From: Jay Belanger Date: Fri, 11 Feb 2005 05:44:58 +0000 (+0000) Subject: Redefine @expr as @math for TeX output. X-Git-Tag: ttn-vms-21-2-B4~2329 X-Git-Url: http://git.eshelyaron.com/gitweb/?a=commitdiff_plain;h=bd712b706cc6fc65d1462c4b5a84d591bd771186;p=emacs.git Redefine @expr as @math for TeX output. Redefine @texline as a no-op for TeX output. Define @tfn, replace @t by @tfn throughout. --- diff --git a/man/calc.texi b/man/calc.texi index e29973900eb..a816f1559a6 100644 --- a/man/calc.texi +++ b/man/calc.texi @@ -17,15 +17,11 @@ @c $x$ in TeX, @samp{x} otherwise. @iftex -@macro texline{stuff} -\stuff\ +@macro texline @end macro @alias infoline=comment -@tex -\gdef\exprsetup{\tex \let\t\ttfont \turnoffactive} -\gdef\expr{\exprsetup$\exprfinish} -\gdef\exprfinish#1{#1$\endgroup} -@end tex +@alias expr=math +@alias tfn=code @alias mathit=expr @macro cpi{} @math{@pi{}} @@ -41,6 +37,7 @@ \stuff\ @end macro @alias expr=samp +@alias tfn=t @alias mathit=i @macro cpi{} @expr{pi} @@ -663,7 +660,7 @@ Click on the @key{2}, @key{ENTER}, @key{3}, @key{+}, and @key{SQRT} ``buttons'' using your left mouse button. @noindent -Click on @key{PI}, @key{2}, and @t{y^x}. +Click on @key{PI}, @key{2}, and @tfn{y^x}. @noindent Click on @key{INV}, then @key{ENTER} to swap the two results. @@ -9071,9 +9068,9 @@ apply and the rewrites will stop right away. @starindex @end ignore @tindex nterms -If @expr{x} is the sum @expr{a + b}, then `@t{nterms(}@var{x}@t{)}' must -be `@t{nterms(}@var{a}@t{)}' plus `@t{nterms(}@var{b}@t{)}'. If @expr{x} -is not a sum, then `@t{nterms(}@var{x}@t{)}' = 1. +If @expr{x} is the sum @expr{a + b}, then `@tfn{nterms(}@var{x}@tfn{)}' must +be `@tfn{nterms(}@var{a}@tfn{)}' plus `@tfn{nterms(}@var{b}@tfn{)}'. If @expr{x} +is not a sum, then `@tfn{nterms(}@var{x}@tfn{)}' = 1. @smallexample @group @@ -10872,8 +10869,8 @@ Rectangular complex numbers can also be displayed in @samp{@var{a}+@var{b}i} notation; @pxref{Complex Formats}. Polar complex numbers are displayed in the form -@texline `@t{(}@var{r}@t{;}@math{\theta}@t{)}' -@infoline `@t{(}@var{r}@t{;}@var{theta}@t{)}' +@texline `@tfn{(}@var{r}@tfn{;}@math{\theta}@tfn{)}' +@infoline `@tfn{(}@var{r}@tfn{;}@var{theta}@tfn{)}' where @var{r} is the nonnegative magnitude and @texline @math{\theta} @infoline @var{theta} @@ -11290,7 +11287,7 @@ conversions. A @dfn{modulo form} is a real number which is taken modulo (i.e., within an integer multiple of) some value @var{M}. Arithmetic modulo @var{M} often arises in number theory. Modulo forms are written -`@var{a} @t{mod} @var{M}', +`@var{a} @tfn{mod} @var{M}', where @var{a} and @var{M} are real numbers or HMS forms, and @texline @math{0 \le a < M}. @infoline @expr{0 <= a < @var{M}}. @@ -11314,15 +11311,15 @@ are integers, this calculation is done much more efficiently than actually computing the power and then reducing.) @cindex Modulo division -Two modulo forms `@var{a} @t{mod} @var{M}' and `@var{b} @t{mod} @var{M}' +Two modulo forms `@var{a} @tfn{mod} @var{M}' and `@var{b} @tfn{mod} @var{M}' can be divided if @expr{a}, @expr{b}, and @expr{M} are all integers. The result is the modulo form which, when multiplied by -`@var{b} @t{mod} @var{M}', produces `@var{a} @t{mod} @var{M}'. If +`@var{b} @tfn{mod} @var{M}', produces `@var{a} @tfn{mod} @var{M}'. If there is no solution to this equation (which can happen only when @expr{M} is non-prime), or if any of the arguments are non-integers, the division is left in symbolic