]> git.eshelyaron.com Git - emacs.git/commitdiff
(math-integrate-by-parts): Removed unused variable var-thing.
authorJay Belanger <jay.p.belanger@gmail.com>
Mon, 15 Nov 2004 06:16:21 +0000 (06:16 +0000)
committerJay Belanger <jay.p.belanger@gmail.com>
Mon, 15 Nov 2004 06:16:21 +0000 (06:16 +0000)
(math-integ-depth, math-integ-level, math-integral-limit)
(math-enable-subst, math-any-substs, math-integ-msg)
(math-prev-parts-v, math-good-parts, math-max-integral-limit)
(math-int-threshold, math-int-factors, math-double-roots)
(math-solve-simplifying, var-IntegLimit, math-solve-sign)
(var-GenCount):  Declared these variables.
(calcFunc-integ):  Don't check if var-IntegLimit is bound.

(math-integral-cache, math-integral-cache-state):  Move declarations
to earlier in the file.

(math-deriv-var, math-deriv-total, math-deriv-symb):  New variables.
(math-derivative, calcFunc-deriv, calcFunc-tderiv):  Replace
variables deriv-var, deriv-total and deriv-symb by declared variables
math-deriv-var, math-deriv-total and math-deriv-symb.

(math-cur-record):  New variable.
(math-integral, math-replace-integral-parts, math-integrate-by-parts)
(calc-dump-integral-cache, math-try-integral):  Replace variable
cur-record by declared variable math-cur-record.

(math-has-rules):  New variable.
(math-try-integral, math-do-integral):  Use declared variable
math-has-rules instead of has-rules.

(math-t1, math-t2, math-t3):  New variables.
(math-do-integral, math-do-integral-methods, math-try-solve-for)
(math-try-solve-prod, math-solve-poly-funny-powers)
(math-solve-crunch-poly, math-decompose-poly)
(math-solve-find-root-term, math-find-root-in-prod):  Replace
variables t1, t2, t3 by declared variables math-t1, math-t2,
math-t3.

(math-so-far, math-integ-expr):  New variables.
(math-do-integral-methods, math-integ-try-linear-substitutions)
(math-integ-try-substitutions):  Replace variables so-far and expr by
declared variables math-so-far and math-integ-expr.

(math-expr-parts):  New variable.
(math-expr-rational-in, math-expr-rational-in-rec):  Replace variable
parts by declared variable math-expr-parts.

(calc-low, calc-high):  New variables.
(calcFunc-table, math-scan-for-limits):  Replaced variable low and
high with the declared variable calc-low and calc-high.

(math-solve-var, math-solve-full):  New variables.
(math-try-solve-for, math-try-solve-prod, math-solve-prod)
(math-decompose-poly, math-solve-quartic, math-poly-all-roots)
(math-solve-find-root-in-prod, math-solve-for, math-solve-system)
(math-solve-system-rec, math-solve-get-sign, math-solve-get-int):
Replace variables solve-var and solve-full with declared variables
math-solve-var and math-solve-full.

(math-solve-vars):  New variable.
(math-solve-system, math-solve-system-rec):  Replace variable
solve-vars with declared variable math-solve-vars.

(math-try-solve-sign):  New variable.
(math-try-solve-for, math-try-solve-prod):  Replace variable
sign by declared variable math-try-solve-sign.

(math-solve-b):  New variable.
(math-solve-poly-funny-powers, math-decompose-poly):  Replace variable
b by declared variable math-solve-b.

(math-solve-system-vv, math-solve-res):  New variables
(math-solve-system-rec, math-solve-system-subst):  Replaced variables
vv and res with declared variables math-solve-system-vv and
math-solve-system-res.

lisp/calc/calcalg2.el

index ff23c3e542131fbe31e831420137835bfe2bf238..b7c837c7b4f53b79331cb960ba6dd5d73484576b 100644 (file)
                                       (prefix-numeric-value nterms))))))
 
 
-(defun math-derivative (expr)   ; uses global values: deriv-var, deriv-total.
-  (cond ((equal expr deriv-var)
+;; The following are global variables used by math-derivative and some 
+;; related functions
+(defvar math-deriv-var)
+(defvar math-deriv-total)
+(defvar math-deriv-symb)
+
+(defun math-derivative (expr)
+  (cond ((equal expr math-deriv-var)
         1)
        ((or (Math-scalarp expr)
             (eq (car expr) 'sdev)
             (and (eq (car expr) 'var)
-                 (or (not deriv-total)
+                 (or (not math-deriv-total)
                      (math-const-var expr)
                      (progn
                        (math-setup-declarations)
                      (let ((handler (get (car expr) 'math-derivative-n)))
                        (and handler
                             (funcall handler expr)))))
-              (and (not (eq deriv-symb 'pre-expand))
+              (and (not (eq math-deriv-symb 'pre-expand))
                    (let ((exp (math-expand-formula expr)))
                      (and exp
-                          (or (let ((deriv-symb 'pre-expand))
+                          (or (let ((math-deriv-symb 'pre-expand))
                                 (catch 'math-deriv (math-derivative expr)))
                               (math-derivative exp)))))
               (if (or (Math-objvecp expr)
                       (eq (car expr) 'var)
                       (not (symbolp (car expr))))
-                  (if deriv-symb
+                  (if math-deriv-symb
                       (throw 'math-deriv nil)
-                    (list (if deriv-total 'calcFunc-tderiv 'calcFunc-deriv)
+                    (list (if math-deriv-total 'calcFunc-tderiv 'calcFunc-deriv)
                           expr
-                          deriv-var))
+                          math-deriv-var))
                 (let ((accum 0)
                       (arg expr)
                       (n 1)
                                   (let ((handler (get func prop)))
                                     (or (and prop handler
                                              (apply handler (cdr expr)))
-                                        (if (and deriv-symb
+                                        (if (and math-deriv-symb
                                                  (not (get func
                                                            'calc-user-defn)))
                                             (throw 'math-deriv nil)
                     (setq n (1+ n)))
                   accum))))))
 
-(defun calcFunc-deriv (expr deriv-var &optional deriv-value deriv-symb)
-  (let* ((deriv-total nil)
+(defun calcFunc-deriv (expr math-deriv-var &optional deriv-value math-deriv-symb)
+  (let* ((math-deriv-total nil)
         (res (catch 'math-deriv (math-derivative expr))))
     (or (eq (car-safe res) 'calcFunc-deriv)
        (null res)
        (setq res (math-normalize res)))
     (and res
         (if deriv-value
-            (math-expr-subst res deriv-var deriv-value)
+            (math-expr-subst res math-deriv-var deriv-value)
           res))))
 
-(defun calcFunc-tderiv (expr deriv-var &optional deriv-value deriv-symb)
+(defun calcFunc-tderiv (expr math-deriv-var &optional deriv-value math-deriv-symb)
   (math-setup-declarations)
-  (let* ((deriv-total t)
+  (let* ((math-deriv-total t)
         (res (catch 'math-deriv (math-derivative expr))))
     (or (eq (car-safe res) 'calcFunc-tderiv)
        (null res)
        (setq res (math-normalize res)))
     (and res
         (if deriv-value
-            (math-expr-subst res deriv-var deriv-value)
+            (math-expr-subst res math-deriv-var deriv-value)
           res))))
 
 (put 'calcFunc-inv\' 'math-derivative-1
 (put 'calcFunc-sum 'math-derivative-n
      (function
       (lambda (expr)
-       (if (math-expr-contains (cons 'vec (cdr (cdr expr))) deriv-var)
+       (if (math-expr-contains (cons 'vec (cdr (cdr expr))) math-deriv-var)
            (throw 'math-deriv nil)
          (cons 'calcFunc-sum
                (cons (math-derivative (nth 1 expr))
 (put 'calcFunc-prod 'math-derivative-n
      (function
       (lambda (expr)
-       (if (math-expr-contains (cons 'vec (cdr (cdr expr))) deriv-var)
+       (if (math-expr-contains (cons 'vec (cdr (cdr expr))) math-deriv-var)
            (throw 'math-deriv nil)
          (math-mul expr
                    (cons 'calcFunc-sum
      (function
       (lambda (expr)
        (if (= (length expr) 3)
-           (if (equal (nth 2 expr) deriv-var)
+           (if (equal (nth 2 expr) math-deriv-var)
                (nth 1 expr)
              (math-normalize
               (list 'calcFunc-integ
                                              (math-derivative (nth 4 expr)))
                                    (math-mul lower
                                              (math-derivative (nth 3 expr))))
-                         (if (equal (nth 2 expr) deriv-var)
+                         (if (equal (nth 2 expr) math-deriv-var)
                              0
                            (math-normalize
                             (list 'calcFunc-integ
 (defvar math-integ-var-list (list math-integ-var))
 (defvar math-integ-var-list-list (list math-integ-var-list))
 
