(calc-hyperbolic-func)
(calc-sin arg))
+(defun calc-sec (arg)
+ (interactive "P")
+ (calc-slow-wrapper
+ (if (calc-is-hyperbolic)
+ (calc-unary-op "sech" 'calcFunc-sech arg)
+ (calc-unary-op "sec" 'calcFunc-sec arg))))
+
+(defun calc-sech (arg)
+ (interactive "P")
+ (calc-hyperbolic-func)
+ (calc-sec arg))
+
(defun calc-cos (arg)
(interactive "P")
(calc-slow-wrapper
(calc-hyperbolic-func)
(calc-cos arg))
+(defun calc-csc (arg)
+ (interactive "P")
+ (calc-slow-wrapper
+ (if (calc-is-hyperbolic)
+ (calc-unary-op "csch" 'calcFunc-csch arg)
+ (calc-unary-op "csc" 'calcFunc-csc arg))))
+
+(defun calc-csch (arg)
+ (interactive "P")
+ (calc-hyperbolic-func)
+ (calc-csc arg))
+
(defun calc-sincos ()
(interactive)
(calc-slow-wrapper
(calc-hyperbolic-func)
(calc-tan arg))
+(defun calc-cot (arg)
+ (interactive "P")
+ (calc-slow-wrapper
+ (if (calc-is-hyperbolic)
+ (calc-unary-op "coth" 'calcFunc-coth arg)
+ (calc-unary-op "cot" 'calcFunc-cot arg))))
+
+(defun calc-arctan (arg)
+ (interactive "P")
+ (calc-invert-func)
+ (calc-tan arg))
+
+(defun calc-tanh (arg)
+ (interactive "P")
+ (calc-hyperbolic-func)
+ (calc-tan arg))
+
+(defun calc-arctanh (arg)
+ (interactive "P")
+ (calc-invert-func)
+ (calc-hyperbolic-func)
+ (calc-tan arg))
+
(defun calc-arctan2 ()
(interactive)
(calc-slow-wrapper
(calc-slow-wrapper
(calc-pop-push-record 1 "i*" (math-imaginary (calc-top-n 1)))))
-
-
(defun calc-to-degrees (arg)
(interactive "P")
(calc-wrapper
(t (calc-record-why 'scalarp x)
(list 'calcFunc-tan x))))
+(defun calcFunc-sec (x)
+ (cond ((and (integerp x)
+ (eq calc-angle-mode 'deg)
+ (= (% x 180) 0))
+ (if (= (% x 360) 0)
+ 1
+ -1))
+ ((and (integerp x)
+ (eq calc-angle-mode 'rad)
+ (= x 0))
+ 1)
+ ((Math-scalarp x)
+ (math-with-extra-prec 2
+ (math-sec-raw (math-to-radians (math-float x)))))
+ ((eq (car x) 'sdev)
+ (if (math-constp x)
+ (math-with-extra-prec 2
+ (let* ((xx (math-to-radians (math-float (nth 1 x))))
+ (xs (math-to-radians (math-float (nth 2 x))))
+ (sc (math-sin-cos-raw xx)))
+ (if (and (math-zerop (cdr sc))
+ (not calc-infinite-mode))
+ (progn
+ (calc-record-why "*Division by zero")
+ (list 'calcFunc-sec x))
+ (math-make-sdev (math-div-float '(float 1 0) (cdr sc))
+ (math-div-float
+ (math-mul xs (car sc))
+ (math-sqr (cdr sc)))))))
+ (math-make-sdev (calcFunc-sec (nth 1 x))
+ (math-div
+ (math-mul (nth 2 x)
+ (calcFunc-sin (nth 1 x)))
+ (math-sqr (calcFunc-cos (nth 1 x)))))))
+ ((and (eq (car x) 'intv)
+ (math-intv-constp x))
+ (math-with-extra-prec 2
+ (let* ((xx (math-to-radians (math-float x)))
+ (na (math-floor (math-div (math-sub (nth 2 xx)
+ (math-pi-over-2))
+ (math-pi))))
+ (nb (math-floor (math-div (math-sub (nth 3 xx)
+ (math-pi-over-2))
+ (math-pi))))
+ (naa (math-floor (math-div (nth 2 xx) (math-pi-over-2))))
+ (nbb (math-floor (math-div (nth 3 xx) (math-pi-over-2))))
+ (span (math-sub nbb naa)))
+ (if (not (equal na nb))
+ '(intv 3 (neg (var inf var-inf)) (var inf var-inf))
+ (let ((int (math-sort-intv (nth 1 x)
+ (math-sec-raw (nth 2 xx))
+ (math-sec-raw (nth 3 xx)))))
