Mule
Stefan Monnier
- src/regex.c
+ src/regex-emacs.c
src/syntax.c
src/keymap.c
font-lock/jit-lock/syntax
"keymap.c" "sysdep.c" "buffer.c" "filelock.c"
"insdel.c" "marker.c" "minibuf.c" "fileio.c"
"dired.c" "cmds.c" "casefiddle.c"
- "indent.c" "search.c" "regex.c" "undo.c"
+ "indent.c" "search.c" "regex-emacs.c" "undo.c"
"alloc.c" "data.c" "doc.c" "editfns.c"
"callint.c" "eval.c" "fns.c" "print.c" "lread.c"
"syntax.c" "unexcoff.c"
../lib/libgnu.a: $(config_h)
$(MAKE) -C ../lib all
-regex.o: $(srcdir)/../src/regex.c $(srcdir)/../src/regex.h $(config_h)
+regex-emacs.o: $(srcdir)/../src/regex-emacs.c $(srcdir)/../src/regex-emacs.h $(config_h)
$(AM_V_CC)$(CC) -c $(CPP_CFLAGS) $<
-etags_deps = ${srcdir}/etags.c regex.o $(NTLIB) $(config_h)
+etags_deps = ${srcdir}/etags.c regex-emacs.o $(NTLIB) $(config_h)
etags_cflags = -DEMACS_NAME="\"GNU Emacs\"" -DVERSION="\"${version}\"" -o $@
-etags_libs = regex.o $(NTLIB) $(LOADLIBES)
+etags_libs = regex-emacs.o $(NTLIB) $(LOADLIBES)
etags${EXEEXT}: ${etags_deps}
$(AM_V_CCLD)$(CC) ${ALL_CFLAGS} $(etags_cflags) $< $(etags_libs)
#endif
#include <getopt.h>
-#include <regex.h>
+#include <regex-emacs.h>
/* Define CTAGS to make the program "ctags" compatible with the usual one.
Leave it undefined to make the program "etags", which makes emacs-style
(when (> spaces 0)
(push (char-fold--make-space-string spaces) out))
(let ((regexp (apply #'concat (nreverse out))))
- ;; Limited by `MAX_BUF_SIZE' in `regex.c'.
+ ;; Limited by `MAX_BUF_SIZE' in `regex-emacs.c'.
(if (> (length regexp) 5000)
(regexp-quote string)
regexp))))
emacs.o keyboard.o macros.o keymap.o sysdep.o \
buffer.o filelock.o insdel.o marker.o \
minibuf.o fileio.o dired.o \
- cmds.o casetab.o casefiddle.o indent.o search.o regex.o undo.o \
+ cmds.o casetab.o casefiddle.o indent.o search.o regex-emacs.o undo.o \
alloc.o data.o doc.o editfns.o callint.o \
eval.o floatfns.o fns.o font.o print.o lread.o $(MODULES_OBJ) \
syntax.o $(UNEXEC_OBJ) bytecode.o \
set_char_table_extras (table, 2, eqv);
}
- /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
+ /* This is so set_image_of_range_1 in regex-emacs.c can find the EQV
+ table. */
set_char_table_extras (canon, 2, eqv);
if (standard)
#endif
#ifdef emacs /* Don't do this for lib-src. */
-/* Tell regex.c to use a type compatible with Emacs. */
+/* Tell regex-emacs.c to use a type compatible with Emacs. */
#define RE_TRANSLATE_TYPE Lisp_Object
#define RE_TRANSLATE(TBL, C) char_table_translate (TBL, C)
#define RE_TRANSLATE_P(TBL) (!EQ (TBL, make_number (0)))
pre-crt0.o: pre-crt0.c
dbusbind.o: dbusbind.c termhooks.h frame.h keyboard.h lisp.h $(config_h)
dired.o: dired.c commands.h buffer.h lisp.h $(config_h) character.h charset.h \
- coding.h regex.h systime.h blockinput.h atimer.h composite.h \
+ coding.h regex-emacs.h systime.h blockinput.h atimer.h composite.h \
../lib/filemode.h ../lib/unistd.h globals.h
dispnew.o: dispnew.c systime.h commands.h process.h frame.h coding.h \
window.h buffer.h termchar.h termopts.h termhooks.h cm.h \
blockinput.h atimer.h coding.h msdos.h nsterm.h composite.h \
keyboard.h lisp.h globals.h $(config_h) character.h xgselect.h sysselect.h \
../lib/unistd.h gnutls.h
-regex.o: regex.c syntax.h buffer.h lisp.h globals.h $(config_h) regex.h \
+regex-emacs.o: regex-emacs.c syntax.h buffer.h lisp.h globals.h \
+ $(config_h) regex-emacs.h \
category.h character.h
region-cache.o: region-cache.c buffer.h region-cache.h \
lisp.h globals.h $(config_h)
scroll.o: scroll.c termchar.h dispextern.h frame.h msdos.h keyboard.h \
termhooks.h lisp.h globals.h $(config_h) systime.h coding.h composite.h \
window.h
-search.o: search.c regex.h commands.h buffer.h region-cache.h syntax.h \
+search.o: search.c regex-emacs.h commands.h buffer.h region-cache.h syntax.h \
blockinput.h atimer.h systime.h category.h character.h charset.h \
$(INTERVALS_H) lisp.h globals.h $(config_h)
sound.o: sound.c dispextern.h syssignal.h lisp.h globals.h $(config_h) \
atimer.h systime.h ../lib/unistd.h msdos.h
syntax.o: syntax.c syntax.h buffer.h commands.h category.h character.h \
- keymap.h regex.h $(INTERVALS_H) lisp.h globals.h $(config_h)
+ keymap.h regex-emacs.h $(INTERVALS_H) lisp.h globals.h $(config_h)
sysdep.o: sysdep.c syssignal.h systty.h systime.h syswait.h blockinput.h \
process.h dispextern.h termhooks.h termchar.h termopts.h coding.h \
frame.h atimer.h window.h msdos.h dosfns.h keyboard.h cm.h lisp.h \
#include "composite.h"
#include "dispextern.h"
#include "ptr-bounds.h"
-#include "regex.h"
+#include "regex-emacs.h"
#include "sheap.h"
#include "syntax.h"
#include "sysselect.h"
{
rlim_t lim = rlim.rlim_cur;
- /* Approximate the amount regex.c needs per unit of
+ /* Approximate the amount regex-emacs.c needs per unit of
emacs_re_max_failures, then add 33% to cover the size of the
- smaller stacks that regex.c successively allocates and
+ smaller stacks that regex-emacs.c successively allocates and
discards on its way to the maximum. */
int min_ratio = 20 * sizeof (char *);
int ratio = min_ratio + min_ratio / 3;
lim = newlim;
}
}
- /* If the stack is big enough, let regex.c more of it before
+ /* If the stack is big enough, let regex-emacs.c more of it before
falling back to heap allocation. */
emacs_re_safe_alloca = max
(min (lim - extra, SIZE_MAX) * (min_ratio / ratio),
--- /dev/null
+/* Extended regular expression matching and search library, version
+ 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
+ internationalization features.)