form. Other operations, such as square roots, are not yet supported for modulo forms. (Note that, although -@w{`@t{(}@var{a} @t{mod} @var{M}@t{)^.5}'} will compute a ``modulo square root'' +@w{`@tfn{(}@var{a} @tfn{mod} @var{M}@tfn{)^.5}'} will compute a ``modulo square root'' in the sense of reducing @texline @math{\sqrt a} @infoline @expr{sqrt(a)} @@ -11374,8 +11371,8 @@ The algebraic function @samp{makemod(a, m)} builds the modulo form @cindex Standard deviations An @dfn{error form} is a number with an associated standard deviation, as in @samp{2.3 +/- 0.12}. The notation -@texline `@var{x} @t{+/-} @math{\sigma}' -@infoline `@var{x} @t{+/-} sigma' +@texline `@var{x} @tfn{+/-} @math{\sigma}' +@infoline `@var{x} @tfn{+/-} sigma' stands for an uncertain value which follows a normal or Gaussian distribution of mean @expr{x} and standard deviation or ``error'' @@ -11421,11 +11418,11 @@ Consult a good text on error analysis for a discussion of the proper use of standard deviations. Actual errors often are neither Gaussian-distributed nor uncorrelated, and the above formulas are valid only when errors are small. As an example, the error arising from -@texline `@t{sin(}@var{x} @t{+/-} @math{\sigma}@t{)}' -@infoline `@t{sin(}@var{x} @t{+/-} @var{sigma}@t{)}' +@texline `@tfn{sin(}@var{x} @tfn{+/-} @math{\sigma}@tfn{)}' +@infoline `@tfn{sin(}@var{x} @tfn{+/-} @var{sigma}@tfn{)}' is -@texline `@math{\sigma} @t{abs(cos(}@var{x}@t{))}'. -@infoline `@var{sigma} @t{abs(cos(}@var{x}@t{))}'. +@texline `@math{\sigma} @tfn{abs(cos(}@var{x}@tfn{))}'. +@infoline `@var{sigma} @tfn{abs(cos(}@var{x}@tfn{))}'. When @expr{x} is close to zero, @texline @math{\cos x} @infoline @expr{cos(x)} @@ -11557,14 +11554,14 @@ contain zero inside them Calc is forced to give the result, While it may seem that intervals and error forms are similar, they are based on entirely different concepts of inexact quantities. An error form -@texline `@var{x} @t{+/-} @math{\sigma}' -@infoline `@var{x} @t{+/-} @var{sigma}' +@texline `@var{x} @tfn{+/-} @math{\sigma}' +@infoline `@var{x} @tfn{+/-} @var{sigma}' means a variable is random, and its value could be anything but is ``probably'' within one @texline @math{\sigma} @infoline @var{sigma} of the mean value @expr{x}. An interval -`@t{[}@var{a} @t{..@:} @var{b}@t{]}' means a +`@tfn{[}@var{a} @tfn{..@:} @var{b}@tfn{]}' means a variable's value is unknown, but guaranteed to lie in the specified range. Error forms are statistical or ``average case'' approximations; interval arithmetic tends to produce ``worst case'' bounds on an @@ -12742,9 +12739,7 @@ The @kbd{m D} (@code{calc-default-simplify-mode}) command restores the default simplifications for all formulas. This includes many easy and fast algebraic simplifications such as @expr{a+0} to @expr{a}, and @expr{a + 2 a} to @expr{3 a}, as well as evaluating functions like -@texline @t{deriv}@expr{(x^2,x)} -@infoline @expr{@t{deriv}(x^2, x)} -to @expr{2 x}. +@expr{@tfn{deriv}(x^2, x)} to @expr{2 x}. @kindex m B @pindex calc-bin-simplify-mode @@ -16512,7 +16507,7 @@ no second argument at all. @cindex Fractional part of a number To compute the fractional part of a number (i.e., the amount which, when -added to `@t{floor(}@var{n}@t{)}', will produce @var{n}) just take @var{n} +added to `@tfn{floor(}@var{n}@tfn{)}', will produce @var{n}) just take @var{n} modulo 1 using the @code{%} command. Note also the @kbd{\} (integer quotient), @kbd{f I} (integer logarithm), @@ -16539,8 +16534,8 @@ this command replaces each element by its complex conjugate. The @kbd{G} (@code{calc-argument}) [@code{arg}] command computes the ``argument'' or polar angle of a complex number. For a number in polar notation, this is simply the second component of the pair -@texline `@t{(}@var{r}@t{;}@math{\theta}@t{)}'. -@infoline `@t{(}@var{r}@t{;}@var{theta}@t{)}'. +@texline `@tfn{(}@var{r}@tfn{;}@math{\theta}@tfn{)}'. +@infoline `@tfn{(}@var{r}@tfn{;}@var{theta}@tfn{)}'. The result is expressed according to the current angular mode and will be in the range @mathit{-180} degrees (exclusive) to @mathit{+180} degrees (inclusive), or the equivalent range in radians. @@ -18808,7 +18803,7 @@ where @var{m} and are both real numbers, the result uses a Gaussian distribution with mean @var{m} and standard deviation @texline @math{\sigma}. -@var{s}. +@infoline @var{s}. If @expr{M} is an interval form, the lower and upper bounds specify the acceptable limits of the random numbers. If both bounds are integers, @@ -20488,7 +20483,7 @@ has an infinite weight, next to which an error form with a finite weight is completely negligible.) This function also works for distributions (error forms or -intervals). The mean of an error form `@var{a} @t{+/-} @var{b}' is simply +intervals). The mean of an error form `@var{a} @tfn{+/-} @var{b}' is simply @expr{a}. The mean of an interval is the mean of the minimum and maximum values of the interval. @@ -22260,17 +22255,17 @@ Manipulation}. The @kbd{m D} command turns the default simplifications back on. The most basic default simplification is the evaluation of functions. -For example, @expr{2 + 3} is evaluated to @expr{5}, and @expr{@t{sqrt}(9)} +For example, @expr{2 + 3} is evaluated to @expr{5}, and @expr{@tfn{sqrt}(9)} is evaluated to @expr{3}. Evaluation does not occur if the arguments -to a function are somehow of the wrong type @expr{@t{tan}([2,3,4])}), -range (@expr{@t{tan}(90)}), or number (@expr{@t{tan}(3,5)}), -or if the function name is not recognized (@expr{@t{f}(5)}), or if +to a function are somehow of the wrong type @expr{@tfn{tan}([2,3,4])}), +range (@expr{@tfn{tan}(90)}), or number (@expr{@tfn{tan}(3,5)}), +or if the function name is not recognized (@expr{@tfn{f}(5)}), or if Symbolic mode (@pxref{Symbolic Mode}) prevents evaluation -(@expr{@t{sqrt}(2)}). +(@expr{@tfn{sqrt}(2)}). Calc simplifies (evaluates) the arguments to a function before it -simplifies the function itself. Thus @expr{@t{sqrt}(5+4)} is -simplified to @expr{@t{sqrt}(9)} before the @code{sqrt} function +simplifies the function itself. Thus @expr{@tfn{sqrt}(5+4)} is +simplified to @expr{@tfn{sqrt}(9)} before the @code{sqrt} function itself is applied. There are very few exceptions to this rule: @code{quote}, @code{lambda}, and @code{condition} (the @code{::} operator) do not evaluate their arguments, @code{if} (the @code{? :} @@ -22395,7 +22390,7 @@ terms of the product: @expr{x^a x^b} goes to @texline @math{x^{a+b}} @infoline @expr{x^(a+b)} where @expr{a} is a number, or an implicit 1 (as in @expr{x}), -or the implicit one-half of @expr{@t{sqrt}(x)}, and similarly for +or the implicit one-half of @expr{@tfn{sqrt}(x)}, and similarly for @expr{b}. The result is written using @samp{sqrt} or @samp{1/sqrt} if the sum of the powers is @expr{1/2} or @expr{-1/2}, respectively. If the sum of the powers is zero, the product is simplified to @@ -22486,20 +22481,20 @@ is safe to simplify, but is