get a special ``dimensioned'' Matrix mode in which matrices of
unknown size are assumed to be @var{n}x@var{n} square matrices.
Then, the function call @samp{idn(1)} will expand into an actual
-matrix rather than representing a ``generic'' matrix.
+matrix rather than representing a ``generic'' matrix. Simply typing
+@kbd{C-u m v} will get you a square Matrix mode, in which matrices of
+unknown size are assumed to be square matrices of unspecified size.
@cindex Declaring scalar variables
Of course these modes are approximations to the true state of
The value is a vector.
@item matrix
The value is a matrix (a rectangular vector of vectors).
+@item sqmatrix
+The value is a square matrix.
@end table
These type symbols can be combined with the other type symbols
@item
Matrix/Scalar mode. Default value is @mathit{-1}. Value is 0 for Scalar
-mode, @mathit{-2} for Matrix mode, or @var{N} for
+mode, @mathit{-2} for Matrix mode, @mathit{-3} for square Matrix mode,
+or @var{N} for
@texline @math{N\times N}
@infoline @var{N}x@var{N}
Matrix mode. Command is @kbd{m v}.
Matrix mode (@kbd{m v}; @pxref{Matrix Mode}).
@item Matrix@var{n}
-Dimensioned Matrix mode (@kbd{C-u @var{n} m v}).
+Dimensioned Matrix mode (@kbd{C-u @var{n} m v}; @pxref{Matrix Mode}).
+
+@item SqMatrix
+Square Matrix mode (@kbd{C-u m v}; @pxref{Matrix Mode}).
@item Scalar
Scalar mode (@kbd{m v}; @pxref{Matrix Mode}).