+
+ Copyright (C) 1993-2018 Free Software Foundation, Inc.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <https://www.gnu.org/licenses/>. */
+
+/* TODO:
+ - structure the opcode space into opcode+flag.
+ - merge with glibc's regex.[ch].
+ - replace (succeed_n + jump_n + set_number_at) with something that doesn't
+ need to modify the compiled regexp so that re_match can be reentrant.
+ - get rid of on_failure_jump_smart by doing the optimization in re_comp
+ rather than at run-time, so that re_match can be reentrant.
+*/
+
+/* AIX requires this to be the first thing in the file. */
+#if defined _AIX && !defined REGEX_MALLOC
+ #pragma alloca
+#endif
+
+/* Ignore some GCC warnings for now. This section should go away
+ once the Emacs and Gnulib regex code is merged. */
+#if 4 < __GNUC__ + (5 <= __GNUC_MINOR__) || defined __clang__
+# pragma GCC diagnostic ignored "-Wstrict-overflow"
+# ifndef emacs
+# pragma GCC diagnostic ignored "-Wunused-function"
+# pragma GCC diagnostic ignored "-Wunused-macros"
+# pragma GCC diagnostic ignored "-Wunused-result"
+# pragma GCC diagnostic ignored "-Wunused-variable"
+# endif
+#endif
+
+#if 4 < __GNUC__ + (6 <= __GNUC_MINOR__) && ! defined __clang__
+# pragma GCC diagnostic ignored "-Wunused-but-set-variable"
+#endif
+
+#include <config.h>
+
+#include <stddef.h>
+#include <stdlib.h>
+
+#ifdef emacs
+/* We need this for `regex-emacs.h', and perhaps for the Emacs include
+ files. */
+# include <sys/types.h>
+#endif
+
+/* Whether to use ISO C Amendment 1 wide char functions.
+ Those should not be used for Emacs since it uses its own. */
+#if defined _LIBC
+#define WIDE_CHAR_SUPPORT 1
+#else
+#define WIDE_CHAR_SUPPORT \
+ (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
+#endif
+
+/* For platform which support the ISO C amendment 1 functionality we
+ support user defined character classes. */
+#if WIDE_CHAR_SUPPORT
+/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
+# include <wchar.h>
+# include <wctype.h>
+#endif
+
+#ifdef _LIBC
+/* We have to keep the namespace clean. */
+# define regfree(preg) __regfree (preg)
+# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
+# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
+# define regerror(err_code, preg, errbuf, errbuf_size) \
+ __regerror (err_code, preg, errbuf, errbuf_size)
+# define re_set_registers(bu, re, nu, st, en) \
+ __re_set_registers (bu, re, nu, st, en)
+# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
+ __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
+# define re_match(bufp, string, size, pos, regs) \
+ __re_match (bufp, string, size, pos, regs)
+# define re_search(bufp, string, size, startpos, range, regs) \
+ __re_search (bufp, string, size, startpos, range, regs)
+# define re_compile_pattern(pattern, length, bufp) \
+ __re_compile_pattern (pattern, length, bufp)
+# define re_set_syntax(syntax) __re_set_syntax (syntax)
+# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
+ __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
+# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
+
+/* Make sure we call libc's function even if the user overrides them. */
+# define btowc __btowc
+# define iswctype __iswctype
+# define wctype __wctype
+
+# define WEAK_ALIAS(a,b) weak_alias (a, b)
+
+/* We are also using some library internals. */
+# include <locale/localeinfo.h>
+# include <locale/elem-hash.h>
+# include <langinfo.h>
+#else
+# define WEAK_ALIAS(a,b)
+#endif
+
+/* This is for other GNU distributions with internationalized messages. */
+#if HAVE_LIBINTL_H || defined _LIBC
+# include <libintl.h>
+#else
+# define gettext(msgid) (msgid)
+#endif
+
+#ifndef gettext_noop
+/* This define is so xgettext can find the internationalizable
+ strings. */
+# define gettext_noop(String) String
+#endif
+
+/* The `emacs' switch turns on certain matching commands
+ that make sense only in Emacs. */
+#ifdef emacs
+
+# include "lisp.h"
+# include "character.h"
+# include "buffer.h"
+
+# include "syntax.h"
+# include "category.h"
+
+/* Make syntax table lookup grant data in gl_state. */
+# define SYNTAX(c) syntax_property (c, 1)
+
+# ifdef malloc
+# undef malloc
+# endif
+# define malloc xmalloc
+# ifdef realloc
+# undef realloc
+# endif
+# define realloc xrealloc
+# ifdef free
+# undef free
+# endif
+# define free xfree
+
+/* Converts the pointer to the char to BEG-based offset from the start. */
+# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
+/* Strings are 0-indexed, buffers are 1-indexed; we pun on the boolean
+ result to get the right base index. */
+# define POS_AS_IN_BUFFER(p) \
+ ((p) + (NILP (gl_state.object) || BUFFERP (gl_state.object)))
+
+# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
+# define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
+# define RE_STRING_CHAR(p, multibyte) \
+ (multibyte ? (STRING_CHAR (p)) : (*(p)))
+# define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
+ (multibyte ? (STRING_CHAR_AND_LENGTH (p, len)) : ((len) = 1, *(p)))
+
+# define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
+
+# define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
+
+/* Set C a (possibly converted to multibyte) character before P. P
+ points into a string which is the virtual concatenation of STR1
+ (which ends at END1) or STR2 (which ends at END2). */
+# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
+ do { \
+ if (target_multibyte) \
+ { \
+ re_char *dtemp = (p) == (str2) ? (end1) : (p); \
+ re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
+ while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
+ c = STRING_CHAR (dtemp); \
+ } \
+ else \
+ { \
+ (c = ((p) == (str2) ? (end1) : (p))[-1]); \
+ (c) = RE_CHAR_TO_MULTIBYTE (c); \
+ } \
+ } while (0)
+
+/* Set C a (possibly converted to multibyte) character at P, and set
+ LEN to the byte length of that character. */
+# define GET_CHAR_AFTER(c, p, len) \
+ do { \
+ if (target_multibyte) \
+ (c) = STRING_CHAR_AND_LENGTH (p, len); \
+ else \
+ { \
+ (c) = *p; \
+ len = 1; \
+ (c) = RE_CHAR_TO_MULTIBYTE (c); \
+ } \
+ } while (0)
+
+#else /* not emacs */
