From: Jay Belanger Date: Thu, 13 May 2010 22:33:11 +0000 (-0500) Subject: calc.texi: Remove "\turnoffactive" commands throughout. X-Git-Tag: emacs-pretest-24.0.90~104^2~275^2~438^2~211^2^2~10 X-Git-Url: http://git.eshelyaron.com/gitweb/?a=commitdiff_plain;h=14914c431498a802e271ad42cdd6f06175ae4b4a;p=emacs.git calc.texi: Remove "\turnoffactive" commands throughout. --- diff --git a/doc/misc/ChangeLog b/doc/misc/ChangeLog index 85bf897f41f..c6d3c1be498 100644 --- a/doc/misc/ChangeLog +++ b/doc/misc/ChangeLog @@ -1,3 +1,7 @@ +2010-05-13 Jay Belanger + + * calc.texi: Remove "\turnoffactive" commands througout. + 2010-05-08 Štěpán Němec (tiny change) * url.texi (HTTP language/coding, Customization): diff --git a/doc/misc/calc.texi b/doc/misc/calc.texi index 96075b6710d..c578e919612 100644 --- a/doc/misc/calc.texi +++ b/doc/misc/calc.texi @@ -76,7 +76,6 @@ @newcount@calcpageno @newtoks@calcoldeverypar @calcoldeverypar=@everypar @everypar={@calceverypar@the@calcoldeverypar} -@ifx@turnoffactive@undefinedzzz@def@turnoffactive{}@fi @ifx@ninett@undefinedzzz@font@ninett=cmtt9@fi @catcode`@\=0 \catcode`\@=11 \r@ggedbottomtrue @@ -1804,7 +1803,6 @@ or, in large mathematical notation, @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ 2 + { 3 \times 4 \times 5 \over 6 \times 7^8 } - 9 $$ \afterdisplay @@ -3358,7 +3356,6 @@ Suppose we had the following set of equations: @end group @end ifnottex @tex -\turnoffactive \beforedisplayh $$ \openup1\jot \tabskip=0pt plus1fil \halign to\displaywidth{\tabskip=0pt @@ -3385,7 +3382,6 @@ This can be cast into the matrix equation, @end group @end ifnottex @tex -\turnoffactive \beforedisplay $$ \pmatrix{ 1 & 2 & 3 \cr 4 & 5 & 6 \cr 7 & 6 & 0 } \times @@ -3457,7 +3453,6 @@ in terms of @expr{a} and @expr{b}. @end group @end ifnottex @tex -\turnoffactive \beforedisplay $$ \eqalign{ x &+ a y = 6 \cr x &+ b y = 10} @@ -3483,7 +3478,6 @@ on the left by the transpose of @expr{A}: @samp{trn(A)*A*X = trn(A)*B}. @end ifnottex @tex -\turnoffactive $A^T A \, X = A^T B$, where $A^T$ is the transpose \samp{trn(A)}. @end tex Now @@ -3506,7 +3500,6 @@ system: @end group @end ifnottex @tex -\turnoffactive \beforedisplayh $$ \openup1\jot \tabskip=0pt plus1fil \halign to\displaywidth{\tabskip=0pt @@ -3778,7 +3771,6 @@ m = (N sum(x y) - sum(x) sum(y)) / (N sum(x^2) - sum(x)^2) @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ m = {N \sum x y - \sum x \sum y \over N \sum x^2 - \left( \sum x \right)^2} $$ @@ -3820,7 +3812,6 @@ respectively. (We could have used @kbd{*} to compute @samp{sum(x^2)} and @samp{sum(x y)}.) @end ifnottex @tex -\turnoffactive These are $\sum x$, $\sum x^2$, $\sum y$, and $\sum x y$, respectively. (We could have used \kbd{*} to compute $\sum x^2$ and $\sum x y$.) @@ -3874,7 +3865,6 @@ b = (sum(y) - m sum(x)) / N @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ b = {\sum y - m \sum x \over N} $$ \afterdisplay @@ -5223,7 +5213,6 @@ down to the formula, @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ \displaylines{ \qquad {h \over 3} (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + \cdots @@ -5245,7 +5234,6 @@ h * (f(a) + f(a+h) + f(a+2h) + f(a+3h) + ... @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ h (f(a) + f(a+h) + f(a+2h) + f(a+3h) + \cdots + f(a+(n-2)h) + f(a+(n-1)h)) $$ @@ -5686,7 +5674,6 @@ cos(x) = 1 - x^2 / 2! + x^4 / 4! - x^6 / 6! + ... @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ \cos x = 1 - {x^2 \over 2!} + {x^4 \over 4!} - {x^6 \over 6!