+;; math-integ-depth is a local variable for math-try-integral, but is used
+;; by math-integral and math-tracing-integral
+;; which are called (directly or indirectly) by math-try-integral.
+(defvar math-integ-depth)
+;; math-integ-level is a local variable for math-try-integral, but is used
+;; by math-integral, math-do-integral, math-tracing-integral, 
+;; math-sub-integration, math-integrate-by-parts and 
+;; math-integrate-by-substitution, which are called (directly or 
+;; indirectly) by math-try-integral.
+(defvar math-integ-level)
+;; math-integral-limit is a local variable for calcFunc-integ, but is
+;; used by math-tracing-integral, math-sub-integration and 
+;; math-try-integration. 
+(defvar math-integral-limit)
+
 (defmacro math-tracing-integral (&rest parts)
   (list 'and
        'trace-buffer
 ;;;                     ( A parts )      Currently working, integ-by-parts;
 ;;;                     ( A parts2 )     Currently working, integ-by-parts;
 ;;;                     ( A cancelled )  Ignore this cache entry;
-;;;                     ( A [B] )        Same result as for cur-record = B.
+;;;                     ( A [B] )        Same result as for math-cur-record = B.
+
+;; math-cur-record is a local variable for math-try-integral, but is used
+;; by math-integral, math-replace-integral-parts and math-integrate-by-parts
+;; which are called (directly or indirectly) by math-try-integral, as well as
+;; by calc-dump-integral-cache
+(defvar math-cur-record)
+;; math-enable-subst and math-any-substs are local variables for
+;; calcFunc-integ, but are used by math-integral and math-try-integral.
+(defvar math-enable-subst)
+(defvar math-any-substs)
+
+;; math-integ-msg is a local variable for math-try-integral, but is
+;; used (both locally and non-locally) by math-integral.
+(defvar math-integ-msg)
+
+(defvar math-integral-cache nil)
+(defvar math-integral-cache-state nil)
+
 (defun math-integral (expr &optional simplify same-as-above)
-  (let* ((simp cur-record)
-        (cur-record (assoc expr math-integral-cache))
+  (let* ((simp math-cur-record)
+        (math-cur-record (assoc expr math-integral-cache))
         (math-integ-depth (1+ math-integ-depth))
         (val 'cancelled))
     (math-tracing-integral "Integrating "
                           (math-format-value expr 1000)
                           "...\n")
-    (and cur-record
+    (and math-cur-record
         (progn
           (math-tracing-integral "Found "
-                                 (math-format-value (nth 1 cur-record) 1000))
-          (and (consp (nth 1 cur-record))
-               (math-replace-integral-parts cur-record))
+                                 (math-format-value (nth 1 math-cur-record) 1000))
+          (and (consp (nth 1 math-cur-record))
+               (math-replace-integral-parts math-cur-record))
           (math-tracing-integral " => "
-                                 (math-format-value (nth 1 cur-record) 1000)
+                                 (math-format-value (nth 1 math-cur-record) 1000)
                                  "\n")))
-    (or (and cur-record
-            (not (eq (nth 1 cur-record) 'cancelled))
-            (or (not (integerp (nth 1 cur-record)))
-                (>= (nth 1 cur-record) math-integ-level)))
+    (or (and math-cur-record
+            (not (eq (nth 1 math-cur-record) 'cancelled))
+            (or (not (integerp (nth 1 math-cur-record)))
+                (>= (nth 1 math-cur-record) math-integ-level)))
        (and (math-integral-contains-parts expr)
             (progn
               (setq val nil)
                                            "Working... Integrating %s"
                                            (math-format-flat-expr expr 0)))
                      (message math-integ-msg)))
-               (if cur-record
-                   (setcar (cdr cur-record)
+               (if math-cur-record
+                   (setcar (cdr math-cur-record)
                            (if same-as-above (vector simp) 'busy))
-                 (setq cur-record
+                 (setq math-cur-record
                        (list expr (if same-as-above (vector simp) 'busy))
-                       math-integral-cache (cons cur-record
+                       math-integral-cache (cons math-cur-record
                                                  math-integral-cache)))
                (if (eq simplify 'yes)
                    (progn
                              (setq val (math-integral simp 'no t))))))))
              (if (eq calc-display-working-message 'lots)
                  (message math-integ-msg)))
-         (setcar (cdr cur-record) (or val
+         (setcar (cdr math-cur-record) (or val
                                       (if (or math-enable-subst
                                               (not math-any-substs))
                                           math-integ-level
                                         'cancelled)))))
-    (setq val cur-record)
+    (setq val math-cur-record)
     (while (vectorp (nth 1 val))
       (setq val (aref (nth 1 val) 0)))
     (setq val (if (memq (nth 1 val) '(parts parts2))
                           (math-format-value val 1000)
                           "\n")
     val))
-(defvar math-integral-cache nil)
-(defvar math-integral-cache-state nil)
 
 (defun math-integral-contains-parts (expr)
   (if (Math-primp expr)
                          (progn
                            (setcar expr (nth 1 (nth 2 (car expr))))
                            (math-replace-integral-parts (cons 'foo expr)))
-                       (setcar (cdr cur-record) 'cancelled)))
+                       (setcar (cdr math-cur-record) 'cancelled)))
               (math-replace-integral-parts (car expr)))))))
 
 (defvar math-linear-subst-tried t
   "Non-nil means that a linear substitution has been tried.")
 
+;; The variable math-has-rules is a local variable for math-try-integral,
+;; but is used by math-do-integral, which is called (non-directly) by
+;; math-try-integral.
+(defvar math-has-rules)
+
+;; math-old-integ is a local variable for math-do-integral, but is
+;; used by math-sub-integration.
+(defvar math-old-integ)
+
+;; The variables math-t1, math-t2 and math-t3 are local to 
+;; math-do-integral, math-try-solve-for and math-decompose-poly, but
+;; are used by functions they call (directly or indirectly); 
+;; math-do-integral calls math-do-integral-methods;
+;; math-try-solve-for calls math-try-solve-prod, 
+;; math-solve-find-root-term and math-solve-find-root-in-prod;
+;; math-decompose-poly calls math-solve-poly-funny-powers and
+;; math-solve-crunch-poly.
+(defvar math-t1)
+(defvar math-t2)
+(defvar math-t3)
+
 (defun math-do-integral (expr)
   (let ((math-linear-subst-tried nil)
-        t1 t2)
+        math-t1 math-t2)
     (or (cond ((not (math-expr-contains expr math-integ-var))
               (math-mul expr math-integ-var))
              ((equal expr math-integ-var)
               (math-div (math-sqr expr) 2))
              ((eq (car expr) '+)
-              (and (setq t1 (math-integral (nth 1 expr)))
-                   (setq t2 (math-integral (nth 2 expr)))
-                   (math-add t1 t2)))
+              (and (setq math-t1 (math-integral (nth 1 expr)))
+                   (setq math-t2 (math-integral (nth 2 expr)))
+                   (math-add math-t1 math-t2)))
              ((eq (car expr) '-)
-              (and (setq t1 (math-integral (nth 1 expr)))
-                   (setq t2 (math-integral (nth 2 expr)))
-                   (math-sub t1 t2)))
+              (and (setq math-t1 (math-integral (nth 1 expr)))
+                   (setq math-t2 (math-integral (nth 2 expr)))
+                   (math-sub math-t1 math-t2)))
              ((eq (car expr) 'neg)
-              (and (setq t1 (math-integral (nth 1 expr)))
-                   (math-neg t1)))
+              (and (setq math-t1 (math-integral (nth 1 expr)))
+                   (math-neg math-t1)))
              ((eq (car expr) '*)
               (cond ((not (math-expr-contains (nth 1 expr) math-integ-var))
-                     (and (setq t1 (math-integral (nth 2 expr)))
-                          (math-mul (nth 1 expr) t1)))
+                     (and (setq math-t1 (math-integral (nth 2 expr)))
+                          (math-mul (nth 1 expr) math-t1)))
                     ((not (math-expr-contains (nth 2 expr) math-integ-var))
-                     (and (setq t1 (math-integral (nth 1 expr)))
-                          (math-mul t1 (nth 2 expr))))
+                     (and (setq math-t1 (math-integral (nth 1 expr)))
+                          (math-mul math-t1 (nth 2 expr))))
                     ((memq (car-safe (nth 1 expr)) '(+ -))
                      (math-integral (list (car (nth 1 expr))
                                           (math-mul (nth 1 (nth 1 expr))
               (cond ((and (not (math-expr-contains (nth 1 expr)
                                                    math-integ-var))
                           (not (math-equal-int (nth 1 expr) 1)))
-                     (and (setq t1 (math-integral (math-div 1 (nth 2 expr))))
-                          (math-mul (nth 1 expr) t1)))
+                     (and (setq math-t1 (math-integral (math-div 1 (nth 2 expr))))
+                          (math-mul (nth 1 expr) math-t1)))
                     ((not (math-expr-contains (nth 2 expr) math-integ-var))
-                     (and (setq t1 (math-integral (nth 1 expr)))
-                          (math-div t1 (nth 2 expr))))
+                     (and (setq math-t1 (math-integral (nth 1 expr)))
+                          (math-div math-t1 (nth 2 expr))))
                     ((and (eq (car-safe (nth 1 expr)) '*)
                           (not (math-expr-contains (nth 1 (nth 1 expr))
                                                    math-integ-var)))
-                     (and (setq t1 (math-integral
+                     (and (setq math-t1 (math-integral
                                     (math-div (nth 2 (nth 1 expr))
                                               (nth 2 expr))))
-                          (math-mul t1 (nth 1 (nth 1 expr)))))
+                          (math-mul math-t1 (nth 1 (nth 1 expr)))))
                     ((and (eq (car-safe (nth 1 expr)) '*)
                           (not (math-expr-contains (nth 2 (nth 1 expr))
                                                    math-integ-var)))
-                     (and (setq t1 (math-integral
+                     (and (setq math-t1 (math-integral
                                     (math-div (nth 1 (nth 1 expr))
                                               (nth 2 expr))))
-                          (math-mul t1 (nth 2 (nth 1 expr)))))
+                          (math-mul math-t1 (nth 2 (nth 1 expr)))))
                     ((and (eq (car-safe (nth 2 expr)) '*)
                           (not (math-expr-contains (nth 1 (nth 2 expr))
                                                    math-integ-var)))
-                     (and (setq t1 (math-integral
+                     (and (setq math-t1 (math-integral
                                     (math-div (nth 1 expr)
                                               (nth 2 (nth 2 expr)))))
-                          (math-div t1 (nth 1 (nth 2 expr)))))
+                          (math-div math-t1 (nth 1 (nth 2 expr)))))
                     ((and (eq (car-safe (nth 2 expr)) '*)
                           (not (math-expr-contains (nth 2 (nth 2 expr))
                                                    math-integ-var)))
-                     (and (setq t1 (math-integral
+                     (and (setq math-t1 (math-integral
                                     (math-div (nth 1 expr)
                                               (nth 1 (nth 2 expr)))))
-                          (math-div t1 (nth 2 (nth 2 expr)))))
+                          (math-div math-t1 (nth 2 (nth 2 expr)))))
                     ((eq (car-safe (nth 2 expr)) 'calcFunc-exp)
                      (math-integral
                       (math-mul (nth 1 expr)
                                       (math-neg (nth 1 (nth 2 expr)))))))))
              ((eq (car expr) '^)
               (cond ((not (math-expr-contains (nth 1 expr) math-integ-var))
-                     (or (and (setq t1 (math-is-polynomial (nth 2 expr)
+                     (or (and (setq math-t1 (math-is-polynomial (nth 2 expr)
                                                            math-integ-var 1))
                               (math-div expr
-                                        (math-mul (nth 1 t1)
+                                        (math-mul (nth 1 math-t1)
                                                   (math-normalize
                                                    (list 'calcFunc-ln
                                                          (nth 1 expr))))))
                          (math-integral
                           (list '/ 1 (math-pow (nth 1 expr) (- (nth 2 expr))))
                           nil t)
-                       (or (and (setq t1 (math-is-polynomial (nth 1 expr)
+                       (or (and (setq math-t1 (math-is-polynomial (nth 1 expr)
                                                              math-integ-var
                                                              1))
-                                (setq t2 (math-add (nth 2 expr) 1))
-                                (math-div (math-pow (nth 1 expr) t2)
-                                          (math-mul t2 (nth 1 t1))))
+                                (setq math-t2 (math-add (nth 2 expr) 1))
+                                (math-div (math-pow (nth 1 expr) math-t2)
+                                          (math-mul math-t2 (nth 1 math-t1))))
                            (and (Math-negp (nth 2 expr))
                                 (math-integral
                                  (math-div 1
                            nil))))))
 