+
+/* If we are not linking with Emacs proper,
+ we can't use the relocating allocator
+ even if config.h says that we can. */
+# undef REL_ALLOC
+
+# include <unistd.h>
+
+/* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
+
+static ATTRIBUTE_MALLOC void *
+xmalloc (size_t size)
+{
+ void *val = malloc (size);
+ if (!val && size)
+ {
+ write (STDERR_FILENO, "virtual memory exhausted\n", 25);
+ exit (1);
+ }
+ return val;
+}
+
+static void *
+xrealloc (void *block, size_t size)
+{
+ void *val;
+ /* We must call malloc explicitly when BLOCK is 0, since some
+ reallocs don't do this. */
+ if (! block)
+ val = malloc (size);
+ else
+ val = realloc (block, size);
+ if (!val && size)
+ {
+ write (STDERR_FILENO, "virtual memory exhausted\n", 25);
+ exit (1);
+ }
+ return val;
+}
+
+# ifdef malloc
+# undef malloc
+# endif
+# define malloc xmalloc
+# ifdef realloc
+# undef realloc
+# endif
+# define realloc xrealloc
+
+# include <stdbool.h>
+# include <string.h>
+
+/* Define the syntax stuff for \<, \>, etc. */
+
+/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
+enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
+
+/* Dummy macros for non-Emacs environments. */
+# define MAX_MULTIBYTE_LENGTH 1
+# define RE_MULTIBYTE_P(x) 0
+# define RE_TARGET_MULTIBYTE_P(x) 0
+# define WORD_BOUNDARY_P(c1, c2) (0)
+# define BYTES_BY_CHAR_HEAD(p) (1)
+# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
+# define STRING_CHAR(p) (*(p))
+# define RE_STRING_CHAR(p, multibyte) STRING_CHAR (p)
+# define CHAR_STRING(c, s) (*(s) = (c), 1)
+# define STRING_CHAR_AND_LENGTH(p, actual_len) ((actual_len) = 1, *(p))
+# define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) STRING_CHAR_AND_LENGTH (p, len)
+# define RE_CHAR_TO_MULTIBYTE(c) (c)
+# define RE_CHAR_TO_UNIBYTE(c) (c)
+# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
+ (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
+# define GET_CHAR_AFTER(c, p, len) \
+ (c = *p, len = 1)
+# define CHAR_BYTE8_P(c) (0)
+# define CHAR_LEADING_CODE(c) (c)
+
+#endif /* not emacs */
+
+#ifndef RE_TRANSLATE
+# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
+# define RE_TRANSLATE_P(TBL) (TBL)
+#endif
+\f
+/* Get the interface, including the syntax bits. */
+#include "regex-emacs.h"
+
+/* isalpha etc. are used for the character classes. */
+#include <ctype.h>
+
+#ifdef emacs
+
+/* 1 if C is an ASCII character. */
+# define IS_REAL_ASCII(c) ((c) < 0200)
+
+/* 1 if C is a unibyte character. */
+# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
+
+/* The Emacs definitions should not be directly affected by locales. */
+
+/* In Emacs, these are only used for single-byte characters. */
+# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
+# define ISCNTRL(c) ((c) < ' ')
+# define ISXDIGIT(c) (0 <= char_hexdigit (c))
+
+/* The rest must handle multibyte characters. */
+
+# define ISBLANK(c) (IS_REAL_ASCII (c) \
+ ? ((c) == ' ' || (c) == '\t') \
+ : blankp (c))
+
+# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
+ ? (c) > ' ' && !((c) >= 0177 && (c) <= 0240) \
+ : graphicp (c))
+
+# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
+ ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
+ : printablep (c))
+
+# define ISALNUM(c) (IS_REAL_ASCII (c) \
+ ? (((c) >= 'a' && (c) <= 'z') \
+ || ((c) >= 'A' && (c) <= 'Z') \
+ || ((c) >= '0' && (c) <= '9')) \
+ : alphanumericp (c))
+
+# define ISALPHA(c) (IS_REAL_ASCII (c) \
+ ? (((c) >= 'a' && (c) <= 'z') \
+ || ((c) >= 'A' && (c) <= 'Z')) \
+ : alphabeticp (c))
+
+# define ISLOWER(c) lowercasep (c)
+
+# define ISPUNCT(c) (IS_REAL_ASCII (c) \
+ ? ((c) > ' ' && (c) < 0177 \
+ && !(((c) >= 'a' && (c) <= 'z') \
+ || ((c) >= 'A' && (c) <= 'Z') \
+ || ((c) >= '0' && (c) <= '9'))) \
+ : SYNTAX (c) != Sword)
+
+# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
+
+# define ISUPPER(c) uppercasep (c)
+
+# define ISWORD(c) (SYNTAX (c) == Sword)
+
+#else /* not emacs */
+
+/* 1 if C is an ASCII character. */
+# define IS_REAL_ASCII(c) ((c) < 0200)
+
+/* This distinction is not meaningful, except in Emacs. */
+# define ISUNIBYTE(c) 1
+
+# ifdef isblank
+# define ISBLANK(c) isblank (c)
+# else
+# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
+# endif
+# ifdef isgraph
+# define ISGRAPH(c) isgraph (c)
+# else
+# define ISGRAPH(c) (isprint (c) && !isspace (c))
+# endif
+
+/* Solaris defines ISPRINT so we must undefine it first. */
+# undef ISPRINT
+# define ISPRINT(c) isprint (c)
+# define ISDIGIT(c) isdigit (c)
+# define ISALNUM(c) isalnum (c)
+# define ISALPHA(c) isalpha (c)
+# define ISCNTRL(c) iscntrl (c)
+# define ISLOWER(c) islower (c)
+# define ISPUNCT(c) ispunct (c)
+# define ISSPACE(c) isspace (c)
+# define ISUPPER(c) isupper (c)
+# define ISXDIGIT(c) isxdigit (c)
+
+# define ISWORD(c) ISALPHA (c)
+
+# ifdef _tolower
+# define TOLOWER(c) _tolower (c)
+# else
+# define TOLOWER(c) tolower (c)
+# endif
+
+/* How many characters in the character set. */
+# define CHAR_SET_SIZE 256
+
+# ifdef SYNTAX_TABLE
+
+extern char *re_syntax_table;
+
+# else /* not SYNTAX_TABLE */
+
+static char re_syntax_table[CHAR_SET_SIZE];
+
+static void
+init_syntax_once (void)
+{
+ register int c;
+ static int done = 0;
+
+ if (done)
+ return;
+
+ memset (re_syntax_table, 0, sizeof re_syntax_table);
+
+ for (c = 0; c < CHAR_SET_SIZE; ++c)
+ if (ISALNUM (c))
+ re_syntax_table[c] = Sword;
+
+ re_syntax_table['_'] = Ssymbol;
+
+ done = 1;
+}
+
+# endif /* not SYNTAX_TABLE */
+
+# define SYNTAX(c) re_syntax_table[(c)]
+
+#endif /* not emacs */
+\f
+#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
+\f
+/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
+ use `alloca' instead of `malloc'. This is because using malloc in
+ re_search* or re_match* could cause memory leaks when C-g is used
+ in Emacs (note that SAFE_ALLOCA could also call malloc, but does so
+ via `record_xmalloc' which uses `unwind_protect' to ensure the
+ memory is freed even in case of non-local exits); also, malloc is
+ slower and causes storage fragmentation. On the other hand, malloc
+ is more portable, and easier to debug.
