decimal 134,217,727} -0111 1111 1111 1111 1111 1111 1111 +;; @r{Decimal 268,435,455} +0 1111 1111 1111 1111 1111 1111 1111 @end group @end example @@ -810,7 +810,7 @@ which becomes the following when left shifted: @example @group ;; @r{Decimal @minus{}2} -1111 1111 1111 1111 1111 1111 1110 +1 1111 1111 1111 1111 1111 1111 1110 @end group @end example @end defun @@ -833,9 +833,9 @@ looks like this: @group (ash -6 -1) @result{} -3 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.} -1111 1111 1111 1111 1111 1111 1010 +1 1111 1111 1111 1111 1111 1111 1010 @result{} -1111 1111 1111 1111 1111 1111 1101 +1 1111 1111 1111 1111 1111 1111 1101 @end group @end example @@ -844,11 +844,11 @@ In contrast, shifting the pattern of bits one place to the right with @example @group -(lsh -6 -1) @result{} 134217725 -;; @r{Decimal @minus{}6 becomes decimal 134,217,725.} -1111 1111 1111 1111 1111 1111 1010 +(lsh -6 -1) @result{} 268435453 +;; @r{Decimal @minus{}6 becomes decimal 268,435,453.} +1 1111 1111 1111 1111 1111 1111 1010 @result{} -0111 1111 1111 1111 1111 1111 1101 +0 1111 1111 1111 1111 1111 1111 1101 @end group @end example @@ -858,34 +858,34 @@ Here are other examples: @c with smallbook but not with regular book! --rjc 16mar92 @smallexample @group - ; @r{ 28-bit binary values} + ; @r{ 29-bit binary values} -(lsh 5 2) ; 5 = @r{0000 0000 0000 0000 0000 0000 0101} - @result{} 20 ; = @r{0000 0000 0000 0000 0000 0001 0100} +(lsh 5 2) ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} + @result{} 20 ; = @r{0 0000 0000 0000 0000 0000 0001 0100} @end group @group (ash 5 2) @result{} 20 -(lsh -5 2) ; -5 = @r{1111 1111 1111 1111 1111 1111 1011} - @result{} -20 ; = @r{1111 1111 1111 1111 1111 1110 1100} +(lsh -5 2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011} + @result{} -20 ; = @r{1 1111 1111 1111 1111 1111 1110 1100} (ash -5 2) @result{} -20 @end group @group -(lsh 5 -2) ; 5 = @r{0000 0000 0000 0000 0000 0000 0101} - @result{} 1 ; = @r{0000 0000 0000 0000 0000 0000 0001} +(lsh 5 -2) ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} + @result{} 1 ; = @r{0 0000 0000 0000 0000 0000 0000 0001} @end group @group (ash 5 -2) @result{} 1 @end group @group -(lsh -5 -2) ; -5 = @r{1111 1111 1111 1111 1111 1111 1011} - @result{} 4194302 ; = @r{0011 1111 1111 1111 1111 1111 1110} +(lsh -5 -2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011} + @result{} 134217726 ; = @r{0 0111 1111 1111 1111 1111 1111 1110} @end group @group -(ash -5 -2) ; -5 = @r{1111 1111 1111 1111 1111 1111 1011} - @result{} -2 ; = @r{1111 1111 1111 1111 1111 1111 1110} +(ash -5 -2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011} + @result{} -2 ; = @r{1 1111 1111 1111 1111 1111 1111 1110} @end group @end smallexample @end defun @@ -922,23 +922,23 @@ because its binary representation consists entirely of ones. If @smallexample @group - ; @r{ 28-bit binary values} + ; @r{ 29-bit binary values} -(logand 14 13) ; 14 = @r{0000 0000 0000 0000 0000 0000 1110} - ; 13 = @r{0000 0000 0000 0000 0000 0000 1101} - @result{} 12 ; 12 = @r{0000 0000 0000 0000 0000 0000 1100} +(logand 14 13) ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110} + ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101} + @result{} 12 ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100} @end group @group -(logand 14 13 4) ; 14 = @r{0000 0000 0000 0000 0000 0000 1110} - ; 13 = @r{0000 0000 0000 0000 0000 0000 1101} - ; 4 = @r{0000 0000 0000 0000 0000 0000 0100} - @result{} 4 ; 4 = @r{0000 0000 0000 0000 0000 0000 0100} +(logand 14 13 4) ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110} + ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101} + ; 4 = @r{0 0000 0000 0000 0000 0000 0000 0100} + @result{} 4 ; 4 = @r{0 0000 0000 0000 0000 0000 0000 0100} @end group @group (logand) - @result{} -1 ; -1 = @r{1111 1111 1111 1111 1111 1111 1111} + @result{} -1 ; -1 = @r{1 1111 1111 1111 1111 1111 1111 1111} @end group @end smallexample @end defun @@ -954,18 +954,18 @@ passed just one argument, it returns that argument. @smallexample @group - ; @r{ 28-bit binary values} + ; @r{ 29-bit binary values} -(logior 12 5) ; 12 = @r{0000 0000 0000 0000 0000 0000 1100} - ; 5 = @r{0000 0000 0000 0000 0000 0000 0101} - @result{} 13 ; 13 = @r{0000 0000 0000 0000 0000 0000 1101} +(logior 12 5) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100} + ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} + @result{} 13 ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101} @end group @group -(logior 12 5 7) ; 12 = @r{0000 0000 0000 0000 0000 0000 1100} - ; 5 = @r{0000 0000 0000 0000 0000 0000 0101} - ; 7 = @r{0000 0000 0000 0000 0000 0000 0111} - @result{} 15 ; 15 = @r{0000 0000 0000 0000 0000 0000 1111} +(logior 12 5 7) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100} + ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} + ; 7 = @r{0 0000 0000 0000 0000 0000 0000 0111} + @result{} 15 ; 15 = @r{0 0000 0000 0000 0000 0000 0000 1111} @end group @end smallexample @end defun @@ -981,18 +981,18 @@ result is 0, which is an identity element for this operation. If @smallexample @group - ; @r{ 28-bit binary values} + ; @r{ 29-bit binary values} -(logxor 12 5) ; 12 = @r{0000 0000 0000 0000 0000 0000 1100} - ; 5 = @r{0000 0000 0000 0000 0000 0000 0101} - @result{} 9 ; 9 = @r{0000 0000 0000 0000 0000 0000 1001} +(logxor 12 5) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100} + ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} + @result{} 9 ; 9 = @r{0 0000 0000 0000 0000 0000 0000 1001} @end group @group -(logxor 12 5 7) ; 12 = @r{0000 0000 0000 0000 0000 0000 1100} - ; 5 = @r{0000 0000 0000 0000 0000 0000 0101} - ; 7 = @r{0000 0000 0000 0000 0000 0000 0111} - @result{} 14 ; 14 = @r{0000 0000 0000 0000 0000 0000 1110} +(logxor 12 5 7) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100} + ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} + ; 7 = @r{0 0000 0000 0000 0000 0000 0000 0111} + @result{} 14 ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110} @end group @end smallexample @end defun @@ -1007,9 +1007,9 @@ bit is one in the result if, and only if, the @var{n}th bit is zero in @example (lognot 5) @result{} -6 -;; 5 = @r{0000 0000 0000 0000 0000 0000 0101} +;; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101} ;; @r{becomes} -;; -6 = @r{1111 1111 1111 1111 1111 1111 1010} +;; -6 = @r{1 1111 1111 1111 1111 1111 1111 1010} @end example @end defun