        ;; Integral of a polynomial.
-       (and (setq t1 (math-is-polynomial expr math-integ-var 20))
+       (and (setq math-t1 (math-is-polynomial expr math-integ-var 20))
             (let ((accum 0)
                   (n 1))
-              (while t1
+              (while math-t1
                 (if (setq accum (math-add accum
-                                          (math-div (math-mul (car t1)
+                                          (math-div (math-mul (car math-t1)
                                                               (math-pow
                                                                math-integ-var
                                                                n))
                                                     n))
-                          t1 (cdr t1))
+                          math-t1 (cdr math-t1))
                     (setq n (1+ n))))
               accum))
 
        ;; Try looking it up!
        (cond ((= (length expr) 2)
               (and (symbolp (car expr))
-                   (setq t1 (get (car expr) 'math-integral))
+                   (setq math-t1 (get (car expr) 'math-integral))
                    (progn
-                     (while (and t1
-                                 (not (setq t2 (funcall (car t1)
+                     (while (and math-t1
+                                 (not (setq math-t2 (funcall (car math-t1)
                                                         (nth 1 expr)))))
-                       (setq t1 (cdr t1)))
-                     (and t2 (math-normalize t2)))))
+                       (setq math-t1 (cdr math-t1)))
+                     (and math-t2 (math-normalize math-t2)))))
              ((= (length expr) 3)
               (and (symbolp (car expr))
-                   (setq t1 (get (car expr) 'math-integral-2))
+                   (setq math-t1 (get (car expr) 'math-integral-2))
                    (progn
-                     (while (and t1
-                                 (not (setq t2 (funcall (car t1)
+                     (while (and math-t1
+                                 (not (setq math-t2 (funcall (car math-t1)
                                                         (nth 1 expr)
                                                         (nth 2 expr)))))
-                       (setq t1 (cdr t1)))
-                     (and t2 (math-normalize t2))))))
+                       (setq math-t1 (cdr math-t1)))
+                     (and math-t2 (math-normalize math-t2))))))
 
        ;; Integral of a rational function.
        (and (math-ratpoly-p expr math-integ-var)
-            (setq t1 (calcFunc-apart expr math-integ-var))
-            (not (equal t1 expr))
-            (math-integral t1))
+            (setq math-t1 (calcFunc-apart expr math-integ-var))
+            (not (equal math-t1 expr))
+            (math-integral math-t1))
 
        ;; Try user-defined integration rules.
-       (and has-rules
+       (and math-has-rules
             (let ((math-old-integ (symbol-function 'calcFunc-integ))
                   (input (list 'calcFunc-integtry expr math-integ-var))
                   res part)
               res)))
       (list 'calcFunc-integfailed expr)))
 
-(defun math-do-integral-methods (expr)
-  (let ((so-far math-integ-var-list-list)
+;; math-so-far is a local variable for math-do-integral-methods, but
+;; is used by math-integ-try-linear-substitutions and 
+;; math-integ-try-substitutions.
+(defvar math-so-far)
+
+;; math-integ-expr is a local variable for math-do-integral-methods,
+;; but is used by math-integ-try-linear-substitutions and 
+;; math-integ-try-substitutions.
+(defvar math-integ-expr)
+
+(defun math-do-integral-methods (math-integ-expr)
+  (let ((math-so-far math-integ-var-list-list)
        rat-in)
 
     ;; Integration by substitution, for various likely sub-expressions.
     ;; (In first pass, we look only for sub-exprs that are linear in X.)
-    (or (math-integ-try-linear-substitutions expr)
-        (math-integ-try-substitutions expr)
+    (or (math-integ-try-linear-substitutions math-integ-expr)
+        (math-integ-try-substitutions math-integ-expr)
 
        ;; If function has sines and cosines, try tan(x/2) substitution.
-       (and (let ((p (setq rat-in (math-expr-rational-in expr))))
+       (and (let ((p (setq rat-in (math-expr-rational-in math-integ-expr))))
               (while (and p
                           (memq (car (car p)) '(calcFunc-sin
                                                 calcFunc-cos
                           (equal (nth 1 (car p)) math-integ-var))
                 (setq p (cdr p)))
               (null p))
-            (or (and (math-integ-parts-easy expr)
-                     (math-integ-try-parts expr t))
+            (or (and (math-integ-parts-easy math-integ-expr)
+                     (math-integ-try-parts math-integ-expr t))
                 (math-integrate-by-good-substitution
-                 expr (list 'calcFunc-tan (math-div math-integ-var 2)))))
+                 math-integ-expr (list 'calcFunc-tan (math-div math-integ-var 2)))))
 
        ;; If function has sinh and cosh, try tanh(x/2) substitution.
        (and (let ((p rat-in))
                           (equal (nth 1 (car p)) math-integ-var))
                 (setq p (cdr p)))
               (null p))
-            (or (and (math-integ-parts-easy expr)
-                     (math-integ-try-parts expr t))
+            (or (and (math-integ-parts-easy math-integ-expr)
+                     (math-integ-try-parts math-integ-expr t))
                 (math-integrate-by-good-substitution
-                 expr (list 'calcFunc-tanh (math-div math-integ-var 2)))))
+                 math-integ-expr (list 'calcFunc-tanh (math-div math-integ-var 2)))))
 
        ;; If function has square roots, try sin, tan, or sec substitution.
        (and (let ((p rat-in))
-              (setq t1 nil)
+              (setq math-t1 nil)
               (while (and p
                           (or (equal (car p) math-integ-var)
                               (and (eq (car (car p)) 'calcFunc-sqrt)
-                                   (setq t1 (math-is-polynomial
-                                             (nth 1 (setq t2 (car p)))
+                                   (setq math-t1 (math-is-polynomial
+                                             (nth 1 (setq math-t2 (car p)))
                                              math-integ-var 2)))))
                 (setq p (cdr p)))
-              (and (null p) t1))
-            (if (cdr (cdr t1))
-                (if (math-guess-if-neg (nth 2 t1))
-                    (let* ((c (math-sqrt (math-neg (nth 2 t1))))
-                           (d (math-div (nth 1 t1) (math-mul -2 c)))
-                           (a (math-sqrt (math-add (car t1) (math-sqr d)))))
+              (and (null p) math-t1))
+            (if (cdr (cdr math-t1))
+                (if (math-guess-if-neg (nth 2 math-t1))
+                    (let* ((c (math-sqrt (math-neg (nth 2 math-t1))))
+                           (d (math-div (nth 1 math-t1) (math-mul -2 c)))
+                           (a (math-sqrt (math-add (car math-t1) (math-sqr d)))))
                       (math-integrate-by-good-substitution
-                       expr (list 'calcFunc-arcsin
+                       math-integ-expr (list 'calcFunc-arcsin
                                   (math-div-thru
                                    (math-add (math-mul c math-integ-var) d)
                                    a))))
-                  (let* ((c (math-sqrt (nth 2 t1)))
-                         (d (math-div (nth 1 t1) (math-mul 2 c)))
-                         (aa (math-sub (car t1) (math-sqr d))))
+                  (let* ((c (math-sqrt (nth 2 math-t1)))
+                         (d (math-div (nth 1 math-t1) (math-mul 2 c)))
+                         (aa (math-sub (car math-t1) (math-sqr d))))
                     (if (and nil (not (and (eq d 0) (eq c 1))))
                         (math-integrate-by-good-substitution
-                         expr (math-add (math-mul c math-integ-var) d))
+                         math-integ-expr (math-add (math-mul c math-integ-var) d))
                       (if (math-guess-if-neg aa)
                           (math-integrate-by-good-substitution
-                           expr (list 'calcFunc-arccosh
+                           math-integ-expr (list 'calcFunc-arccosh
                                       (math-div-thru
                                        (math-add (math-mul c math-integ-var)
                                                  d)
                                        (math-sqrt (math-neg aa)))))
                         (math-integrate-by-good-substitution
-                         expr (list 'calcFunc-arcsinh
+                         math-integ-expr (list 'calcFunc-arcsinh
                                     (math-div-thru
                                      (math-add (math-mul c math-integ-var)
                                                d)
                                      (math-sqrt aa))))))))
-              (math-integrate-by-good-substitution expr t2)) )
+              (math-integrate-by-good-substitution math-integ-expr math-t2)) )
 
        ;; Try integration by parts.
-       (math-integ-try-parts expr)
+       (math-integ-try-parts math-integ-expr)
 
        ;; Give up.
        nil)))
         (math-integ-parts-easy (nth 1 expr)))
        (t t)))
 
+;; math-prev-parts-v is local to calcFunc-integ (as well as
+;; math-integrate-by-parts), but is used by math-integ-try-parts.
+(defvar math-prev-parts-v)
+
+;; math-good-parts is local to calcFunc-integ (as well as
+;; math-integ-try-parts), but is used by math-integrate-by-parts.
+(defvar math-good-parts)
+
+
 (defun math-integ-try-parts (expr &optional math-good-parts)
   ;; Integration by parts:
   ;;   integ(f(x) g(x),x) = f(x) h(x) - integ(h(x) f'(x),x)
     (and (>= math-integ-level 0)
         (unwind-protect
             (progn
-              (setcar (cdr cur-record) 'parts)
+              (setcar (cdr math-cur-record) 'parts)
               (math-tracing-integral "Integrating by parts, u = "
                                      (math-format-value u 1000)
                                      ", v' = "
                    (setq temp (let ((math-prev-parts-v v))
                                 (math-integral (math-mul v temp) 'yes)))
                    (setq temp (math-sub (math-mul u v) temp))
-                   (if (eq (nth 1 cur-record) 'parts)
+                   (if (eq (nth 1 math-cur-record) 'parts)
                        (calcFunc-expand temp)
-                     (setq v (list 'var 'PARTS cur-record)
-                           var-thing (list 'vec (math-sub v temp) v)
+                     (setq v (list 'var 'PARTS math-cur-record)
                            temp (let (calc-next-why)
                                   (math-solve-for (math-sub v temp) 0 v nil)))
                      (and temp (not (integerp temp))
                           (math-simplify-extended temp)))))
-          (setcar (cdr cur-record) 'busy)))))
+          (setcar (cdr math-cur-record) 'busy)))))
 