+
+ Because we sometimes use alloca, some routines have to be macros,
+ not functions -- `alloca'-allocated space disappears at the end of the
+ function it is called in. */
+
+#ifdef REGEX_MALLOC
+
+# define REGEX_ALLOCATE malloc
+# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
+# define REGEX_FREE free
+
+#else /* not REGEX_MALLOC */
+
+# ifdef emacs
+/* This may be adjusted in main(), if the stack is successfully grown. */
+ptrdiff_t emacs_re_safe_alloca = MAX_ALLOCA;
+/* Like USE_SAFE_ALLOCA, but use emacs_re_safe_alloca. */
+# define REGEX_USE_SAFE_ALLOCA \
+ ptrdiff_t sa_avail = emacs_re_safe_alloca; \
+ ptrdiff_t sa_count = SPECPDL_INDEX ()
+
+# define REGEX_SAFE_FREE() SAFE_FREE ()
+# define REGEX_ALLOCATE SAFE_ALLOCA
+# else
+# include <alloca.h>
+# define REGEX_ALLOCATE alloca
+# endif
+
+/* Assumes a `char *destination' variable. */
+# define REGEX_REALLOCATE(source, osize, nsize) \
+ (destination = REGEX_ALLOCATE (nsize), \
+ memcpy (destination, source, osize))
+
+/* No need to do anything to free, after alloca. */
+# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
+
+#endif /* not REGEX_MALLOC */
+
+#ifndef REGEX_USE_SAFE_ALLOCA
+# define REGEX_USE_SAFE_ALLOCA ((void) 0)
+# define REGEX_SAFE_FREE() ((void) 0)
+#endif
+
+/* Define how to allocate the failure stack. */
+
+#if defined REL_ALLOC && defined REGEX_MALLOC
+
+# define REGEX_ALLOCATE_STACK(size) \
+ r_alloc (&failure_stack_ptr, (size))
+# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
+ r_re_alloc (&failure_stack_ptr, (nsize))
+# define REGEX_FREE_STACK(ptr) \
+ r_alloc_free (&failure_stack_ptr)
+
+#else /* not using relocating allocator */
+
+# define REGEX_ALLOCATE_STACK(size) REGEX_ALLOCATE (size)
+# define REGEX_REALLOCATE_STACK(source, o, n) REGEX_REALLOCATE (source, o, n)
+# define REGEX_FREE_STACK(ptr) REGEX_FREE (ptr)
+
+#endif /* not using relocating allocator */
+
+
+/* True if `size1' is non-NULL and PTR is pointing anywhere inside
+ `string1' or just past its end. This works if PTR is NULL, which is
+ a good thing. */
+#define FIRST_STRING_P(ptr) \
+ (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
+
+/* (Re)Allocate N items of type T using malloc, or fail. */
+#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
+#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
+#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
+
+#define BYTEWIDTH 8 /* In bits. */
+
+#ifndef emacs
+# undef max
+# undef min
+# define max(a, b) ((a) > (b) ? (a) : (b))
+# define min(a, b) ((a) < (b) ? (a) : (b))
+#endif
+
+/* Type of source-pattern and string chars. */
+typedef const unsigned char re_char;
+
+typedef char boolean;
+
+static regoff_t re_match_2_internal (struct re_pattern_buffer *bufp,
+ re_char *string1, size_t size1,
+ re_char *string2, size_t size2,
+ ssize_t pos,
+ struct re_registers *regs,
+ ssize_t stop);
+\f
+/* These are the command codes that appear in compiled regular
+ expressions. Some opcodes are followed by argument bytes. A
+ command code can specify any interpretation whatsoever for its
+ arguments. Zero bytes may appear in the compiled regular expression. */
+
+typedef enum
+{
+ no_op = 0,
+
+ /* Succeed right away--no more backtracking. */
+ succeed,
+
+ /* Followed by one byte giving n, then by n literal bytes. */
+ exactn,
+
+ /* Matches any (more or less) character. */
+ anychar,
+
+ /* Matches any one char belonging to specified set. First
+ following byte is number of bitmap bytes. Then come bytes
+ for a bitmap saying which chars are in. Bits in each byte
+ are ordered low-bit-first. A character is in the set if its
+ bit is 1. A character too large to have a bit in the map is
+ automatically not in the set.
+
+ If the length byte has the 0x80 bit set, then that stuff
+ is followed by a range table:
+ 2 bytes of flags for character sets (low 8 bits, high 8 bits)
+ See RANGE_TABLE_WORK_BITS below.
+ 2 bytes, the number of pairs that follow (upto 32767)
+ pairs, each 2 multibyte characters,
+ each multibyte character represented as 3 bytes. */
+ charset,
+
+ /* Same parameters as charset, but match any character that is
+ not one of those specified. */
+ charset_not,
+
+ /* Start remembering the text that is matched, for storing in a
+ register. Followed by one byte with the register number, in
+ the range 0 to one less than the pattern buffer's re_nsub
+ field. */
+ start_memory,
+
+ /* Stop remembering the text that is matched and store it in a
+ memory register. Followed by one byte with the register
+ number, in the range 0 to one less than `re_nsub' in the
+ pattern buffer. */
+ stop_memory,
+
+ /* Match a duplicate of something remembered. Followed by one
+ byte containing the register number. */
+ duplicate,
+
+ /* Fail unless at beginning of line. */
+ begline,
+
+ /* Fail unless at end of line. */
+ endline,
+
+ /* Succeeds if at beginning of buffer (if emacs) or at beginning
+ of string to be matched (if not). */
+ begbuf,
+
+ /* Analogously, for end of buffer/string. */
+ endbuf,
+
+ /* Followed by two byte relative address to which to jump. */
+ jump,
+
+ /* Followed by two-byte relative address of place to resume at
+ in case of failure. */
+ on_failure_jump,
+
+ /* Like on_failure_jump, but pushes a placeholder instead of the
+ current string position when executed. */
+ on_failure_keep_string_jump,
+
+ /* Just like `on_failure_jump', except that it checks that we
+ don't get stuck in an infinite loop (matching an empty string
+ indefinitely). */
+ on_failure_jump_loop,
+
+ /* Just like `on_failure_jump_loop', except that it checks for
+ a different kind of loop (the kind that shows up with non-greedy
+ operators). This operation has to be immediately preceded
+ by a `no_op'. */
+ on_failure_jump_nastyloop,
+
+ /* A smart `on_failure_jump' used for greedy * and + operators.
+ It analyzes the loop before which it is put and if the
+ loop does not require backtracking, it changes itself to
+ `on_failure_keep_string_jump' and short-circuits the loop,
+ else it just defaults to changing itself into `on_failure_jump'.
+ It assumes that it is pointing to just past a `jump'. */
+ on_failure_jump_smart,
+
+ /* Followed by two-byte relative address and two-byte number n.
+ After matching N times, jump to the address upon failure.
+ Does not work if N starts at 0: use on_failure_jump_loop
+ instead. */
+ succeed_n,
+
+ /* Followed by two-byte relative address, and two-byte number n.