not.) @xref{Declarations}, for ways to inform Calc that your variables satisfy these requirements. -As a special case of this rule, @expr{@t{sqrt}(x)^n} is simplified to +As a special case of this rule, @expr{@tfn{sqrt}(x)^n} is simplified to @texline @math{x^{n/2}} @infoline @expr{x^(n/2)} only for even integers @expr{n}. If @expr{a} is known to be real, @expr{b} is an even integer, and @expr{c} is a half- or quarter-integer, then @expr{(a^b)^c} is -simplified to @expr{@t{abs}(a^(b c))}. +simplified to @expr{@tfn{abs}(a^(b c))}. Also, @expr{(-a)^b} is simplified to @expr{a^b} if @expr{b} is an even integer, or to @expr{-(a^b)} if @expr{b} is an odd integer, for any negative-looking expression @expr{-a}. -Square roots @expr{@t{sqrt}(x)} generally act like one-half powers +Square roots @expr{@tfn{sqrt}(x)} generally act like one-half powers @texline @math{x^{1:2}} @infoline @expr{x^1:2} for the purposes of the above-listed simplifications. @@ -22510,21 +22505,21 @@ Also, note that is changed to @texline @math{x^{-1:2}}, @infoline @expr{x^(-1:2)}, -but @expr{1 / @t{sqrt}(x)} is left alone. +but @expr{1 / @tfn{sqrt}(x)} is left alone. @tex \bigskip @end tex Generic identity matrices (@pxref{Matrix Mode}) are simplified by the -following rules: @expr{@t{idn}(a) + b} to @expr{a + b} if @expr{b} +following rules: @expr{@tfn{idn}(a) + b} to @expr{a + b} if @expr{b} is provably scalar, or expanded out if @expr{b} is a matrix; -@expr{@t{idn}(a) + @t{idn}(b)} to @expr{@t{idn}(a + b)}; -@expr{-@t{idn}(a)} to @expr{@t{idn}(-a)}; @expr{a @t{idn}(b)} to -@expr{@t{idn}(a b)} if @expr{a} is provably scalar, or to @expr{a b} -if @expr{a} is provably non-scalar; @expr{@t{idn}(a) @t{idn}(b)} to -@expr{@t{idn}(a b)}; analogous simplifications for quotients involving -@code{idn}; and @expr{@t{idn}(a)^n} to @expr{@t{idn}(a^n)} where +@expr{@tfn{idn}(a) + @tfn{idn}(b)} to @expr{@tfn{idn}(a + b)}; +@expr{-@tfn{idn}(a)} to @expr{@tfn{idn}(-a)}; @expr{a @tfn{idn}(b)} to +@expr{@tfn{idn}(a b)} if @expr{a} is provably scalar, or to @expr{a b} +if @expr{a} is provably non-scalar; @expr{@tfn{idn}(a) @tfn{idn}(b)} to +@expr{@tfn{idn}(a b)}; analogous simplifications for quotients involving +@code{idn}; and @expr{@tfn{idn}(a)^n} to @expr{@tfn{idn}(a^n)} where @expr{n} is an integer. @tex @@ -22533,27 +22528,27 @@ if @expr{a} is provably non-scalar; @expr{@t{idn}(a) @t{idn}(b)} to The @code{floor} function and other integer truncation functions vanish if the argument is provably integer-valued, so that -@expr{@t{floor}(@t{round}(x))} simplifies to @expr{@t{round}(x)}. +@expr{@tfn{floor}(@tfn{round}(x))} simplifies to @expr{@tfn{round}(x)}. Also, combinations of @code{float}, @code{floor} and its friends, and @code{ffloor} and its friends, are simplified in appropriate ways. @xref{Integer Truncation}. -The expression @expr{@t{abs}(-x)} changes to @expr{@t{abs}(x)}. -The expression @expr{@t{abs}(@t{abs}(x))} changes to -@expr{@t{abs}(x)}; in fact, @expr{@t{abs}(x)} changes to @expr{x} or +The expression @expr{@tfn{abs}(-x)} changes to @expr{@tfn{abs}(x)}. +The expression @expr{@tfn{abs}(@tfn{abs}(x))} changes to +@expr{@tfn{abs}(x)}; in fact, @expr{@tfn{abs}(x)} changes to @expr{x} or @expr{-x} if @expr{x} is provably nonnegative or nonpositive (@pxref{Declarations}). While most functions do not recognize the variable @code{i} as an imaginary number, the @code{arg} function does handle the two cases -@expr{@t{arg}(@t{i})} and @expr{@t{arg}(-@t{i})} just