 ;;; This tries two different formulations, hoping the algebraic simplifier
 ;;; will be strong enough to handle at least one.
                  (while (and (setq sub-expr (cdr sub-expr))
                              (or (not (math-linear-in (car sub-expr)
                                                       math-integ-var))
-                                 (assoc (car sub-expr) so-far)
+                                 (assoc (car sub-expr) math-so-far)
                                  (progn
-                                   (setq so-far (cons (list (car sub-expr))
-                                                      so-far))
+                                   (setq math-so-far (cons (list (car sub-expr))
+                                                      math-so-far))
                                    (not (setq res
                                               (math-integrate-by-substitution
-                                               expr (car sub-expr))))))))
+                                               math-integ-expr (car sub-expr))))))))
                  res))
           (let ((res nil))
             (while (and (setq sub-expr (cdr sub-expr))
 ;;; Recursively try different substitutions based on various sub-expressions.
 (defun math-integ-try-substitutions (sub-expr &optional allow-rat)
   (and (not (Math-primp sub-expr))
-       (not (assoc sub-expr so-far))
+       (not (assoc sub-expr math-so-far))
        (math-expr-contains sub-expr math-integ-var)
        (or (and (if (and (not (memq (car sub-expr) '(+ - * / neg)))
                         (not (and (eq (car sub-expr) '^)
                                   (integerp (nth 2 sub-expr)))))
                    (setq allow-rat t)
                  (prog1 allow-rat (setq allow-rat nil)))
-               (not (eq sub-expr expr))
-               (or (math-integrate-by-substitution expr sub-expr)
+               (not (eq sub-expr math-integ-expr))
+               (or (math-integrate-by-substitution math-integ-expr sub-expr)
                    (and (eq (car sub-expr) '^)
                         (integerp (nth 2 sub-expr))
                         (< (nth 2 sub-expr) 0)
                          (math-pow (nth 1 sub-expr) (- (nth 2 sub-expr)))
                          t))))
           (let ((res nil))
-            (setq so-far (cons (list sub-expr) so-far))
+            (setq math-so-far (cons (list sub-expr) math-so-far))
             (while (and (setq sub-expr (cdr sub-expr))
                         (not (setq res (math-integ-try-substitutions
                                         (car sub-expr) allow-rat)))))
             res))))
 
+;; The variable math-expr-parts is local to math-expr-rational-in,
+;; but is used by math-expr-rational-in-rec
+
 (defun math-expr-rational-in (expr)
-  (let ((parts nil))
+  (let ((math-expr-parts nil))
     (math-expr-rational-in-rec expr)
-    (mapcar 'car parts)))
+    (mapcar 'car math-expr-parts)))
 
 (defun math-expr-rational-in-rec (expr)
   (cond ((Math-primp expr)
         (and (equal expr math-integ-var)
-             (not (assoc expr parts))
-             (setq parts (cons (list expr) parts))))
+             (not (assoc expr math-expr-parts))
+             (setq math-expr-parts (cons (list expr) math-expr-parts))))
        ((or (memq (car expr) '(+ - * / neg))
             (and (eq (car expr) '^) (integerp (nth 2 expr))))
         (math-expr-rational-in-rec (nth 1 expr))
              (eq (math-quarter-integer (nth 2 expr)) 2))
         (math-expr-rational-in-rec (list 'calcFunc-sqrt (nth 1 expr))))
        (t
-        (and (not (assoc expr parts))
+        (and (not (assoc expr math-expr-parts))
              (math-expr-contains expr math-integ-var)
-             (setq parts (cons (list expr) parts))))))
+             (setq math-expr-parts (cons (list expr) math-expr-parts))))))
 
 (defun math-expr-calls (expr funcs &optional arg-contains)
   (if (consp expr)
   (let ((buf (current-buffer)))
     (unwind-protect
        (let ((p math-integral-cache)
-             cur-record)
+             math-cur-record)
          (display-buffer (get-buffer-create "*Integral Cache*"))
          (set-buffer (get-buffer "*Integral Cache*"))
          (erase-buffer)
          (while p
-           (setq cur-record (car p))
-           (or arg (math-replace-integral-parts cur-record))
-           (insert (math-format-flat-expr (car cur-record) 0)
+           (setq math-cur-record (car p))
+           (or arg (math-replace-integral-parts math-cur-record))
+           (insert (math-format-flat-expr (car math-cur-record) 0)
                    " --> "
-                   (if (symbolp (nth 1 cur-record))
-                       (concat "(" (symbol-name (nth 1 cur-record)) ")")
-                     (math-format-flat-expr (nth 1 cur-record) 0))
+                   (if (symbolp (nth 1 math-cur-record))
+                       (concat "(" (symbol-name (nth 1 math-cur-record)) ")")
+                     (math-format-flat-expr (nth 1 math-cur-record) 0))
                    "\n")
            (setq p (cdr p)))
          (goto-char (point-min)))
       (set-buffer buf))))
 
+;; The variable math-max-integral-limit is local to calcFunc-integ,
+;; but is used by math-try-integral.
+(defvar math-max-integral-limit)
+
 (defun math-try-integral (expr)
   (let ((math-integ-level math-integral-limit)
        (math-integ-depth 0)
        (math-integ-msg "Working...done")
-       (cur-record nil)   ; a technicality
+       (math-cur-record nil)   ; a technicality
        (math-integrating t)
        (calc-prefer-frac t)
        (calc-symbolic-mode t)
-       (has-rules (calc-has-rules 'var-IntegRules)))
+       (math-has-rules (calc-has-rules 'var-IntegRules)))
     (or (math-integral expr 'yes)
        (and math-any-substs
             (setq math-enable-subst t)
                   math-integ-level math-integral-limit)
             (math-integral expr 'yes)))))
 
+(defvar var-IntegLimit nil)
+
 (defun calcFunc-integ (expr var &optional low high)
   (cond
    ;; Do these even if the parts turn out not to be integrable.
       (or (equal state math-integral-cache-state)
          (setq math-integral-cache-state state
                math-integral-cache nil)))
-    (let* ((math-max-integral-limit (or (and (boundp 'var-IntegLimit)
-                                            (natnump var-IntegLimit)
+    (let* ((math-max-integral-limit (or (and (natnump var-IntegLimit)
                                             var-IntegLimit)
                                        3))
           (math-integral-limit 1)
 
 (defvar math-tabulate-initial nil)
 (defvar math-tabulate-function nil)
-(defun calcFunc-table (expr var &optional low high step)
-  (or low (setq low '(neg (var inf var-inf)) high '(var inf var-inf)))
-  (or high (setq high low low 1))
-  (and (or (math-infinitep low) (math-infinitep high))
+
+;; The variables calc-low and calc-high are local to calcFunc-table, 
+;; but are used by math-scan-for-limits.
+(defvar calc-low)
+(defvar calc-high)
+
+(defun calcFunc-table (expr var &optional calc-low calc-high step)
+  (or calc-low 
+      (setq calc-low '(neg (var inf var-inf)) calc-high '(var inf var-inf)))
+  (or calc-high (setq calc-high calc-low calc-low 1))
+  (and (or (math-infinitep calc-low) (math-infinitep calc-high))
        (not step)
        (math-scan-for-limits expr))
   (and step (math-zerop step) (math-reject-arg step 'nonzerop))
-  (let ((known (+ (if (Math-objectp low) 1 0)
-                 (if (Math-objectp high) 1 0)
+  (let ((known (+ (if (Math-objectp calc-low) 1 0)
+                 (if (Math-objectp calc-high) 1 0)
                  (if (or (null step) (Math-objectp step)) 1 0)))
        (count '(var inf var-inf))
        vec)
     (or (= known 2)   ; handy optimization
-       (equal high '(var inf var-inf))
+       (equal calc-high '(var inf var-inf))
        (progn
-         (setq count (math-div (math-sub high low) (or step 1)))
+         (setq count (math-div (math-sub calc-high calc-low) (or step 1)))
          (or (Math-objectp count)
              (setq count (math-simplify count)))
          (if (Math-messy-integerp count)
                      (math-expr-subst expr var '(var DUMMY var-DUMMY))))
          (while (>= count 0)
            (setq math-working-step (1+ math-working-step)
-                 var-DUMMY low
+                 var-DUMMY calc-low
                  vec (cond ((eq math-tabulate-function 'calcFunc-sum)
                             (math-add vec (math-evaluate-expr expr)))
                            ((eq math-tabulate-function 'calcFunc-prod)
                             (math-mul vec (math-evaluate-expr expr)))
                            (t
                             (cons (math-evaluate-expr expr) vec)))
-                 low (math-add low (or step 1))
+                 calc-low (math-add calc-low (or step 1))
                  count (1- count)))
          (if math-tabulate-function
              vec
            (cons 'vec (nreverse vec))))
       (if (Math-integerp count)
-         (calc-record-why 'fixnump high)
-       (if (Math-num-integerp low)
-           (if (Math-num-integerp high)
+         (calc-record-why 'fixnump calc-high)
+       (if (Math-num-integerp calc-low)
+           (if (Math-num-integerp calc-high)
                (calc-record-why 'integerp step)
-             (calc-record-why 'integerp high))
-         (calc-record-why 'integerp low)))
+             (calc-record-why 'integerp calc-high))
+         (calc-record-why 'integerp calc-low)))
       (append (list (or math-tabulate-function 'calcFunc-table)
                    expr var)
-             (and (not (and (equal low '(neg (var inf var-inf)))
-                            (equal high '(var inf var-inf))))
-                  (list low high))
+             (and (not (and (equal calc-low '(neg (var inf var-inf)))
+                            (equal calc-high '(var inf var-inf))))
+                  (list calc-low calc-high))
              (and step (list step))))))
 
 (defun math-scan-for-limits (x)
                high-val (math-realp high-val))
           (and (Math-lessp high-val low-val)
                (setq temp low-val low-val high-val high-val temp))
-          (setq low (math-max low (math-ceiling low-val))
-                high (math-min high (math-floor high-val)))))
+          (setq calc-low (math-max calc-low (math-ceiling low-val))
+                calc-high (math-min calc-high (math-floor high-val)))))
        (t
         (while (setq x (cdr x))
           (math-scan-for-limits (car x))))))
 