+ Jump to the address N times, then fail. */
+ jump_n,
+
+ /* Set the following two-byte relative address to the
+ subsequent two-byte number. The address *includes* the two
+ bytes of number. */
+ set_number_at,
+
+ wordbeg, /* Succeeds if at word beginning. */
+ wordend, /* Succeeds if at word end. */
+
+ wordbound, /* Succeeds if at a word boundary. */
+ notwordbound, /* Succeeds if not at a word boundary. */
+
+ symbeg, /* Succeeds if at symbol beginning. */
+ symend, /* Succeeds if at symbol end. */
+
+ /* Matches any character whose syntax is specified. Followed by
+ a byte which contains a syntax code, e.g., Sword. */
+ syntaxspec,
+
+ /* Matches any character whose syntax is not that specified. */
+ notsyntaxspec
+
+#ifdef emacs
+ , at_dot, /* Succeeds if at point. */
+
+ /* Matches any character whose category-set contains the specified
+ category. The operator is followed by a byte which contains a
+ category code (mnemonic ASCII character). */
+ categoryspec,
+
+ /* Matches any character whose category-set does not contain the
+ specified category. The operator is followed by a byte which
+ contains the category code (mnemonic ASCII character). */
+ notcategoryspec
+#endif /* emacs */
+} re_opcode_t;
+\f
+/* Common operations on the compiled pattern. */
+
+/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
+
+#define STORE_NUMBER(destination, number) \
+ do { \
+ (destination)[0] = (number) & 0377; \
+ (destination)[1] = (number) >> 8; \
+ } while (0)
+
+/* Same as STORE_NUMBER, except increment DESTINATION to
+ the byte after where the number is stored. Therefore, DESTINATION
+ must be an lvalue. */
+
+#define STORE_NUMBER_AND_INCR(destination, number) \
+ do { \
+ STORE_NUMBER (destination, number); \
+ (destination) += 2; \
+ } while (0)
+
+/* Put into DESTINATION a number stored in two contiguous bytes starting
+ at SOURCE. */
+
+#define EXTRACT_NUMBER(destination, source) \
+ ((destination) = extract_number (source))
+
+static int
+extract_number (re_char *source)
+{
+ unsigned leading_byte = SIGN_EXTEND_CHAR (source[1]);
+ return (leading_byte << 8) + source[0];
+}
+
+/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
+ SOURCE must be an lvalue. */
+
+#define EXTRACT_NUMBER_AND_INCR(destination, source) \
+ ((destination) = extract_number_and_incr (&source))
+
+static int
+extract_number_and_incr (re_char **source)
+{
+ int num = extract_number (*source);
+ *source += 2;
+ return num;
+}
+\f
+/* Store a multibyte character in three contiguous bytes starting
+ DESTINATION, and increment DESTINATION to the byte after where the
+ character is stored. Therefore, DESTINATION must be an lvalue. */
+
+#define STORE_CHARACTER_AND_INCR(destination, character) \
+ do { \
+ (destination)[0] = (character) & 0377; \
+ (destination)[1] = ((character) >> 8) & 0377; \
+ (destination)[2] = (character) >> 16; \
+ (destination) += 3; \
+ } while (0)
+
+/* Put into DESTINATION a character stored in three contiguous bytes
+ starting at SOURCE. */
+
+#define EXTRACT_CHARACTER(destination, source) \
+ do { \
+ (destination) = ((source)[0] \
+ | ((source)[1] << 8) \
+ | ((source)[2] << 16)); \
+ } while (0)
+
+
+/* Macros for charset. */
+
+/* Size of bitmap of charset P in bytes. P is a start of charset,
+ i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
+#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
+
+/* Nonzero if charset P has range table. */
+#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
+
+/* Return the address of range table of charset P. But not the start
+ of table itself, but the before where the number of ranges is
+ stored. `2 +' means to skip re_opcode_t and size of bitmap,
+ and the 2 bytes of flags at the start of the range table. */
+#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
+
+#ifdef emacs
+/* Extract the bit flags that start a range table. */
+#define CHARSET_RANGE_TABLE_BITS(p) \
+ ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
+ + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
+#endif
+
+/* Return the address of end of RANGE_TABLE. COUNT is number of
+ ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
+ is start of range and end of range. `* 3' is size of each start
+ and end. */
+#define CHARSET_RANGE_TABLE_END(range_table, count) \
+ ((range_table) + (count) * 2 * 3)
+\f
+/* If DEBUG is defined, Regex prints many voluminous messages about what
+ it is doing (if the variable `debug' is nonzero). If linked with the
+ main program in `iregex.c', you can enter patterns and strings
+ interactively. And if linked with the main program in `main.c' and
+ the other test files, you can run the already-written tests. */
+
+#ifdef DEBUG
+
+/* We use standard I/O for debugging. */
+# include <stdio.h>
+
+/* It is useful to test things that ``must'' be true when debugging. */
+# include <assert.h>
+
+static int debug = -100000;
+
+# define DEBUG_STATEMENT(e) e
+# define DEBUG_PRINT(...) if (debug > 0) printf (__VA_ARGS__)
+# define DEBUG_COMPILES_ARGUMENTS
+# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
+ if (debug > 0) print_partial_compiled_pattern (s, e)
+# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
+ if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
+
+
+/* Print the fastmap in human-readable form. */
+
+static void
+print_fastmap (char *fastmap)
+{
+ unsigned was_a_range = 0;
+ unsigned i = 0;
+
+ while (i < (1 << BYTEWIDTH))
+ {
+ if (fastmap[i++])
+ {
+ was_a_range = 0;
+ putchar (i - 1);
+ while (i < (1 << BYTEWIDTH) && fastmap[i])
+ {
+ was_a_range = 1;
+ i++;
+ }
+ if (was_a_range)
+ {
+ printf ("-");
+ putchar (i - 1);
+ }
+ }
+ }
+ putchar ('\n');
+}
+
+
+/* Print a compiled pattern string in human-readable form, starting at
+ the START pointer into it and ending just before the pointer END. */
+
+static void
+print_partial_compiled_pattern (re_char *start, re_char *end)
+{
+ int mcnt, mcnt2;
+ re_char *p = start;
+ re_char *pend = end;
+
+ if (start == NULL)
+ {
+ fprintf (stderr, "(null)\n");
+ return;
+ }
+
+ /* Loop over pattern commands. */
+ while (p < pend)
+ {
+ fprintf (stderr, "%td:\t", p - start);
+
+ switch ((re_opcode_t) *p++)
+ {
+ case no_op:
+ fprintf (stderr, "/no_op");
+ break;
+
+ case succeed:
+ fprintf (stderr, "/succeed");
+ break;
+
+ case exactn:
+ mcnt = *p++;
+ fprintf (stderr, "/exactn/%d", mcnt);
+ do
+ {
+ fprintf (stderr, "/%c", *p++);
+ }
