@cindex negative infinity
@cindex infinity
@cindex NaN
- Most modern computers support the @acronym{IEEE} floating point standard, which
-provides for positive infinity and negative infinity as floating point
+ Most modern computers support the @acronym{IEEE} floating point standard,
+which provides for positive infinity and negative infinity as floating point
values. It also provides for a class of values called NaN or
``not-a-number''; numerical functions return such values in cases where
there is no correct answer. For example, @code{(sqrt -1.0)} returns a
@end table
In addition, the value @code{-0.0} is distinguishable from ordinary
-zero in @acronym{IEEE} floating point (although @code{equal} and @code{=} consider
-them equal values).
+zero in @acronym{IEEE} floating point (although @code{equal} and
+@code{=} consider them equal values).
You can use @code{logb} to extract the binary exponent of a floating
point number (or estimate the logarithm of an integer):
@end defun
There are four functions to convert floating point numbers to integers;
-they differ in how they round. These functions accept integer arguments
-also, and return such arguments unchanged.
-
-@defun truncate number
+they differ in how they round. All accept an argument @var{number}
+and an optional argument @var{divisor}. Both arguments may be
+integers or floating point numbers. @var{divisor} may also be
+@code{nil}. If @var{divisor} is @code{nil} or omitted, these
+functions convert @var{number} to an integer, or return it unchanged
+if it already is an integer. If @var{divisor} is non-@code{nil}, they
+divide @var{number} by @var{divisor} and convert the result to an
+integer. An @code{arith-error} results if @var{divisor} is 0.
+
+@defun truncate number &optional divisor
This returns @var{number}, converted to an integer by rounding towards
zero.
This returns @var{number}, converted to an integer by rounding downward
(towards negative infinity).
-If @var{divisor} is specified, @code{floor} divides @var{number} by
-@var{divisor} and then converts to an integer; this uses the kind of
-division operation that corresponds to @code{mod}, rounding downward.
-An @code{arith-error} results if @var{divisor} is 0.
+If @var{divisor} is specified, this uses the kind of division
+operation that corresponds to @code{mod}, rounding downward.
@example
(floor 1.2)
@end example
@end defun
-@defun ceiling number
+@defun ceiling number &optional divisor
This returns @var{number}, converted to an integer by rounding upward
(towards positive infinity).
@end example
@end defun
-@defun round number
+@defun round number &optional divisor
This returns @var{number}, converted to an integer by rounding towards the
nearest integer. Rounding a value equidistant between two integers
may choose the integer closer to zero, or it may prefer an even integer,