 
 (defvar math-solve-ranges nil)
-;;; Attempt to reduce lhs = rhs to solve-var = rhs', where solve-var appears
-;;; in lhs but not in rhs or rhs'; return rhs'.
-;;; Uses global values: solve-*.
-(defun math-try-solve-for (lhs rhs &optional sign no-poly)
-  (let (t1 t2 t3)
-    (cond ((equal lhs solve-var)
-          (setq math-solve-sign sign)
-          (if (eq solve-full 'all)
-              (let ((vec (list 'vec (math-evaluate-expr rhs)))
+(defvar math-solve-sign)
+;;; Attempt to reduce math-solve-lhs = math-solve-rhs to 
+;;; math-solve-var = math-solve-rhs', where math-solve-var appears
+;;; in math-solve-lhs but not in math-solve-rhs or math-solve-rhs'; 
+;;; return math-solve-rhs'.
+;;; Uses global values: math-solve-var, math-solve-full.
+(defvar math-solve-var)
+(defvar math-solve-full)
+
+;; The variables math-solve-lhs, math-solve-rhs and math-try-solve-sign 
+;; are local to math-try-solve-for,  but are used by math-try-solve-prod.  
+;; (math-solve-lhs and math-solve-rhs are is also local to 
+;; math-decompose-poly, but used by math-solve-poly-funny-powers.)
+(defvar math-solve-lhs)
+(defvar math-solve-rhs)
+
+(defun math-try-solve-for 
+  (math-solve-lhs math-solve-rhs &optional math-try-solve-sign no-poly)
+  (let (math-t1 math-t2 math-t3)
+    (cond ((equal math-solve-lhs math-solve-var)
+          (setq math-solve-sign math-try-solve-sign)
+          (if (eq math-solve-full 'all)
+              (let ((vec (list 'vec (math-evaluate-expr math-solve-rhs)))
                     newvec var p)
                 (while math-solve-ranges
                   (setq p (car math-solve-ranges)
                   (setq vec newvec
                         math-solve-ranges (cdr math-solve-ranges)))
                 (math-normalize vec))
-            rhs))
-         ((Math-primp lhs)
+            math-solve-rhs))
+         ((Math-primp math-solve-lhs)
           nil)
-         ((and (eq (car lhs) '-)
-               (eq (car-safe (nth 1 lhs)) (car-safe (nth 2 lhs)))
-               (Math-zerop rhs)
-               (= (length (nth 1 lhs)) 2)
-               (= (length (nth 2 lhs)) 2)
-               (setq t1 (get (car (nth 1 lhs)) 'math-inverse))
-               (setq t2 (funcall t1 '(var SOLVEDUM SOLVEDUM)))
-               (eq (math-expr-contains-count t2 '(var SOLVEDUM SOLVEDUM)) 1)
-               (setq t3 (math-solve-above-dummy t2))
-               (setq t1 (math-try-solve-for (math-sub (nth 1 (nth 1 lhs))
-                                                      (math-expr-subst
-                                                       t2 t3
-                                                       (nth 1 (nth 2 lhs))))
-                                            0)))
-          t1)
-         ((eq (car lhs) 'neg)
-          (math-try-solve-for (nth 1 lhs) (math-neg rhs)
-                              (and sign (- sign))))
-         ((and (not (eq solve-full 't)) (math-try-solve-prod)))
+         ((and (eq (car math-solve-lhs) '-)
+               (eq (car-safe (nth 1 math-solve-lhs)) (car-safe (nth 2 math-solve-lhs)))
+               (Math-zerop math-solve-rhs)
+               (= (length (nth 1 math-solve-lhs)) 2)
+               (= (length (nth 2 math-solve-lhs)) 2)
+               (setq math-t1 (get (car (nth 1 math-solve-lhs)) 'math-inverse))
+               (setq math-t2 (funcall math-t1 '(var SOLVEDUM SOLVEDUM)))
+               (eq (math-expr-contains-count math-t2 '(var SOLVEDUM SOLVEDUM)) 1)
+               (setq math-t3 (math-solve-above-dummy math-t2))
+               (setq math-t1 (math-try-solve-for 
+                               (math-sub (nth 1 (nth 1 math-solve-lhs))
+                                         (math-expr-subst
+                                          math-t2 math-t3
+                                          (nth 1 (nth 2 math-solve-lhs))))
+                               0)))
+          math-t1)
+         ((eq (car math-solve-lhs) 'neg)
+          (math-try-solve-for (nth 1 math-solve-lhs) (math-neg math-solve-rhs)
+                              (and math-try-solve-sign (- math-try-solve-sign))))
+         ((and (not (eq math-solve-full 't)) (math-try-solve-prod)))
          ((and (not no-poly)
-               (setq t2 (math-decompose-poly lhs solve-var 15 rhs)))
-          (setq t1 (cdr (nth 1 t2))
-                t1 (let ((math-solve-ranges math-solve-ranges))
-                     (cond ((= (length t1) 5)
-                            (apply 'math-solve-quartic (car t2) t1))
-                           ((= (length t1) 4)
-                            (apply 'math-solve-cubic (car t2) t1))
-                           ((= (length t1) 3)
-                            (apply 'math-solve-quadratic (car t2) t1))
-                           ((= (length t1) 2)
-                            (apply 'math-solve-linear (car t2) sign t1))
-                           (solve-full
-                            (math-poly-all-roots (car t2) t1))
+               (setq math-t2 
+                      (math-decompose-poly math-solve-lhs 
+                                           math-solve-var 15 math-solve-rhs)))
+          (setq math-t1 (cdr (nth 1 math-t2))
+                math-t1 (let ((math-solve-ranges math-solve-ranges))
+                     (cond ((= (length math-t1) 5)
+                            (apply 'math-solve-quartic (car math-t2) math-t1))
+                           ((= (length math-t1) 4)
+                            (apply 'math-solve-cubic (car math-t2) math-t1))
+                           ((= (length math-t1) 3)
+                            (apply 'math-solve-quadratic (car math-t2) math-t1))
+                           ((= (length math-t1) 2)
+                            (apply 'math-solve-linear 
+                                    (car math-t2) math-try-solve-sign math-t1))
+                           (math-solve-full
+                            (math-poly-all-roots (car math-t2) math-t1))
                            (calc-symbolic-mode nil)
                            (t
                             (math-try-solve-for
-                             (car t2)
-                             (math-poly-any-root (reverse t1) 0 t)
+                             (car math-t2)
+                             (math-poly-any-root (reverse math-t1) 0 t)
                              nil t)))))
-          (if t1
-              (if (eq (nth 2 t2) 1)
-                  t1
-                (math-solve-prod t1 (math-try-solve-for (nth 2 t2) 0 nil t)))
+          (if math-t1
+              (if (eq (nth 2 math-t2) 1)
+                  math-t1
+                (math-solve-prod math-t1 (math-try-solve-for (nth 2 math-t2) 0 nil t)))
             (calc-record-why "*Unable to find a symbolic solution")
             nil))
-         ((and (math-solve-find-root-term lhs nil)
-               (eq (math-expr-contains-count lhs t1) 1))   ; just in case
+         ((and (math-solve-find-root-term math-solve-lhs nil)
+               (eq (math-expr-contains-count math-solve-lhs math-t1) 1))   ; just in case
           (math-try-solve-for (math-simplify
-                               (math-sub (if (or t3 (math-evenp t2))
-                                             (math-pow t1 t2)
-                                           (math-neg (math-pow t1 t2)))
+                               (math-sub (if (or math-t3 (math-evenp math-t2))
+                                             (math-pow math-t1 math-t2)
+                                           (math-neg (math-pow math-t1 math-t2)))
                                          (math-expand-power
                                           (math-sub (math-normalize
                                                      (math-expr-subst
-                                                      lhs t1 0))
-                                                    rhs)
-                                          t2 solve-var)))
+                                                      math-solve-lhs math-t1 0))
+                                                    math-solve-rhs)
+                                          math-t2 math-solve-var)))
                               0))
-         ((eq (car lhs) '+)
-          (cond ((not (math-expr-contains (nth 1 lhs) solve-var))
-                 (math-try-solve-for (nth 2 lhs)
-                                     (math-sub rhs (nth 1 lhs))
-                                     sign))
-                ((not (math-expr-contains (nth 2 lhs) solve-var))
-                 (math-try-solve-for (nth 1 lhs)
-                                     (math-sub rhs (nth 2 lhs))
-                                     sign))))
-         ((eq (car lhs) 'calcFunc-eq)
-          (math-try-solve-for (math-sub (nth 1 lhs) (nth 2 lhs))
-                              rhs sign no-poly))
-         ((eq (car lhs) '-)
-          (cond ((or (and (eq (car-safe (nth 1 lhs)) 'calcFunc-sin)
-                          (eq (car-safe (nth 2 lhs)) 'calcFunc-cos))
-                     (and (eq (car-safe (nth 1 lhs)) 'calcFunc-cos)
-                          (eq (car-safe (nth 2 lhs)) 'calcFunc-sin)))
-                 (math-try-solve-for (math-sub (nth 1 lhs)
-                                               (list (car (nth 1 lhs))
+         ((eq (car math-solve-lhs) '+)
+          (cond ((not (math-expr-contains (nth 1 math-solve-lhs) math-solve-var))
+                 (math-try-solve-for (nth 2 math-solve-lhs)
+                                     (math-sub math-solve-rhs (nth 1 math-solve-lhs))
+                                     math-try-solve-sign))
+                ((not (math-expr-contains (nth 2 math-solve-lhs) math-solve-var))
+                 (math-try-solve-for (nth 1 math-solve-lhs)
+                                     (math-sub math-solve-rhs (nth 2 math-solve-lhs))
+                                     math-try-solve-sign))))
+         ((eq (car math-solve-lhs) 'calcFunc-eq)
+          (math-try-solve-for (math-sub (nth 1 math-solve-lhs) (nth 2 math-solve-lhs))
+                              math-solve-rhs math-try-solve-sign no-poly))
+         ((eq (car math-solve-lhs) '-)
+          (cond ((or (and (eq (car-safe (nth 1 math-solve-lhs)) 'calcFunc-sin)
+                          (eq (car-safe (nth 2 math-solve-lhs)) 'calcFunc-cos))
+                     (and (eq (car-safe (nth 1 math-solve-lhs)) 'calcFunc-cos)
+                          (eq (car-safe (nth 2 math-solve-lhs)) 'calcFunc-sin)))
+                 (math-try-solve-for (math-sub (nth 1 math-solve-lhs)
+                                               (list (car (nth 1 math-solve-lhs))
                                                      (math-sub
                                                       (math-quarter-circle t)
-                                                      (nth 1 (nth 2 lhs)))))
-                                     rhs))
-                ((not (math-expr-contains (nth 1 lhs) solve-var))
-                 (math-try-solve-for (nth 2 lhs)
-                                     (math-sub (nth 1 lhs) rhs)
-                                     (and sign (- sign))))
-                ((not (math-expr-contains (nth 2 lhs) solve-var))
-                 (math-try-solve-for (nth 1 lhs)
-                                     (math-add rhs (nth 2 lhs))
-                                     sign))))
-         ((and (eq solve-full 't) (math-try-solve-prod)))
-         ((and (eq (car lhs) '%)
-               (not (math-expr-contains (nth 2 lhs) solve-var)))
-          (math-try-solve-for (nth 1 lhs) (math-add rhs
+                                                      (nth 1 (nth 2 math-solve-lhs)))))
+                                     math-solve-rhs))
+                ((not (math-expr-contains (nth 1 math-solve-lhs) math-solve-var))
+                 (math-try-solve-for (nth 2 math-solve-lhs)
+                                     (math-sub (nth 1 math-solve-lhs) math-solve-rhs)
+                                     (and math-try-solve-sign 
+                                           (- math-try-solve-sign))))
+                ((not (math-expr-contains (nth 2 math-solve-lhs) math-solve-var))
+                 (math-try-solve-for (nth 1 math-solve-lhs)
+                                     (math-add math-solve-rhs (nth 2 math-solve-lhs))
+                                     math-try-solve-sign))))
+         ((and (eq math-solve-full 't) (math-try-solve-prod)))
+         ((and (eq (car math-solve-lhs) '%)
+               (not (math-expr-contains (nth 2 math-solve-lhs) math-solve-var)))
+          (math-try-solve-for (nth 1 math-solve-lhs) (math-add math-solve-rhs
                                                     (math-solve-get-int
-                                                     (nth 2 lhs)))))
-         ((eq (car lhs) 'calcFunc-log)
-          (cond ((not (math-expr-contains (nth 2 lhs) solve-var))
-                 (math-try-solve-for (nth 1 lhs) (math-pow (nth 2 lhs) rhs)))
-                ((not (math-expr-contains (nth 1 lhs) solve-var))
-                 (math-try-solve-for (nth 2 lhs) (math-pow
-                                                  (nth 1 lhs)
-                                                  (math-div 1 rhs))))))
-         ((and (= (length lhs) 2)
-               (symbolp (car lhs))
-               (setq t1 (get (car lhs) 'math-inverse))
-               (setq t2 (funcall t1 rhs)))
-          (setq t1 (get (car lhs) 'math-inverse-sign))
-          (math-try-solve-for (nth 1 lhs) (math-normalize t2)
-                              (and sign t1
-                                   (if (integerp t1)
-                                       (* t1 sign)
-                                     (funcall t1 lhs sign)))))
-         ((and (symbolp (car lhs))
-               (setq t1 (get (car lhs) 'math-inverse-n))
-               (setq t2 (funcall t1 lhs rhs)))
-          t2)
-         ((setq t1 (math-expand-formula lhs))
-          (math-try-solve-for t1 rhs sign))
+                                                     (nth 2 math-solve-lhs)))))
+         ((eq (car math-solve-lhs) 'calcFunc-log)
+          (cond ((not (math-expr-contains (nth 2 math-solve-lhs) math-solve-var))
+                 (math-try-solve-for (nth 1 math-solve-lhs) 
+                                      (math-pow (nth 2 math-solve-lhs) math-solve-rhs)))
+                ((not (math-expr-contains (nth 1 math-solve-lhs) math-solve-var))
+                 (math-try-solve-for (nth 2 math-solve-lhs) (math-pow
+                                                  (nth 1 math-solve-lhs)
+                                                  (math-div 1 math-solve-rhs))))))
+         ((and (= (length math-solve-lhs) 2)
+               (symbolp (car math-solve-lhs))
+               (setq math-t1 (get (car math-solve-lhs) 'math-inverse))
+               (setq math-t2 (funcall math-t1 math-solve-rhs)))
+          (setq math-t1 (get (car math-solve-lhs) 'math-inverse-sign))
+          (math-try-solve-for (nth 1 math-solve-lhs) (math-normalize math-t2)
+                              (and math-try-solve-sign math-t1
+                                   (if (integerp math-t1)
+                                       (* math-t1 math-try-solve-sign)
+                                     (funcall math-t1 math-solve-lhs 
+                                               math-try-solve-sign)))))
+         ((and (symbolp (car math-solve-lhs))
+               (setq math-t1 (get (car math-solve-lhs) 'math-inverse-n))
+               (setq math-t2 (funcall math-t1 math-solve-lhs math-solve-rhs)))
+          math-t2)
+         ((setq math-t1 (math-expand-formula math-solve-lhs))
+          (math-try-solve-for math-t1 math-solve-rhs math-try-solve-sign))
          (t
-          (calc-record-why "*No inverse known" lhs)
+          (calc-record-why "*No inverse known" math-solve-lhs)
           nil))))
 