+ while (--mcnt);
+ break;
+
+ case start_memory:
+ fprintf (stderr, "/start_memory/%d", *p++);
+ break;
+
+ case stop_memory:
+ fprintf (stderr, "/stop_memory/%d", *p++);
+ break;
+
+ case duplicate:
+ fprintf (stderr, "/duplicate/%d", *p++);
+ break;
+
+ case anychar:
+ fprintf (stderr, "/anychar");
+ break;
+
+ case charset:
+ case charset_not:
+ {
+ register int c, last = -100;
+ register int in_range = 0;
+ int length = CHARSET_BITMAP_SIZE (p - 1);
+ int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
+
+ fprintf (stderr, "/charset [%s",
+ (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
+
+ if (p + *p >= pend)
+ fprintf (stderr, " !extends past end of pattern! ");
+
+ for (c = 0; c < 256; c++)
+ if (c / 8 < length
+ && (p[1 + (c/8)] & (1 << (c % 8))))
+ {
+ /* Are we starting a range? */
+ if (last + 1 == c && ! in_range)
+ {
+ fprintf (stderr, "-");
+ in_range = 1;
+ }
+ /* Have we broken a range? */
+ else if (last + 1 != c && in_range)
+ {
+ fprintf (stderr, "%c", last);
+ in_range = 0;
+ }
+
+ if (! in_range)
+ fprintf (stderr, "%c", c);
+
+ last = c;
+ }
+
+ if (in_range)
+ fprintf (stderr, "%c", last);
+
+ fprintf (stderr, "]");
+
+ p += 1 + length;
+
+ if (has_range_table)
+ {
+ int count;
+ fprintf (stderr, "has-range-table");
+
+ /* ??? Should print the range table; for now, just skip it. */
+ p += 2; /* skip range table bits */
+ EXTRACT_NUMBER_AND_INCR (count, p);
+ p = CHARSET_RANGE_TABLE_END (p, count);
+ }
+ }
+ break;
+
+ case begline:
+ fprintf (stderr, "/begline");
+ break;
+
+ case endline:
+ fprintf (stderr, "/endline");
+ break;
+
+ case on_failure_jump:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ fprintf (stderr, "/on_failure_jump to %td", p + mcnt - start);
+ break;
+
+ case on_failure_keep_string_jump:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ fprintf (stderr, "/on_failure_keep_string_jump to %td",
+ p + mcnt - start);
+ break;
+
+ case on_failure_jump_nastyloop:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ fprintf (stderr, "/on_failure_jump_nastyloop to %td",
+ p + mcnt - start);
+ break;
+
+ case on_failure_jump_loop:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ fprintf (stderr, "/on_failure_jump_loop to %td",
+ p + mcnt - start);
+ break;
+
+ case on_failure_jump_smart:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ fprintf (stderr, "/on_failure_jump_smart to %td",
+ p + mcnt - start);
+ break;
+
+ case jump:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ fprintf (stderr, "/jump to %td", p + mcnt - start);
+ break;
+
+ case succeed_n:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ EXTRACT_NUMBER_AND_INCR (mcnt2, p);
+ fprintf (stderr, "/succeed_n to %td, %d times",
+ p - 2 + mcnt - start, mcnt2);
+ break;
+
+ case jump_n:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ EXTRACT_NUMBER_AND_INCR (mcnt2, p);
+ fprintf (stderr, "/jump_n to %td, %d times",
+ p - 2 + mcnt - start, mcnt2);
+ break;
+
+ case set_number_at:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ EXTRACT_NUMBER_AND_INCR (mcnt2, p);
+ fprintf (stderr, "/set_number_at location %td to %d",
+ p - 2 + mcnt - start, mcnt2);
+ break;
+
+ case wordbound:
+ fprintf (stderr, "/wordbound");
+ break;
+
+ case notwordbound:
+ fprintf (stderr, "/notwordbound");
+ break;
+
+ case wordbeg:
+ fprintf (stderr, "/wordbeg");
+ break;
+
+ case wordend:
+ fprintf (stderr, "/wordend");
+ break;
+
+ case symbeg:
+ fprintf (stderr, "/symbeg");
+ break;
+
+ case symend:
+ fprintf (stderr, "/symend");
+ break;
+
+ case syntaxspec:
+ fprintf (stderr, "/syntaxspec");
+ mcnt = *p++;
+ fprintf (stderr, "/%d", mcnt);
+ break;
+
+ case notsyntaxspec:
+ fprintf (stderr, "/notsyntaxspec");
+ mcnt = *p++;
+ fprintf (stderr, "/%d", mcnt);
+ break;
+
+# ifdef emacs
+ case at_dot:
+ fprintf (stderr, "/at_dot");
+ break;
+
+ case categoryspec:
+ fprintf (stderr, "/categoryspec");
+ mcnt = *p++;
+ fprintf (stderr, "/%d", mcnt);
+ break;
+
+ case notcategoryspec:
+ fprintf (stderr, "/notcategoryspec");
+ mcnt = *p++;
+ fprintf (stderr, "/%d", mcnt);
+ break;
+# endif /* emacs */
+
+ case begbuf:
+ fprintf (stderr, "/begbuf");
+ break;
+
+ case endbuf:
+ fprintf (stderr, "/endbuf");
+ break;
+
+ default:
+ fprintf (stderr, "?%d", *(p-1));
+ }
+
+ fprintf (stderr, "\n");
+ }
+
+ fprintf (stderr, "%td:\tend of pattern.\n", p - start);
+}
+
+
+static void
+print_compiled_pattern (struct re_pattern_buffer *bufp)
+{
+ re_char *buffer = bufp->buffer;
+
+ print_partial_compiled_pattern (buffer, buffer + bufp->used);
+ printf ("%ld bytes used/%ld bytes allocated.\n",
+ bufp->used, bufp->allocated);
+
+ if (bufp->fastmap_accurate && bufp->fastmap)
+ {
+ printf ("fastmap: ");
+ print_fastmap (bufp->fastmap);
+ }
+
+ printf ("re_nsub: %zu\t", bufp->re_nsub);
+ printf ("regs_alloc: %d\t", bufp->regs_allocated);
+ printf ("can_be_null: %d\t", bufp->can_be_null);
+ printf ("no_sub: %d\t", bufp->no_sub);
+ printf ("not_bol: %d\t", bufp->not_bol);
+ printf ("not_eol: %d\t", bufp->not_eol);
+#ifndef emacs
+ printf ("syntax: %lx\n", bufp->syntax);
+#endif
+ fflush (stdout);
+ /* Perhaps we should print the translate table? */
+}
+
+
+static void
+print_double_string (re_char *where, re_char *string1, ssize_t size1,
+ re_char *string2, ssize_t size2)
+{
+ ssize_t this_char;
+
+ if (where == NULL)
+ printf ("(null)");
+ else
+ {
+ if (FIRST_STRING_P (where))
+ {
+ for (this_char = where - string1; this_char < size1; this_char++)
+ putchar (string1[this_char]);
+
+ where = string2;
+ }
+
+ for (this_char = where - string2; this_char < size2; this_char++)
+ putchar (string2[this_char]);
+ }
+}
+
+#else /* not DEBUG */
+
+# undef assert
+# define assert(e)
+
+# define DEBUG_STATEMENT(e)
+# define DEBUG_PRINT(...)
+# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
+# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
+
+#endif /* not DEBUG */
+\f
+#ifndef emacs
+
+/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
+ also be assigned to arbitrarily: each pattern buffer stores its own
+ syntax, so it can be changed between regex compilations. */
+/* This has no initializer because initialized variables in Emacs
+ become read-only after dumping. */
+reg_syntax_t re_syntax_options;
+
+
+/* Specify the precise syntax of regexps for compilation. This provides
+ for compatibility for various utilities which historically have
+ different, incompatible syntaxes.