+ (if (eq span 1)
+ (if (math-evenp (math-div (math-add naa 1) 2))
+ (math-make-intv (logior (nth 1 int) 2)
+ 1
+ (nth 3 int))
+ (math-make-intv (logior (nth 1 int) 1)
+ (nth 2 int)
+ -1))
+ int))))))
+ ((equal x '(var nan var-nan))
+ x)
+ (t (calc-record-why 'scalarp x)
+ (list 'calcFunc-sec x))))
+
+(defun calcFunc-csc (x)
+ (cond ((and (integerp x)
+ (eq calc-angle-mode 'deg)
+ (= (% (- x 90) 180) 0))
+ (if (= (% (- x 90) 360) 0)
+ 1
+ -1))
+ ((Math-scalarp x)
+ (math-with-extra-prec 2
+ (math-csc-raw (math-to-radians (math-float x)))))
+ ((eq (car x) 'sdev)
+ (if (math-constp x)
+ (math-with-extra-prec 2
+ (let* ((xx (math-to-radians (math-float (nth 1 x))))
+ (xs (math-to-radians (math-float (nth 2 x))))
+ (sc (math-sin-cos-raw xx)))
+ (if (and (math-zerop (car sc))
+ (not calc-infinite-mode))
+ (progn
+ (calc-record-why "*Division by zero")
+ (list 'calcFunc-csc x))
+ (math-make-sdev (math-div-float '(float 1 0) (car sc))
+ (math-div-float
+ (math-mul xs (cdr sc))
+ (math-sqr (car sc)))))))
+ (math-make-sdev (calcFunc-csc (nth 1 x))
+ (math-div
+ (math-mul (nth 2 x)
+ (calcFunc-cos (nth 1 x)))
+ (math-sqr (calcFunc-sin (nth 1 x)))))))
+ ((and (eq (car x) 'intv)
+ (math-intv-constp x))
+ (math-with-extra-prec 2
+ (let* ((xx (math-to-radians (math-float x)))
+ (na (math-floor (math-div (nth 2 xx) (math-pi))))
+ (nb (math-floor (math-div (nth 3 xx) (math-pi))))
+ (naa (math-floor (math-div (nth 2 xx) (math-pi-over-2))))
+ (nbb (math-floor (math-div (nth 3 xx) (math-pi-over-2))))
+ (span (math-sub nbb naa)))
+ (if (not (equal na nb))
+ '(intv 3 (neg (var inf var-inf)) (var inf var-inf))
+ (let ((int (math-sort-intv (nth 1 x)
+ (math-csc-raw (nth 2 xx))
+ (math-csc-raw (nth 3 xx)))))
+ (if (eq span 1)
+ (if (math-evenp (math-div naa 2))
+ (math-make-intv (logior (nth 1 int) 2)
+ 1
+ (nth 3 int))
+ (math-make-intv (logior (nth 1 int) 1)
+ (nth 2 int)
+ -1))
+ int))))))
+ ((equal x '(var nan var-nan))
+ x)
+ (t (calc-record-why 'scalarp x)
+ (list 'calcFunc-csc x))))
+
+(defun calcFunc-cot (x) ; [N N] [Public]
+ (cond ((and (integerp x)
+ (if (eq calc-angle-mode 'deg)
+ (= (% (- x 90) 180) 0)
+ (= x 0)))
+ 0)
+ ((Math-scalarp x)
+ (math-with-extra-prec 2
+ (math-cot-raw (math-to-radians (math-float x)))))
+ ((eq (car x) 'sdev)
+ (if (math-constp x)
+ (math-with-extra-prec 2
+ (let* ((xx (math-to-radians (math-float (nth 1 x))))
+ (xs (math-to-radians (math-float (nth 2 x))))
+ (sc (math-sin-cos-raw xx)))
+ (if (and (math-zerop (car sc)) (not calc-infinite-mode))
+ (progn
+ (calc-record-why "*Division by zero")
+ (list 'calcFunc-cot x))
+ (math-make-sdev (math-div-float (cdr sc) (car sc))
+ (math-div-float xs (math-sqr (car sc)))))))
+ (math-make-sdev (calcFunc-cot (nth 1 x))
+ (math-div (nth 2 x)
+ (math-sqr (calcFunc-sin (nth 1 x)))))))
+ ((and (eq (car x) 'intv) (math-intv-constp x))
+ (or (math-with-extra-prec 2
+ (let* ((xx (math-to-radians (math-float x)))
+ (na (math-floor (math-div (nth 2 xx) (math-pi))))
+ (nb (math-floor (math-div (nth 3 xx) (math-pi))))
+ (and (equal na nb)