 
 (defun math-try-solve-prod ()
-  (cond ((eq (car lhs) '*)
-        (cond ((not (math-expr-contains (nth 1 lhs) solve-var))
-               (math-try-solve-for (nth 2 lhs)
-                                   (math-div rhs (nth 1 lhs))
-                                   (math-solve-sign sign (nth 1 lhs))))
-              ((not (math-expr-contains (nth 2 lhs) solve-var))
-               (math-try-solve-for (nth 1 lhs)
-                                   (math-div rhs (nth 2 lhs))
-                                   (math-solve-sign sign (nth 2 lhs))))
-              ((Math-zerop rhs)
+  (cond ((eq (car math-solve-lhs) '*)
+        (cond ((not (math-expr-contains (nth 1 math-solve-lhs) math-solve-var))
+               (math-try-solve-for (nth 2 math-solve-lhs)
+                                   (math-div math-solve-rhs (nth 1 math-solve-lhs))
+                                   (math-solve-sign math-try-solve-sign 
+                                                     (nth 1 math-solve-lhs))))
+              ((not (math-expr-contains (nth 2 math-solve-lhs) math-solve-var))
+               (math-try-solve-for (nth 1 math-solve-lhs)
+                                   (math-div math-solve-rhs (nth 2 math-solve-lhs))
+                                   (math-solve-sign math-try-solve-sign 
+                                                     (nth 2 math-solve-lhs))))
+              ((Math-zerop math-solve-rhs)
                (math-solve-prod (let ((math-solve-ranges math-solve-ranges))
-                                  (math-try-solve-for (nth 2 lhs) 0))
-                                (math-try-solve-for (nth 1 lhs) 0)))))
-       ((eq (car lhs) '/)
-        (cond ((not (math-expr-contains (nth 1 lhs) solve-var))
-               (math-try-solve-for (nth 2 lhs)
-                                   (math-div (nth 1 lhs) rhs)
-                                   (math-solve-sign sign (nth 1 lhs))))
-              ((not (math-expr-contains (nth 2 lhs) solve-var))
-               (math-try-solve-for (nth 1 lhs)
-                                   (math-mul rhs (nth 2 lhs))
-                                   (math-solve-sign sign (nth 2 lhs))))
-              ((setq t1 (math-try-solve-for (math-sub (nth 1 lhs)
-                                                      (math-mul (nth 2 lhs)
-                                                                rhs))
+                                  (math-try-solve-for (nth 2 math-solve-lhs) 0))
+                                (math-try-solve-for (nth 1 math-solve-lhs) 0)))))
+       ((eq (car math-solve-lhs) '/)
+        (cond ((not (math-expr-contains (nth 1 math-solve-lhs) math-solve-var))
+               (math-try-solve-for (nth 2 math-solve-lhs)
+                                   (math-div (nth 1 math-solve-lhs) math-solve-rhs)
+                                   (math-solve-sign math-try-solve-sign 
+                                                     (nth 1 math-solve-lhs))))
+              ((not (math-expr-contains (nth 2 math-solve-lhs) math-solve-var))
+               (math-try-solve-for (nth 1 math-solve-lhs)
+                                   (math-mul math-solve-rhs (nth 2 math-solve-lhs))
+                                   (math-solve-sign math-try-solve-sign 
+                                                     (nth 2 math-solve-lhs))))
+              ((setq math-t1 (math-try-solve-for (math-sub (nth 1 math-solve-lhs)
+                                                      (math-mul (nth 2 math-solve-lhs)
+                                                                math-solve-rhs))
                                             0))
-               t1)))
-       ((eq (car lhs) '^)
-        (cond ((not (math-expr-contains (nth 1 lhs) solve-var))
+               math-t1)))
+       ((eq (car math-solve-lhs) '^)
+        (cond ((not (math-expr-contains (nth 1 math-solve-lhs) math-solve-var))
                (math-try-solve-for
-                (nth 2 lhs)
+                (nth 2 math-solve-lhs)
                 (math-add (math-normalize
-                           (list 'calcFunc-log rhs (nth 1 lhs)))
+                           (list 'calcFunc-log math-solve-rhs (nth 1 math-solve-lhs)))
                           (math-div
                            (math-mul 2
                                      (math-mul '(var pi var-pi)
                                                (math-solve-get-int
                                                 '(var i var-i))))
                            (math-normalize
-                            (list 'calcFunc-ln (nth 1 lhs)))))))
-              ((not (math-expr-contains (nth 2 lhs) solve-var))
-               (cond ((and (integerp (nth 2 lhs))
-                           (>= (nth 2 lhs) 2)
-                           (setq t1 (math-integer-log2 (nth 2 lhs))))
-                      (setq t2 rhs)
-                      (if (and (eq solve-full t)
-                               (math-known-realp (nth 1 lhs)))
+                            (list 'calcFunc-ln (nth 1 math-solve-lhs)))))))
+              ((not (math-expr-contains (nth 2 math-solve-lhs) math-solve-var))
+               (cond ((and (integerp (nth 2 math-solve-lhs))
+                           (>= (nth 2 math-solve-lhs) 2)
+                           (setq math-t1 (math-integer-log2 (nth 2 math-solve-lhs))))
+                      (setq math-t2 math-solve-rhs)
+                      (if (and (eq math-solve-full t)
+                               (math-known-realp (nth 1 math-solve-lhs)))
                           (progn
-                            (while (>= (setq t1 (1- t1)) 0)
-                              (setq t2 (list 'calcFunc-sqrt t2)))
-                            (setq t2 (math-solve-get-sign t2)))
-                        (while (>= (setq t1 (1- t1)) 0)
-                          (setq t2 (math-solve-get-sign
+                            (while (>= (setq math-t1 (1- math-t1)) 0)
+                              (setq math-t2 (list 'calcFunc-sqrt math-t2)))
+                            (setq math-t2 (math-solve-get-sign math-t2)))
+                        (while (>= (setq math-t1 (1- math-t1)) 0)
+                          (setq math-t2 (math-solve-get-sign
                                     (math-normalize
-                                     (list 'calcFunc-sqrt t2))))))
+                                     (list 'calcFunc-sqrt math-t2))))))
                       (math-try-solve-for
-                       (nth 1 lhs)
-                       (math-normalize t2)))
-                     ((math-looks-negp (nth 2 lhs))
+                       (nth 1 math-solve-lhs)
+                       (math-normalize math-t2)))
+                     ((math-looks-negp (nth 2 math-solve-lhs))
                       (math-try-solve-for
-                       (list '^ (nth 1 lhs) (math-neg (nth 2 lhs)))
-                       (math-div 1 rhs)))
-                     ((and (eq solve-full t)
-                           (Math-integerp (nth 2 lhs))
-                           (math-known-realp (nth 1 lhs)))
-                      (setq t1 (math-normalize
-                                (list 'calcFunc-nroot rhs (nth 2 lhs))))
-                      (if (math-evenp (nth 2 lhs))
-                          (setq t1 (math-solve-get-sign t1)))
+                       (list '^ (nth 1 math-solve-lhs) 
+                              (math-neg (nth 2 math-solve-lhs)))
+                       (math-div 1 math-solve-rhs)))
+                     ((and (eq math-solve-full t)
+                           (Math-integerp (nth 2 math-solve-lhs))
+                           (math-known-realp (nth 1 math-solve-lhs)))
+                      (setq math-t1 (math-normalize
+                                (list 'calcFunc-nroot math-solve-rhs 
+                                       (nth 2 math-solve-lhs))))
+                      (if (math-evenp (nth 2 math-solve-lhs))
+                          (setq math-t1 (math-solve-get-sign math-t1)))
                       (math-try-solve-for
-                       (nth 1 lhs) t1
-                       (and sign
-                            (math-oddp (nth 2 lhs))
-                            (math-solve-sign sign (nth 2 lhs)))))
+                       (nth 1 math-solve-lhs) math-t1
+                       (and math-try-solve-sign
+                            (math-oddp (nth 2 math-solve-lhs))
+                            (math-solve-sign math-try-solve-sign 
+                                              (nth 2 math-solve-lhs)))))
                      (t (math-try-solve-for
-                         (nth 1 lhs)
+                         (nth 1 math-solve-lhs)
                          (math-mul
                           (math-normalize
                            (list 'calcFunc-exp
-                                 (if (Math-realp (nth 2 lhs))
+                                 (if (Math-realp (nth 2 math-solve-lhs))
                                      (math-div (math-mul
                                                 '(var pi var-pi)
                                                 (math-solve-get-int
                                                  '(var i var-i)
-                                                 (and (integerp (nth 2 lhs))
+                                                 (and (integerp (nth 2 math-solve-lhs))
                                                       (math-abs
-                                                       (nth 2 lhs)))))
-                                               (math-div (nth 2 lhs) 2))
+                                                       (nth 2 math-solve-lhs)))))
+                                               (math-div (nth 2 math-solve-lhs) 2))
                                    (math-div (math-mul
                                               2
                                               (math-mul
                                                '(var pi var-pi)
                                                (math-solve-get-int
                                                 '(var i var-i)
-                                                (and (integerp (nth 2 lhs))
+                                                (and (integerp (nth 2 math-solve-lhs))
                                                      (math-abs
-                                                      (nth 2 lhs))))))
-                                             (nth 2 lhs)))))
+                                                      (nth 2 math-solve-lhs))))))
+                                             (nth 2 math-solve-lhs)))))
                           (math-normalize
                            (list 'calcFunc-nroot
-                                 rhs
-                                 (nth 2 lhs))))
-                         (and sign
-                              (math-oddp (nth 2 lhs))
-                              (math-solve-sign sign (nth 2 lhs)))))))))
+                                 math-solve-rhs
+                                 (nth 2 math-solve-lhs))))
+                         (and math-try-solve-sign
+                              (math-oddp (nth 2 math-solve-lhs))
+                              (math-solve-sign math-try-solve-sign 
+                                                (nth 2 math-solve-lhs)))))))))
        (t nil)))
 