+
+ The argument SYNTAX is a bit mask comprised of the various bits
+ defined in regex-emacs.h. We return the old syntax. */
+
+reg_syntax_t
+re_set_syntax (reg_syntax_t syntax)
+{
+ reg_syntax_t ret = re_syntax_options;
+
+ re_syntax_options = syntax;
+ return ret;
+}
+WEAK_ALIAS (__re_set_syntax, re_set_syntax)
+
+#endif
+\f
+/* This table gives an error message for each of the error codes listed
+ in regex-emacs.h. Obviously the order here has to be same as there.
+ POSIX doesn't require that we do anything for REG_NOERROR,
+ but why not be nice? */
+
+static const char *re_error_msgid[] =
+ {
+ gettext_noop ("Success"), /* REG_NOERROR */
+ gettext_noop ("No match"), /* REG_NOMATCH */
+ gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
+ gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
+ gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
+ gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
+ gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
+ gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
+ gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
+ gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
+ gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
+ gettext_noop ("Invalid range end"), /* REG_ERANGE */
+ gettext_noop ("Memory exhausted"), /* REG_ESPACE */
+ gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
+ gettext_noop ("Premature end of regular expression"), /* REG_EEND */
+ gettext_noop ("Regular expression too big"), /* REG_ESIZE */
+ gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
+ gettext_noop ("Range striding over charsets"), /* REG_ERANGEX */
+ gettext_noop ("Invalid content of \\{\\}, repetitions too big") /* REG_ESIZEBR */
+ };
+\f
+/* Whether to allocate memory during matching. */
+
+/* Define MATCH_MAY_ALLOCATE to allow the searching and matching
+ functions allocate memory for the failure stack and registers.
+ Normally should be defined, because otherwise searching and
+ matching routines will have much smaller memory resources at their
+ disposal, and therefore might fail to handle complex regexps.
+ Therefore undefine MATCH_MAY_ALLOCATE only in the following
+ exceptional situations:
+
+ . When running on a system where memory is at premium.
+ . When alloca cannot be used at all, perhaps due to bugs in
+ its implementation, or its being unavailable, or due to a
+ very small stack size. This requires to define REGEX_MALLOC
+ to use malloc instead, which in turn could lead to memory
+ leaks if search is interrupted by a signal. (For these
+ reasons, defining REGEX_MALLOC when building Emacs
+ automatically undefines MATCH_MAY_ALLOCATE, but outside
+ Emacs you may not care about memory leaks.) If you want to
+ prevent the memory leaks, undefine MATCH_MAY_ALLOCATE.
+ . When code that calls the searching and matching functions
+ cannot allow memory allocation, for whatever reasons. */
+
+/* Normally, this is fine. */
+#define MATCH_MAY_ALLOCATE
+
+/* The match routines may not allocate if (1) they would do it with malloc
+ and (2) it's not safe for them to use malloc.
+ Note that if REL_ALLOC is defined, matching would not use malloc for the
+ failure stack, but we would still use it for the register vectors;
+ so REL_ALLOC should not affect this. */
+#if defined REGEX_MALLOC && defined emacs
+# undef MATCH_MAY_ALLOCATE
+#endif
+
+/* While regex matching of a single compiled pattern isn't reentrant
+ (because we compile regexes to bytecode programs, and the bytecode
+ programs are self-modifying), the regex machinery must nevertheless
+ be reentrant with respect to _different_ patterns, and we do that
+ by avoiding global variables and using MATCH_MAY_ALLOCATE. */
+#if !defined MATCH_MAY_ALLOCATE && defined emacs
+# error "Emacs requires MATCH_MAY_ALLOCATE"
+#endif
+
+\f
+/* Failure stack declarations and macros; both re_compile_fastmap and
+ re_match_2 use a failure stack. These have to be macros because of
+ REGEX_ALLOCATE_STACK. */
+
+
+/* Approximate number of failure points for which to initially allocate space
+ when matching. If this number is exceeded, we allocate more
+ space, so it is not a hard limit. */
+#ifndef INIT_FAILURE_ALLOC
+# define INIT_FAILURE_ALLOC 20
+#endif
+
+/* Roughly the maximum number of failure points on the stack. Would be
+ exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
+ This is a variable only so users of regex can assign to it; we never
+ change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
+ before using it, so it should probably be a byte-count instead. */
+# if defined MATCH_MAY_ALLOCATE
+/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
+ whose default stack limit is 2mb. In order for a larger
+ value to work reliably, you have to try to make it accord
+ with the process stack limit. */
+size_t emacs_re_max_failures = 40000;
+# else
+size_t emacs_re_max_failures = 4000;
+# endif
+
+union fail_stack_elt
+{
+ re_char *pointer;
+ /* This should be the biggest `int' that's no bigger than a pointer. */
+ long integer;
+};
+
+typedef union fail_stack_elt fail_stack_elt_t;
+
+typedef struct
+{
+ fail_stack_elt_t *stack;
+ size_t size;
+ size_t avail; /* Offset of next open position. */
+ size_t frame; /* Offset of the cur constructed frame. */
+} fail_stack_type;
+
+#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
+
+
+/* Define macros to initialize and free the failure stack.
+ Do `return -2' if the alloc fails. */
+
+#ifdef MATCH_MAY_ALLOCATE
+# define INIT_FAIL_STACK() \
+ do { \
+ fail_stack.stack = \
+ REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
+ * sizeof (fail_stack_elt_t)); \
+ \
+ if (fail_stack.stack == NULL) \
+ return -2; \
+ \
+ fail_stack.size = INIT_FAILURE_ALLOC; \
+ fail_stack.avail = 0; \
+ fail_stack.frame = 0; \
+ } while (0)
+#else
+# define INIT_FAIL_STACK() \
+ do { \
+ fail_stack.avail = 0; \
+ fail_stack.frame = 0; \
+ } while (0)
+
+# define RETALLOC_IF(addr, n, t) \
+ if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
+#endif
+
+
+/* Double the size of FAIL_STACK, up to a limit
+ which allows approximately `emacs_re_max_failures' items.
+
+ Return 1 if succeeds, and 0 if either ran out of memory
+ allocating space for it or it was already too large.
+
+ REGEX_REALLOCATE_STACK requires `destination' be declared. */
+
+/* Factor to increase the failure stack size by
+ when we increase it.