+ (math-sort-intv (nth 1 x)
+ (math-cot-raw (nth 2 xx))
+ (math-cot-raw (nth 3 xx)))))))
+ '(intv 3 (neg (var inf var-inf)) (var inf var-inf))))
+ ((equal x '(var nan var-nan))
+ x)
+ (t (calc-record-why 'scalarp x)
+ (list 'calcFunc-cot x))))
+
(defun math-sin-raw (x) ; [N N]
(cond ((eq (car x) 'cplx)
(let* ((expx (math-exp-raw (nth 2 x)))
(math-polar (math-cos-raw (math-complex x)))
(math-sin-raw (math-sub (math-pi-over-2) x))))
+(defun math-sec-raw (x) ; [N N]
+ (cond ((eq (car x) 'cplx)
+ (let* ((x (math-mul x '(float 1 0)))
+ (expx (math-exp-raw (nth 2 x)))
+ (expmx (math-div-float '(float 1 0) expx))
+ (sh (math-mul-float (math-sub-float expx expmx) '(float 5 -1)))
+ (ch (math-mul-float (math-add-float expx expmx) '(float 5 -1)))
+ (sc (math-sin-cos-raw (nth 1 x)))
+ (d (math-add-float
+ (math-mul-float (math-sqr (car sc))
+ (math-sqr sh))
+ (math-mul-float (math-sqr (cdr sc))
+ (math-sqr ch)))))
+ (and (not (eq (nth 1 d) 0))
+ (list 'cplx
+ (math-div-float (math-mul-float (cdr sc) ch) d)
+ (math-div-float (math-mul-float (car sc) sh) d)))))
+ ((eq (car x) 'polar)
+ (math-polar (math-sec-raw (math-complex x))))
+ (t
+ (let ((cs (math-cos-raw x)))
+ (if (eq cs 0)
+ (math-div 1 0)
+ (math-div-float '(float 1 0) cs))))))
+
+(defun math-csc-raw (x) ; [N N]
+ (cond ((eq (car x) 'cplx)
+ (let* ((x (math-mul x '(float 1 0)))
+ (expx (math-exp-raw (nth 2 x)))
+ (expmx (math-div-float '(float 1 0) expx))
+ (sh (math-mul-float (math-sub-float expx expmx) '(float 5 -1)))
+ (ch (math-mul-float (math-add-float expx expmx) '(float 5 -1)))
+ (sc (math-sin-cos-raw (nth 1 x)))
+ (d (math-add-float
+ (math-mul-float (math-sqr (car sc))
+ (math-sqr ch))
+ (math-mul-float (math-sqr (cdr sc))
+ (math-sqr sh)))))
+ (and (not (eq (nth 1 d) 0))
+ (list 'cplx
+ (math-div-float (math-mul-float (car sc) ch) d)
+ (math-div-float (math-mul-float (cdr sc) sh) d)))))
+ ((eq (car x) 'polar)
+ (math-polar (math-sec-raw (math-complex x))))
+ (t
+ (let ((sn (math-sin-raw x)))
+ (if (eq sn 0)
+ (math-div 1 0)
+ (math-div-float '(float 1 0) sn))))))
+
+(defun math-cot-raw (x) ; [N N]
+ (cond ((eq (car x) 'cplx)
+ (let* ((x (math-mul x '(float 1 0)))
+ (expx (math-exp-raw (nth 2 x)))
+ (expmx (math-div-float '(float 1 0) expx))
+ (sh (math-mul-float (math-sub-float expx expmx) '(float 5 -1)))
+ (ch (math-mul-float (math-add-float expx expmx) '(float 5 -1)))
+ (sc (math-sin-cos-raw (nth 1 x)))
+ (d (math-add-float
+ (math-sqr (car sc))
+ (math-sqr sh))))
+ (and (not (eq (nth 1 d) 0))
+ (list 'cplx
+ (math-div-float
+ (math-mul-float (car sc) (cdr sc))
+ d)
+ (math-neg
+ (math-div-float
+ (math-mul-float sh ch)
+ d))))))
+ ((eq (car x) 'polar)
+ (math-polar (math-cot-raw (math-complex x))))
+ (t
+ (let ((sc (math-sin-cos-raw x)))
+ (if (eq (nth 1 (car sc)) 0)
+ (math-div (cdr sc) 0)
+ (math-div-float (cdr sc) (car sc)))))))
+
+
;;; This could use a smarter method: Reduce x as in math-sin-raw, then
;;; compute either sin(x) or cos(x), whichever is smaller, and compute
;;; the other using the identity sin(x)^2 + cos(x)^2 = 1.