for convenience. +@expr{@tfn{arg}(@tfn{i})} and @expr{@tfn{arg}(-@tfn{i})} just for convenience. -The expression @expr{@t{conj}(@t{conj}(x))} simplifies to @expr{x}. +The expression @expr{@tfn{conj}(@tfn{conj}(x))} simplifies to @expr{x}. Various other expressions involving @code{conj}, @code{re}, and @code{im} are simplified, especially if some of the arguments are provably real or involve the constant @code{i}. For example, -@expr{@t{conj}(a + b i)} is changed to -@expr{@t{conj}(a) - @t{conj}(b) i}, or to @expr{a - b i} if @expr{a} +@expr{@tfn{conj}(a + b i)} is changed to +@expr{@tfn{conj}(a) - @tfn{conj}(b) i}, or to @expr{a - b i} if @expr{a} and @expr{b} are known to be real. Functions like @code{sin} and @code{arctan} generally don't have @@ -22563,13 +22558,13 @@ described in the next section does provide some simplifications for these functions, though. One important simplification that does occur is that -@expr{@t{ln}(@t{e})} is simplified to 1, and @expr{@t{ln}(@t{e}^x)} is +@expr{@tfn{ln}(@tfn{e})} is simplified to 1, and @expr{@tfn{ln}(@tfn{e}^x)} is simplified to @expr{x} for any @expr{x}. This occurs even if you have stored a different value in the Calc variable @samp{e}; but this would be a bad idea in any case if you were also using natural logarithms! -Among the logical functions, @t{(@var{a} <= @var{b})} changes to -@t{@var{a} > @var{b}} and so on. Equations and inequalities where both sides +Among the logical functions, @tfn{(@var{a} <= @var{b})} changes to +@tfn{@var{a} > @var{b}} and so on. Equations and inequalities where both sides are either negative-looking or zero are simplified by negating both sides and reversing the inequality. While it might seem reasonable to simplify @expr{!!x} to @expr{x}, this would not be valid in general because @@ -22693,17 +22688,17 @@ user might not have been thinking of. Square roots of integer or rational arguments are simplified in several ways. (Note that these will be left unevaluated only in Symbolic mode.) First, square integer or rational factors are -pulled out so that @expr{@t{sqrt}(8)} is rewritten as -@texline @math{2\,\t{sqrt}(2)}. +pulled out so that @expr{@tfn{sqrt}(8)} is rewritten as +@texline @math{2\,@tfn{sqrt}(2)}. @infoline @expr{2 sqrt(2)}. Conceptually speaking this implies factoring the argument into primes and moving pairs of primes out of the square root, but for reasons of efficiency Calc only looks for primes up to 29. Square roots in the denominator of a quotient are moved to the -numerator: @expr{1 / @t{sqrt}(3)} changes to @expr{@t{sqrt}(3) / 3}. +numerator: @expr{1 / @tfn{sqrt}(3)} changes to @expr{@tfn{sqrt}(3) / 3}. The same effect occurs for the square root of a fraction: -@expr{@t{sqrt}(2:3)} changes to @expr{@t{sqrt}(6) / 3}. +@expr{@tfn{sqrt}(2:3)} changes to @expr{@tfn{sqrt}(6) / 3}. @tex \bigskip @@ -22736,16 +22731,16 @@ declared to be an integer. @end tex Trigonometric functions are simplified in several ways. First, -@expr{@t{sin}(@t{arcsin}(x))} is simplified to @expr{x}, and +@expr{@tfn{sin}(@tfn{arcsin}(x))} is simplified to @expr{x}, and similarly for @code{cos} and @code{tan}. If the argument to @code{sin} is negative-looking, it is simplified to -@expr{-@t{sin}(x),}, and similarly for @code{cos} and @code{tan}. +@expr{-@tfn{sin}(x),}, and similarly for @code{cos} and @code{tan}. Finally, certain special values of the argument are recognized; @pxref{Trigonometric and Hyperbolic Functions}. Trigonometric