} + \cdots $$ \afterdisplay @@ -5704,7 +5691,6 @@ cos(x) = 1 - x^2 / 2! + O(x^3) @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ \cos x = 1 - {x^2 \over 2!} + O(x^3) $$ \afterdisplay @@ -6336,7 +6322,6 @@ s(n+1,m) = s(n,m-1) - n s(n,m) for n >= m >= 1. @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ \eqalign{ s(n,n) &= 1 \qquad \hbox{for } n \ge 0, \cr s(n,0) &= 0 \qquad \hbox{for } n > 0, \cr @@ -6875,7 +6860,6 @@ get the row sum. Similarly, use @kbd{[1 1] r 4 *} to get the column sum. @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ \eqalign{ x &+ a y = 6 \cr x &+ b y = 10} @@ -6939,7 +6923,6 @@ which we can solve using Calc's @samp{/} command. @end example @end ifnottex @tex -\turnoffactive \beforedisplayh $$ \openup1\jot \tabskip=0pt plus1fil \halign to\displaywidth{\tabskip=0pt @@ -7074,7 +7057,6 @@ the first job is to form the matrix that describes the problem. @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ m \times x + b \times 1 = y $$ \afterdisplay @@ -7865,7 +7847,6 @@ So the result when we take the modulo after every step is, @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ 3 (3 a + b - 511 m) + c - 511 n $$ \afterdisplay @@ -7881,7 +7862,6 @@ the distributive law yields @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ 9 a + 3 b + c - 511\times3 m - 511 n $$ \afterdisplay @@ -7899,7 +7879,6 @@ term. So we can take it out to get an equivalent formula with @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ 9 a + 3 b + c - 511 n^{\prime} $$ \afterdisplay @@ -14408,7 +14387,6 @@ $$ \sin\left( a^2 \over b_i \right) $$ @end group @end example @tex -\turnoffactive $$ [3 + 4i, {3 \over 4}, 3 \pm 4, [ 3 \ldots \infty)] $$ @end tex @sp 1 @@ -14434,7 +14412,6 @@ $$ [|a|, \left| a \over b \right|, @end group @end example @tex -\turnoffactive $$ [\sin{a}, \sin{2 a}, \sin(2 + a), \sin\left( {a \over b} \right)] $$ @end tex @sp 2 @@ -14467,7 +14444,6 @@ First with @samp{\def\evalto@{@}}, then with @samp{\def\evalto#1\to@{@}}: @end group @end example @tex -\turnoffactive $$ 2 + 3 \to 5 $$ $$ 5 $$ @end tex @@ -14482,7 +14458,6 @@ First with standard @code{\to}, then with @samp{\let\to\Rightarrow}: @end group @end example @tex -\turnoffactive $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$ {\let\to\Rightarrow $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$} @@ -14499,7 +14474,6 @@ Matrices normally, then changing @code{\matrix} to @code{\pmatrix}: @end group @end example @tex -\turnoffactive $$ \matrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$ $$ \pmatrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$ @end tex @@ -17935,7 +17909,6 @@ ddb(cost, salv, life, per) = --------, book = cost - depreciation so far @end example @end ifnottex @tex -\turnoffactive $$ \code{fv}(r, n, p) = p { (1 + r)^n - 1 \over r } $$ $$ \code{fvb}(r, n, p) = p { ((1 + r)^n - 1) (1 + r) \over r } $$ $$ \code{fvl}(r, n, p) = p (1 + r)^n $$ @@ -18591,7 +18564,6 @@ letter gamma). You can obtain these using the @kbd{H f G} [@code{gammag}] and @kbd{H I f G} [@code{gammaG}] commands. @end ifnottex @tex -\turnoffactive The functions corresponding to the integrals that define $P(a,x)$ and $Q(a,x)$ but without the normalizing $1/\Gamma(a)$ factor are called $\gamma(a,x)$ and $\Gamma(a,x)$, respectively. @@ -20559,7 +20531,6 @@ this is the weighted mean of the @expr{x} values with weights @texline @math{1 /\sigma^2}. @infoline @expr{1 / s^2}. @tex -\turnoffactive $$ \mu = { \displaystyle \sum { x_i \over \sigma_i^2 } \over \displaystyle \sum { 1 \over \sigma_i^2 } } $$ @end tex @@ -20593,7 +20564,6 @@ root of the reciprocal of the sum of the reciprocals of the squares of the input errors. (I.e., the variance is the reciprocal of the sum of the reciprocals of the variances.) @tex -\turnoffactive $$ \sigma_\mu^2 = {1 \over \displaystyle \sum {1 \over \sigma_i^2}} $$ @end tex If the inputs are plain @@ -20603,7 +20573,6 @@ out to be equivalent to calculating the standard deviation and then assuming each value's error is equal to this standard deviation.) @tex -\turnoffactive $$ \sigma_\mu^2 = {\sigma^2 \over N} $$ @end tex @@ -20636,7 +20605,6 @@ command computes the harmonic mean of the data values. This is defined as the reciprocal of the arithmetic mean of the reciprocals of the values. @tex -\turnoffactive $$ { N \over \displaystyle \sum {1 \over x_i} } $$ @end tex @@ -20650,7 +20618,6 @@ is the @var{n}th root of the product of the values. This is also equal to the @code{exp} of the arithmetic mean of the logarithms of the data values. @tex -\turnoffactive $$ \exp \left ( \sum { \ln x_i } \right ) = \left ( \prod { x_i } \right)^{1 / N} $$ @end tex @@ -20662,7 +20629,6 @@ mean'' of two numbers taken from the stack. This is computed by replacing the two numbers with their arithmetic mean and geometric mean, then repeating until the two values converge. @tex -\turnoffactive $$ a_{i+1} = { a_i + b_i \over 2 } , \qquad b_{i+1} = \sqrt{a_i b_i} $$ @end tex @@ -20685,7 +20651,6 @@ deviation, whose value is the square root of the sum of the squares of the differences between the values and the mean of the @expr{N} values, divided by @expr{N-1}. @tex -\turnoffactive $$ \sigma^2 = {1 \over N - 1} \sum (x_i - \mu)^2 $$ @end tex @@ -20712,7 +20677,6 @@ is used when the input represents a sample of the set of all data values, so that the mean computed from the input is itself only an estimate of the true mean. @tex -\turnoffactive $$ \sigma^2 = {1 \over N} \sum (x_i - \mu)^2 $$ @end tex @@ -20777,7 +20741,6 @@ are composed of error forms, the error for a given data point is taken as the square root of the sum of the squares of the two input errors. @tex -\turnoffactive $$ \sigma_{x\!y}^2 = {1 \over N-1} \sum (x_i - \mu_x) (y_i - \mu_y) $$ $$ \sigma_{x\!y}^2 = {\displaystyle {1 \over N-1} @@ -20805,7 +20768,6 @@ This is defined by the covariance of the vectors divided by the product of their standard deviations. (There is no difference between sample or population statistics here.) @tex -\turnoffactive $$ r_{x\!y} = { \sigma_{x\!y}^2 \over \sigma_x^2 \sigma_y^2 } $$ @end tex @@ -24361,8 +24323,6 @@ For example, suppose the data matrix @end example @end ifnottex @tex -\turnoffactive -\turnoffactive \beforedisplay $$ \pmatrix{ 1 & 2 & 3 & 4 & 5 \cr 5 & 7 & 9 & 11 & 13 } @@ -24422,7 +24382,6 @@ chi^2 = sum((y_i - (a + b x_i))^2, i, 1, N) @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ \chi^2 = \sum_{i=1}^N (y_i - (a + b x_i))^2 $$ \afterdisplay @@ -24613,7 +24572,6 @@ chi^2 = sum(((y_i - (a + b x_i)) / sigma_i)^2, i, 1, N) @end example @end ifnottex @tex -\turnoffactive \beforedisplay $$ \chi^2 = \sum_{i=1}^N \left(y_i - (a + b x_i) \over \sigma_i\right)^2 $$ \afterdisplay @@ -25388,7 +25346,6 @@ any later ones are answered by reading additional elements from the stack. Thus, @kbd{' k^2 @key{RET} ' k @key{RET} 1 @key{RET} 5 @key{RET} a + @key{RET}} produces the result 55. @tex -\turnoffactive $$ \sum_{k=1}^5 k^2 = 55 $$ @end tex