(list 'calcFunc-tanh x))))
(put 'calcFunc-tanh 'math-expandable t)
+(defun calcFunc-sech (x) ; [N N] [Public]
+ (cond ((eq x 0) 1)
+ (math-expand-formulas
+ (math-normalize
+ (list '/ 2 (list '+ (list 'calcFunc-exp x)
+ (list 'calcFunc-exp (list 'neg x))))))
+ ((Math-numberp x)
+ (if calc-symbolic-mode (signal 'inexact-result nil))
+ (math-with-extra-prec 2
+ (let ((expx (math-exp-raw (math-float x))))
+ (math-div '(float 2 0) (math-add expx (math-div 1 expx))))))
+ ((eq (car-safe x) 'sdev)
+ (math-make-sdev (calcFunc-sech (nth 1 x))
+ (math-mul (nth 2 x)
+ (math-mul (calcFunc-sech (nth 1 x))
+ (calcFunc-tanh (nth 1 x))))))
+ ((and (eq (car x) 'intv) (math-intv-constp x))
+ (setq x (math-abs x))
+ (math-sort-intv (nth 1 x)
+ (calcFunc-sech (nth 2 x))
+ (calcFunc-sech (nth 3 x))))
+ ((or (equal x '(var inf var-inf))
+ (equal x '(neg (var inf var-inf))))
+ 0)
+ ((equal x '(var nan var-nan))
+ x)
+ (t (calc-record-why 'numberp x)
+ (list 'calcFunc-sech x))))
+(put 'calcFunc-sech 'math-expandable t)
+
+(defun calcFunc-csch (x) ; [N N] [Public]
+ (cond ((eq x 0) (math-div 1 0))
+ (math-expand-formulas
+ (math-normalize
+ (list '/ 2 (list '- (list 'calcFunc-exp x)
+ (list 'calcFunc-exp (list 'neg x))))))
+ ((Math-numberp x)
+ (if calc-symbolic-mode (signal 'inexact-result nil))
+ (math-with-extra-prec 2
+ (let ((expx (math-exp-raw (math-float x))))
+ (math-div '(float 2 0) (math-add expx (math-div -1 expx))))))
+ ((eq (car-safe x) 'sdev)
+ (math-make-sdev (calcFunc-csch (nth 1 x))
+ (math-mul (nth 2 x)
+ (math-mul (calcFunc-csch (nth 1 x))
+ (calcFunc-coth (nth 1 x))))))
+ ((eq (car x) 'intv)
+ (if (and (Math-negp (nth 2 x))
+ (Math-posp (nth 3 x)))
+ '(intv 3 (neg (var inf var-inf)) (var inf var-inf))
+ (math-sort-intv (nth 1 x)
+ (calcFunc-csch (nth 2 x))
+ (calcFunc-csch (nth 3 x)))))
+ ((or (equal x '(var inf var-inf))
+ (equal x '(neg (var inf var-inf))))
+ 0)
+ ((equal x '(var nan var-nan))
+ x)
+ (t (calc-record-why 'numberp x)
+ (list 'calcFunc-csch x))))
+(put 'calcFunc-csch 'math-expandable t)
+
+(defun calcFunc-coth (x) ; [N N] [Public]
+ (cond ((eq x 0) (math-div 1 0))
+ (math-expand-formulas
+ (math-normalize
+ (let ((expx (list 'calcFunc-exp x))
+ (expmx (list 'calcFunc-exp (list 'neg x))))
+ (math-normalize
+ (list '/ (list '+ expx expmx) (list '- expx expmx))))))
+ ((Math-numberp x)
+ (if calc-symbolic-mode (signal 'inexact-result nil))
+ (math-with-extra-prec 2
+ (let* ((expx (calcFunc-exp (math-float x)))
+ (expmx (math-div 1 expx)))
+ (math-div (math-add expx expmx)
+ (math-sub expx expmx)))))
+ ((eq (car-safe x) 'sdev)
+ (math-make-sdev (calcFunc-coth (nth 1 x))
+ (math-div (nth 2 x)
+ (math-sqr (calcFunc-sinh (nth 1 x))))))
+ ((eq (car x) 'intv)
+ (if (and (Math-negp (nth 2 x))
+ (Math-posp (nth 3 x)))
+ '(intv 3 (neg (var inf var-inf)) (var inf var-inf))
+ (math-sort-intv (nth 1 x)
+ (calcFunc-coth (nth 2 x))
+ (calcFunc-coth (nth 3 x)))))
+ ((equal x '(var inf var-inf))
+ 1)
+ ((equal x '(neg (var inf var-inf)))
+ -1)
+ ((equal x '(var nan var-nan))
+ x)
+ (t (calc-record-why 'numberp x)
+ (list 'calcFunc-coth x))))
+(put 'calcFunc-coth 'math-expandable t)
+
(defun calcFunc-arcsinh (x) ; [N N] [Public]
(cond ((eq x 0) 0)
(math-expand-formulas