functions of inverses of different trigonometric -functions can also be simplified, as in @expr{@t{sin}(@t{arccos}(x))} -to @expr{@t{sqrt}(1 - x^2)}. +functions can also be simplified, as in @expr{@tfn{sin}(@tfn{arccos}(x))} +to @expr{@tfn{sqrt}(1 - x^2)}. Hyperbolic functions of their inverses and of negative-looking arguments are also handled, as are exponentials of inverse @@ -22754,29 +22749,29 @@ hyperbolic functions. No simplifications for inverse trigonometric and hyperbolic functions are known, except for negative arguments of @code{arcsin}, @code{arctan}, @code{arcsinh}, and @code{arctanh}. Note that -@expr{@t{arcsin}(@t{sin}(x))} can @emph{not} safely change to +@expr{@tfn{arcsin}(@tfn{sin}(x))} can @emph{not} safely change to @expr{x}, since this only correct within an integer multiple of @texline @math{2 \pi} @infoline @expr{2 pi} -radians or 360 degrees. However, @expr{@t{arcsinh}(@t{sinh}(x))} is +radians or 360 degrees. However, @expr{@tfn{arcsinh}(@tfn{sinh}(x))} is simplified to @expr{x} if @expr{x} is known to be real. Several simplifications that apply to logarithms and exponentials -are that @expr{@t{exp}(@t{ln}(x))}, -@texline @t{e}@math{^{\ln(x)}}, -@infoline @expr{e^@t{ln}(x)}, +are that @expr{@tfn{exp}(@tfn{ln}(x))}, +@texline @tfn{e}@math{^{\ln(x)}}, +@infoline @expr{e^@tfn{ln}(x)}, and @texline @math{10^{{\rm log10}(x)}} -@infoline @expr{10^@t{log10}(x)} -all reduce to @expr{x}. Also, @expr{@t{ln}(@t{exp}(x))}, etc., can +@infoline @expr{10^@tfn{log10}(x)} +all reduce to @expr{x}. Also, @expr{@tfn{ln}(@tfn{exp}(x))}, etc., can reduce to @expr{x} if @expr{x} is provably real. The form -@expr{@t{exp}(x)^y} is simplified to @expr{@t{exp}(x y)}. If @expr{x} +@expr{@tfn{exp}(x)^y} is simplified to @expr{@tfn{exp}(x y)}. If @expr{x} is a suitable multiple of @texline @math{\pi i} @infoline @expr{pi i} (as described above for the trigonometric functions), then -@expr{@t{exp}(x)} or @expr{e^x} will be expanded. Finally, -@expr{@t{ln}(x)} is simplified to a form involving @code{pi} and +@expr{@tfn{exp}(x)} or @expr{e^x} will be expanded. Finally, +@expr{@tfn{ln}(x)} is simplified to a form involving @code{pi} and @code{i} where @expr{x} is provably negative, positive imaginary, or negative imaginary. @@ -22848,9 +22843,9 @@ by @kbd{a e}. Inverse trigonometric or hyperbolic functions, called with their corresponding non-inverse functions as arguments, are simplified -by @kbd{a e}. For example, @expr{@t{arcsin}(@t{sin}(x))} changes -to @expr{x}. Also, @expr{@t{arcsin}(@t{cos}(x))} and -@expr{@t{arccos}(@t{sin}(x))} both change to @expr{@t{pi}/2 - x}. +by @kbd{a e}. For example, @expr{@tfn{arcsin}(@tfn{sin}(x))} changes +to @expr{x}. Also, @expr{@tfn{arcsin}(@tfn{cos}(x))} and +@expr{@tfn{arccos}(@tfn{sin}(x))} both change to @expr{@tfn{pi}/2 - x}. These simplifications are unsafe because they are valid only for values of @expr{x} in a certain range; outside that range, values are folded down to the 360-degree range that the inverse trigonometric @@ -22866,22 +22861,22 @@ in a restricted range of @expr{x}; for example, in the powers cancel to get @expr{x}, which is valid for positive values of @expr{x} but not for negative or complex values. -Similarly, @expr{@t{sqrt}(x^a)} and @expr{@t{sqrt}(x)^a} are both +Similarly, @expr{@tfn{sqrt}(x^a)} and @expr{@tfn{sqrt}(x)^a} are both simplified (possibly unsafely) to @texline @math{x^{a/2}}. @infoline @expr{x^(a/2)}. -Forms like @expr{@t{sqrt}(1 - sin(x)^2)} are simplified to, e.g., -@expr{@t{cos}(x)}. Calc has identities of this sort for @code{sin}, +Forms like @expr{@tfn{sqrt}(1 - sin(x)^2)} are simplified to, e.g., +@expr{@tfn{cos}(x)}. Calc has identities of this sort for @code{sin}, @code{cos}, @code{tan}, @code{sinh}, and @code{cosh}. Arguments of square roots are partially factored to look for squared terms that can be extracted. For example, -@expr{@t{sqrt}(a^2 b^3 + a^3 b^2)} simplifies to -@expr{a b @t{sqrt}(a+b)}. +@expr{@tfn{sqrt}(a^2 b^3 + a^3 b^2)} simplifies to +@expr{a b @tfn{sqrt}(a+b)}. -The simplifications of @expr{@t{ln}(@t{exp}(x))}, -@expr{@t{ln}(@t{e}^x)}, and @expr{@t{log10}(10^x)} to @expr{x} are also +The simplifications of @expr{@tfn{ln}(@tfn{exp}(x))}, +@expr{@tfn{ln}(@tfn{e}^x)}, and @expr{@tfn{log10}(10^x)} to @expr{x} are also unsafe because of problems with principal values (although these simplifications are safe if @expr{x} is known to be real). @@ -24433,8 +24428,8 @@ contain error forms. The data values must either all include errors or all be plain numbers. Error forms can go anywhere but generally go on the numbers in the last row of the data matrix. If the last row contains error forms -@texline `@var{y_i}@w{ @t{+/-} }@math{\sigma_i}', -@infoline `@var{y_i}@w{ @t{+/-} }@var{sigma_i}', +@texline `@var{y_i}@w{ @tfn{+/-} }@math{\sigma_i}', +@infoline `@var{y_i}@w{ @tfn{+/-} }@var{sigma_i}', then the @texline @math{\chi^2} @infoline @expr{chi^2} @@ -24586,17 +24581,17 @@ Linear or multilinear. @mathit{a + b x + c y + d z}. @item 2-9 Polynomials. @mathit{a + b x + c x^2 + d x^3}. @item e -Exponential. @mathit{a} @t{exp}@mathit{(b x)} @t{exp}@mathit{(c y)}. +Exponential. @mathit{a} @tfn{exp}@mathit{(b x)} @tfn{exp}@mathit{(c y)}. @item E -Base-10 exponential. @mathit{a} @t{10^}@mathit{(b x)} @t{10^}@mathit{(c y)}. +Base-10 exponential. @mathit{a} @tfn{10^}@mathit{(b x)} @tfn{10^}@mathit{(c y)}. @item x -Exponential (alternate notation). @t{exp}@mathit{(a + b x + c y)}. +Exponential (alternate notation). @tfn{exp}@mathit{(a + b x + c y)}. @item X -Base-10 exponential (alternate). @t{10^}@mathit{(a + b x + c y)}. +Base-10 exponential (alternate). @tfn{10^}@mathit{(a + b x + c y)}. @item l -Logarithmic. @mathit{a + b} @t{ln}@mathit{(x) + c} @t{ln}@mathit{(y)}. +Logarithmic. @mathit{a + b} @tfn{ln}@mathit{(x) + c} @tfn{ln}@mathit{(y)}. @item L -Base-10 logarithmic. @mathit{a + b} @t{log10}@mathit{(x) + c} @t{log10}@mathit{(y)}. +Base-10 logarithmic. @mathit{a + b} @tfn{log10}@mathit{(x) + c} @tfn{log10}@mathit{(y)}. @item ^ General exponential. @mathit{a b^x c^y}. @item p @@ -34783,7 +34778,7 @@ keystrokes are not listed in this summary. @r{ @: . @:number @: @:@:0.number} @r{ @: _ @:number @: @:-@:number} @r{ @: e @:number @: @:@:1e number} -@r{ @: # @:number @: @:@:current-radix@t{#}number} +@r{ @: # @:number @: @:@:current-radix@tfn{#}number} @r{ @: P @:(in number) @: @:+/-@:} @r{ @: M @:(in number) @: @:mod@:} @r{ @: @@ ' " @: (in number)@: @:@:HMS form} @@ -35343,8 +35338,8 @@ keystrokes are not listed in this summary. @r{ @: s & @:var @: 29,47 @:calc-store-inv@: (v^-1)} @r{ @: s [ @:var @: 29,47 @:calc-store-decr@: (v-1)} @r{ @: s ] @:var @: 29,47 @:calc-store-incr@: (v-(-1))} -@r{ a b@: s : @: @: 2 @:assign@:(a,b) a @t{:=} b} -@r{ a@: s = @: @: 1 @:evalto@:(a,b) a @t{=>}} +@r{ a b@: s : @: @: 2 @:assign@:(a,b) a @tfn{:=} b} +@r{ a@: s = @: @: 1 @:evalto@:(a,b) a @tfn{=>}} @c @r{ @: t [ @: @: 4 @:calc-trail-first@:}