 (defun math-solve-prod (lsoln rsoln)
         rsoln)
        ((null rsoln)
         lsoln)
-       ((eq solve-full 'all)
+       ((eq math-solve-full 'all)
         (cons 'vec (append (cdr lsoln) (cdr rsoln))))
-       (solve-full
+       (math-solve-full
         (list 'calcFunc-if
               (list 'calcFunc-gt (math-solve-get-sign 1) 0)
               lsoln
        (t lsoln)))
 
 ;;; This deals with negative, fractional, and symbolic powers of "x".
+;; The variable math-solve-b is local to math-decompose-poly,
+;; but is used by math-solve-poly-funny-powers.
+
 (defun math-solve-poly-funny-powers (sub-rhs)    ; uses "t1", "t2"
-  (setq t1 lhs)
+  (setq math-t1 math-solve-lhs)
   (let ((pp math-poly-neg-powers)
        fac)
     (while pp
       (setq fac (math-pow (car pp) (or math-poly-mult-powers 1))
-           t1 (math-mul t1 fac)
-           rhs (math-mul rhs fac)
+           math-t1 (math-mul math-t1 fac)
+           math-solve-rhs (math-mul math-solve-rhs fac)
            pp (cdr pp))))
-  (if sub-rhs (setq t1 (math-sub t1 rhs)))
+  (if sub-rhs (setq math-t1 (math-sub math-t1 math-solve-rhs)))
   (let ((math-poly-neg-powers nil))
-    (setq t2 (math-mul (or math-poly-mult-powers 1)
+    (setq math-t2 (math-mul (or math-poly-mult-powers 1)
                       (let ((calc-prefer-frac t))
                         (math-div 1 math-poly-frac-powers)))
-         t1 (math-is-polynomial (math-simplify (calcFunc-expand t1)) b 50))))
+         math-t1 (math-is-polynomial 
+                   (math-simplify (calcFunc-expand math-t1)) math-solve-b 50))))
 
 ;;; This converts "a x^8 + b x^5 + c x^2" to "(a (x^3)^2 + b (x^3) + c) * x^2".
 (defun math-solve-crunch-poly (max-degree)   ; uses "t1", "t3"
   (let ((count 0))
-    (while (and t1 (Math-zerop (car t1)))
-      (setq t1 (cdr t1)
+    (while (and math-t1 (Math-zerop (car math-t1)))
+      (setq math-t1 (cdr math-t1)
            count (1+ count)))
-    (and t1
-        (let* ((degree (1- (length t1)))
+    (and math-t1
+        (let* ((degree (1- (length math-t1)))
                (scale degree))
-          (while (and (> scale 1) (= (car t3) 1))
+          (while (and (> scale 1) (= (car math-t3) 1))
             (and (= (% degree scale) 0)
-                 (let ((p t1)
+                 (let ((p math-t1)
                        (n 0)
                        (new-t1 nil)
                        (okay t))
                      (setq p (cdr p)
                            n (1+ n)))
                    (if okay
-                       (setq t3 (cons scale (cdr t3))
-                             t1 new-t1))))
+                       (setq math-t3 (cons scale (cdr math-t3))
+                             math-t1 new-t1))))
             (setq scale (1- scale)))
-          (setq t3 (list (math-mul (car t3) t2) (math-mul count t2)))
-          (<= (1- (length t1)) max-degree)))))
+          (setq math-t3 (list (math-mul (car math-t3) math-t2) 
+                               (math-mul count math-t2)))
+          (<= (1- (length math-t1)) max-degree)))))
 
 (defun calcFunc-poly (expr var &optional degree)
   (if degree
        (cons 'vec d)
       (math-reject-arg expr "Expected a polynomial"))))
 
-(defun math-decompose-poly (lhs solve-var degree sub-rhs)
-  (let ((rhs (or sub-rhs 1))
-       t1 t2 t3)
-    (setq t2 (math-polynomial-base
-             lhs
+(defun math-decompose-poly (math-solve-lhs math-solve-var degree sub-rhs)
+  (let ((math-solve-rhs (or sub-rhs 1))
+       math-t1 math-t2 math-t3)
+    (setq math-t2 (math-polynomial-base
+             math-solve-lhs
              (function
-              (lambda (b)
+              (lambda (math-solve-b)
                 (let ((math-poly-neg-powers '(1))
                       (math-poly-mult-powers nil)
                       (math-poly-frac-powers 1)
                       (math-poly-exp-base t))
-                  (and (not (equal b lhs))
-                       (or (not (memq (car-safe b) '(+ -))) sub-rhs)
-                       (setq t3 '(1 0) t2 1
-                             t1 (math-is-polynomial lhs b 50))
+                  (and (not (equal math-solve-b math-solve-lhs))
+                       (or (not (memq (car-safe math-solve-b) '(+ -))) sub-rhs)
+                       (setq math-t3 '(1 0) math-t2 1
+                             math-t1 (math-is-polynomial math-solve-lhs 
+                                                          math-solve-b 50))
                        (if (and (equal math-poly-neg-powers '(1))
                                 (memq math-poly-mult-powers '(nil 1))
                                 (eq math-poly-frac-powers 1)
                                 sub-rhs)
-                           (setq t1 (cons (math-sub (car t1) rhs)
-                                          (cdr t1)))
+                           (setq math-t1 (cons (math-sub (car math-t1) math-solve-rhs)
+                                          (cdr math-t1)))
                          (math-solve-poly-funny-powers sub-rhs))
                        (math-solve-crunch-poly degree)
-                       (or (math-expr-contains solve-var)
-                           (math-expr-contains (car t3) solve-var))))))))
-    (if t2
-       (list (math-pow t2 (car t3))
-             (cons 'vec t1)
+                       (or (math-expr-contains math-solve-b math-solve-var)
+                           (math-expr-contains (car math-t3) math-solve-var))))))))
+    (if math-t2
+       (list (math-pow math-t2 (car math-t3))
+             (cons 'vec math-t1)
              (if sub-rhs
-                 (math-pow t2 (nth 1 t3))
-               (math-div (math-pow t2 (nth 1 t3)) rhs))))))
+                 (math-pow math-t2 (nth 1 math-t3))
+               (math-div (math-pow math-t2 (nth 1 math-t3)) math-solve-rhs))))))
 
 (defun math-solve-linear (var sign b a)
   (math-try-solve-for var
    var
    (let* ((asqr (math-sqr a))
          (asqr4 (math-div asqr 4))
-         (y (let ((solve-full nil)
+         (y (let ((math-solve-full nil)
                   calc-next-why)
-              (math-solve-cubic solve-var
+              (math-solve-cubic math-solve-var
                                 (math-sub (math-sub
                                            (math-mul 4 (math-mul b d))
                                            (math-mul asqr d))
 
 (defvar math-symbolic-solve nil)
 (defvar math-int-coefs nil)
+
+;; The variable math-int-threshold is local to math-poly-all-roots,
+;; but is used by math-poly-newton-root.
+(defvar math-int-threshold)
+;; The variables math-int-scale, math-int-factors and math-double-roots
+;; are local to math-poly-all-roots, but are used by math-poly-integer-root.
+(defvar math-int-scale)
+
 (defun math-poly-all-roots (var p &optional math-factoring)
   (catch 'ouch
     (let* ((math-symbolic-solve calc-symbolic-mode)
                      deg (1- deg))))
            (setq p (reverse def-p))))
       (if (> deg 1)
-         (let ((solve-var '(var DUMMY var-DUMMY))
+         (let ((math-solve-var '(var DUMMY var-DUMMY))
                (math-solve-sign nil)
                (math-solve-ranges nil)
-               (solve-full 'all))
+               (math-solve-full 'all))
            (if (= (length p) (length math-int-coefs))
                (setq p (reverse math-int-coefs)))
            (setq roots (append (cdr (apply (cond ((= deg 2)
                                                   'math-solve-cubic)
                                                  (t
                                                   'math-solve-quartic))
-                                           solve-var p))
+                                           math-solve-var p))
                                roots)))
        (if (> deg 0)
            (setq roots (cons (math-div (math-neg (car p)) (nth 1 p))
        (let ((vec nil) res)
          (while roots
            (let ((root (car roots))
-                 (solve-full (and solve-full 'all)))
+                 (math-solve-full (and math-solve-full 'all)))
              (if (math-floatp root)
                  (setq root (math-poly-any-root orig-p root t)))
              (setq vec (append vec
          (setq vec (cons 'vec (nreverse vec)))
          (if math-symbolic-solve
              (setq vec (math-normalize vec)))
-         (if (eq solve-full t)
+         (if (eq math-solve-full t)
              (list 'calcFunc-subscr
                    vec
                    (math-solve-get-int 1 (1- (length orig-p)) 1))
 
 (defun math-solve-find-root-term (x neg)    ; sets "t2", "t3"
   (if (math-solve-find-root-in-prod x)
-      (setq t3 neg
-           t1 x)
+      (setq math-t3 neg
+           math-t1 x)
     (and (memq (car-safe x) '(+ -))
         (or (math-solve-find-root-term (nth 1 x) neg)
             (math-solve-find-root-term (nth 2 x)
 
 (defun math-solve-find-root-in-prod (x)
   (and (consp x)
-       (math-expr-contains x solve-var)
+       (math-expr-contains x math-solve-var)
        (or (and (eq (car x) 'calcFunc-sqrt)
-               (setq t2 2))
+               (setq math-t2 2))
           (and (eq (car x) '^)
                (or (and (memq (math-quarter-integer (nth 2 x)) '(1 2 3))
-                        (setq t2 2))
+                        (setq math-t2 2))
                    (and (eq (car-safe (nth 2 x)) 'frac)
                         (eq (nth 2 (nth 2 x)) 3)
-                        (setq t2 3))))
+                        (setq math-t2 3))))
           (and (memq (car x) '(* /))
-               (or (and (not (math-expr-contains (nth 1 x) solve-var))
+               (or (and (not (math-expr-contains (nth 1 x) math-solve-var))
                         (math-solve-find-root-in-prod (nth 2 x)))
-                   (and (not (math-expr-contains (nth 2 x) solve-var))
+                   (and (not (math-expr-contains (nth 2 x) math-solve-var))
                         (math-solve-find-root-in-prod (nth 1 x))))))))
 
+;; The variable math-solve-vars is local to math-solve-system, 
+;; but is used by math-solve-system-rec.
+(defvar math-solve-vars)
 
-(defun math-solve-system (exprs solve-vars solve-full)
+;; The variable math-solve-simplifying is local to math-solve-system
+;; and math-solve-system-rec, but is used by math-solve-system-subst.
+
+(defun math-solve-system (exprs math-solve-vars math-solve-full)
   (setq exprs (mapcar 'list (if (Math-vectorp exprs)
                                (cdr exprs)
                              (list exprs)))
-       solve-vars (if (Math-vectorp solve-vars)
-                      (cdr solve-vars)
-                    (list solve-vars)))
+       math-solve-vars (if (Math-vectorp math-solve-vars)
+                      (cdr math-solve-vars)
+                    (list math-solve-vars)))
   (or (let ((math-solve-simplifying nil))
-       (math-solve-system-rec exprs solve-vars nil))
+       (math-solve-system-rec exprs math-solve-vars nil))
       (let ((math-solve-simplifying t))
-       (math-solve-system-rec exprs solve-vars nil))))
+       (math-solve-system-rec exprs math-solve-vars nil))))
 
 ;;; The following backtracking solver works by choosing a variable
 ;;; and equation, and trying to solve the equation for the variable.
 ;;; To support calcFunc-roots, entries in eqn-list and solns are
 ;;; actually lists of equations.
 
+;; The variables math-solve-system-res and math-solve-system-vv are
+;; local to math-solve-system-rec, but are used by math-solve-system-subst.
+(defvar math-solve-system-vv)
+(defvar math-solve-system-res)
+
+
 (defun math-solve-system-rec (eqn-list var-list solns)
   (if var-list
       (let ((v var-list)
-           (res nil))
+           (math-solve-system-res nil))
 
        ;; Try each variable in turn.
        (while
            (and
             v
-            (let* ((vv (car v))
+            (let* ((math-solve-system-vv (car v))
                    (e eqn-list)
-                   (elim (eq (car-safe vv) 'calcFunc-elim)))
+                   (elim (eq (car-safe math-solve-system-vv) 'calcFunc-elim)))
               (if elim
-                  (setq vv (nth 1 vv)))
+                  (setq math-solve-system-vv (nth 1 math-solve-system-vv)))
 
               ;; Try each equation in turn.
               (while
                    (let ((e2 (car e))
                          (eprev nil)
                          res2)
-                     (setq res nil)
+                     (setq math-solve-system-res nil)
 
-                     ;; Try to solve for vv the list of equations e2.
+                     ;; Try to solve for math-solve-system-vv the list of equations e2.
                      (while (and e2
                                  (setq res2 (or (and (eq (car e2) eprev)
                                                      res2)
-                                                (math-solve-for (car e2) 0 vv
-                                                                solve-full))))
+                                                (math-solve-for (car e2) 0 
+                                                                 math-solve-system-vv
+                                                                math-solve-full))))
                        (setq eprev (car e2)
-                             res (cons (if (eq solve-full 'all)
+                             math-solve-system-res (cons (if (eq math-solve-full 'all)
                                            (cdr res2)
                                          (list res2))
-                                       res)
+                                       math-solve-system-res)
                              e2 (cdr e2)))
                      (if e2
-                         (setq res nil)
+                         (setq math-solve-system-res nil)
 
                        ;; Found a solution.  Now try other variables.
-                       (setq res (nreverse res)
-                             res (math-solve-system-rec
+                       (setq math-solve-system-res (nreverse math-solve-system-res)
+                             math-solve-system-res (math-solve-system-rec
                                   (mapcar
                                    'math-solve-system-subst
                                    (delq (car e)
                                             solns)))
                                     (if elim
                                         s
-                                      (cons (cons vv (apply 'append res))
+                                      (cons (cons 
+                                              math-solve-system-vv 
+                                              (apply 'append math-solve-system-res))
                                             s)))))
-                       (not res))))
+                       (not math-solve-system-res))))
                 (setq e (cdr e)))
-              (not res)))
+              (not math-solve-system-res)))
          (setq v (cdr v)))
-       res)
+       math-solve-system-res)
 
     ;; Eliminated all variables, so now put solution into the proper format.
     (setq solns (sort solns
                      (function
                       (lambda (x y)
-                        (not (memq (car x) (memq (car y) solve-vars)))))))
-    (if (eq solve-full 'all)
+                        (not (memq (car x) (memq (car y) math-solve-vars)))))))
+    (if (eq math-solve-full 'all)
        (math-transpose
         (math-normalize
          (cons 'vec
 
 (defun math-solve-system-subst (x)    ; uses "res" and "v"
   (let ((accum nil)
-       (res2 res))
+       (res2 math-solve-system-res))
     (while x
       (setq accum (nconc accum
                         (mapcar (function
                                  (lambda (r)
                                    (if math-solve-simplifying
                                        (math-simplify
-                                        (math-expr-subst (car x) vv r))
-                                     (math-expr-subst (car x) vv r))))
+                                        (math-expr-subst 
+                                          (car x) math-solve-system-vv r))
+                                     (math-expr-subst 
+                                       (car x) math-solve-system-vv r))))
                                 (car res2)))
            x (cdr x)
            res2 (cdr res2)))
     accum))
 
 
+;; calc-command-flags is declared in calc.el
+(defvar calc-command-flags)
+
 (defun math-get-from-counter (name)
   (let ((ctr (assq name calc-command-flags)))
     (if ctr
            calc-command-flags (cons ctr calc-command-flags)))
     (cdr ctr)))
 
+(defvar var-GenCount)
+
 (defun math-solve-get-sign (val)
   (setq val (math-simplify val))
   (if (and (eq (car-safe val) '*)
         (setq val (math-normalize (list '^
                                         (nth 1 (nth 1 val))
                                         (math-div (nth 2 (nth 1 val)) 2)))))
-    (if solve-full
+    (if math-solve-full
        (if (and (calc-var-value 'var-GenCount)
                 (Math-natnump var-GenCount)
-                (not (eq solve-full 'all)))
+                (not (eq math-solve-full 'all)))
            (prog1
                (math-mul (list 'calcFunc-as var-GenCount) val)
              (setq var-GenCount (math-add var-GenCount 1))
              (calc-refresh-evaltos 'var-GenCount))
          (let* ((var (concat "s" (int-to-string (math-get-from-counter 'solve-sign))))
                 (var2 (list 'var (intern var) (intern (concat "var-" var)))))
-           (if (eq solve-full 'all)
+           (if (eq math-solve-full 'all)
                (setq math-solve-ranges (cons (list var2 1 -1)
                                              math-solve-ranges)))
            (math-mul var2 val)))
       val)))
 
 (defun math-solve-get-int (val &optional range first)
-  (if solve-full
+  (if math-solve-full
       (if (and (calc-var-value 'var-GenCount)
               (Math-natnump var-GenCount)
-              (not (eq solve-full 'all)))
+              (not (eq math-solve-full 'all)))
          (prog1
              (math-mul val (list 'calcFunc-an var-GenCount))
            (setq var-GenCount (math-add var-GenCount 1))
        (let* ((var (concat "n" (int-to-string
                                 (math-get-from-counter 'solve-int))))
               (var2 (list 'var (intern var) (intern (concat "var-" var)))))
-         (if (and range (eq solve-full 'all))
+         (if (and range (eq math-solve-full 'all))
              (setq math-solve-ranges (cons (cons var2
                                                  (cdr (calcFunc-index
                                                        range (or first 0))))
     (if (memq (car expr) '(* /))
        (math-looks-evenp (nth 1 expr)))))
 
-(defun math-solve-for (lhs rhs solve-var solve-full &optional sign)
-  (if (math-expr-contains rhs solve-var)
-      (math-solve-for (math-sub lhs rhs) 0 solve-var solve-full)
-    (and (math-expr-contains lhs solve-var)
+(defun math-solve-for (lhs rhs math-solve-var math-solve-full &optional sign)
+  (if (math-expr-contains rhs math-solve-var)
+      (math-solve-for (math-sub lhs rhs) 0 math-solve-var math-solve-full)
+    (and (math-expr-contains lhs math-solve-var)
         (math-with-extra-prec 1
-          (let* ((math-poly-base-variable solve-var)
+          (let* ((math-poly-base-variable math-solve-var)
                  (res (math-try-solve-for lhs rhs sign)))
-            (if (and (eq solve-full 'all)
-                     (math-known-realp solve-var))
+            (if (and (eq math-solve-full 'all)
+                     (math-known-realp math-solve-var))
                 (let ((old-len (length res))
                       new-len)
                   (setq res (delq nil