+ This used to be 2, but 2 was too wasteful
+ because the old discarded stacks added up to as much space
+ were as ultimate, maximum-size stack. */
+#define FAIL_STACK_GROWTH_FACTOR 4
+
+#define GROW_FAIL_STACK(fail_stack) \
+ (((fail_stack).size >= emacs_re_max_failures * TYPICAL_FAILURE_SIZE) \
+ ? 0 \
+ : ((fail_stack).stack \
+ = REGEX_REALLOCATE_STACK ((fail_stack).stack, \
+ (fail_stack).size * sizeof (fail_stack_elt_t), \
+ min (emacs_re_max_failures * TYPICAL_FAILURE_SIZE, \
+ ((fail_stack).size * FAIL_STACK_GROWTH_FACTOR)) \
+ * sizeof (fail_stack_elt_t)), \
+ \
+ (fail_stack).stack == NULL \
+ ? 0 \
+ : ((fail_stack).size \
+ = (min (emacs_re_max_failures * TYPICAL_FAILURE_SIZE, \
+ ((fail_stack).size * FAIL_STACK_GROWTH_FACTOR))), \
+ 1)))
+
+
+/* Push a pointer value onto the failure stack.
+ Assumes the variable `fail_stack'. Probably should only
+ be called from within `PUSH_FAILURE_POINT'. */
+#define PUSH_FAILURE_POINTER(item) \
+ fail_stack.stack[fail_stack.avail++].pointer = (item)
+
+/* This pushes an integer-valued item onto the failure stack.
+ Assumes the variable `fail_stack'. Probably should only
+ be called from within `PUSH_FAILURE_POINT'. */
+#define PUSH_FAILURE_INT(item) \
+ fail_stack.stack[fail_stack.avail++].integer = (item)
+
+/* These POP... operations complement the PUSH... operations.
+ All assume that `fail_stack' is nonempty. */
+#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
+#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
+
+/* Individual items aside from the registers. */
+#define NUM_NONREG_ITEMS 3
+
+/* Used to examine the stack (to detect infinite loops). */
+#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
+#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
+#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
+#define TOP_FAILURE_HANDLE() fail_stack.frame
+
+
+#define ENSURE_FAIL_STACK(space) \
+while (REMAINING_AVAIL_SLOTS <= space) { \
+ if (!GROW_FAIL_STACK (fail_stack)) \
+ return -2; \
+ DEBUG_PRINT ("\n Doubled stack; size now: %zd\n", (fail_stack).size);\
+ DEBUG_PRINT (" slots available: %zd\n", REMAINING_AVAIL_SLOTS);\
+}
+
+/* Push register NUM onto the stack. */
+#define PUSH_FAILURE_REG(num) \
+do { \
+ char *destination; \
+ long n = num; \
+ ENSURE_FAIL_STACK(3); \
+ DEBUG_PRINT (" Push reg %ld (spanning %p -> %p)\n", \
+ n, regstart[n], regend[n]); \
+ PUSH_FAILURE_POINTER (regstart[n]); \
+ PUSH_FAILURE_POINTER (regend[n]); \
+ PUSH_FAILURE_INT (n); \
+} while (0)
+
+/* Change the counter's value to VAL, but make sure that it will
+ be reset when backtracking. */
+#define PUSH_NUMBER(ptr,val) \
+do { \
+ char *destination; \
+ int c; \
+ ENSURE_FAIL_STACK(3); \
+ EXTRACT_NUMBER (c, ptr); \
+ DEBUG_PRINT (" Push number %p = %d -> %d\n", ptr, c, val); \
+ PUSH_FAILURE_INT (c); \
+ PUSH_FAILURE_POINTER (ptr); \
+ PUSH_FAILURE_INT (-1); \
+ STORE_NUMBER (ptr, val); \
+} while (0)
+
+/* Pop a saved register off the stack. */
+#define POP_FAILURE_REG_OR_COUNT() \
+do { \
+ long pfreg = POP_FAILURE_INT (); \
+ if (pfreg == -1) \
+ { \
+ /* It's a counter. */ \
+ /* Here, we discard `const', making re_match non-reentrant. */ \
+ unsigned char *ptr = (unsigned char *) POP_FAILURE_POINTER (); \
+ pfreg = POP_FAILURE_INT (); \
+ STORE_NUMBER (ptr, pfreg); \
+ DEBUG_PRINT (" Pop counter %p = %ld\n", ptr, pfreg); \
+ } \
+ else \
+ { \
+ regend[pfreg] = POP_FAILURE_POINTER (); \
+ regstart[pfreg] = POP_FAILURE_POINTER (); \
+ DEBUG_PRINT (" Pop reg %ld (spanning %p -> %p)\n", \
+ pfreg, regstart[pfreg], regend[pfreg]); \
+ } \
+} while (0)
+
+/* Check that we are not stuck in an infinite loop. */
+#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
+do { \
+ ssize_t failure = TOP_FAILURE_HANDLE (); \
+ /* Check for infinite matching loops */ \
+ while (failure > 0 \
+ && (FAILURE_STR (failure) == string_place \
+ || FAILURE_STR (failure) == NULL)) \
+ { \
+ assert (FAILURE_PAT (failure) >= bufp->buffer \
+ && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
+ if (FAILURE_PAT (failure) == pat_cur) \
+ { \
+ cycle = 1; \
+ break; \
+ } \
+ DEBUG_PRINT (" Other pattern: %p\n", FAILURE_PAT (failure)); \
+ failure = NEXT_FAILURE_HANDLE(failure); \
+ } \
+ DEBUG_PRINT (" Other string: %p\n", FAILURE_STR (failure)); \
+} while (0)
+
+/* Push the information about the state we will need
+ if we ever fail back to it.
+
+ Requires variables fail_stack, regstart, regend and
+ num_regs be declared. GROW_FAIL_STACK requires `destination' be
+ declared.
+
+ Does `return FAILURE_CODE' if runs out of memory. */
+
+#define PUSH_FAILURE_POINT(pattern, string_place) \
+do { \
+ char *destination; \
+ /* Must be int, so when we don't save any registers, the arithmetic \
+ of 0 + -1 isn't done as unsigned. */ \
+ \
+ DEBUG_STATEMENT (nfailure_points_pushed++); \
+ DEBUG_PRINT ("\nPUSH_FAILURE_POINT:\n"); \
+ DEBUG_PRINT (" Before push, next avail: %zd\n", (fail_stack).avail); \
+ DEBUG_PRINT (" size: %zd\n", (fail_stack).size);\
+ \
+ ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
+ \
+ DEBUG_PRINT ("\n"); \
+ \
+ DEBUG_PRINT (" Push frame index: %zd\n", fail_stack.frame); \
+ PUSH_FAILURE_INT (fail_stack.frame); \
+ \
+ DEBUG_PRINT (" Push string %p: \"", string_place); \
+ DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
+ DEBUG_PRINT ("\"\n"); \
+ PUSH_FAILURE_POINTER (string_place); \
+ \
+ DEBUG_PRINT (" Push pattern %p: ", pattern); \
+ DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
+ PUSH_FAILURE_POINTER (pattern); \
+ \
+ /* Close the frame by moving the frame pointer past it. */ \
+ fail_stack.frame = fail_stack.avail; \
+} while (0)
+
+/* Estimate the size of data pushed by a typical failure stack entry.
+ An estimate is all we need, because all we use this for
+ is to choose a limit for how big to make the failure stack. */
+/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
+#define TYPICAL_FAILURE_SIZE 20
+
+/* How many items can still be added to the stack without overflowing it. */
+#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
+
+
+/* Pops what PUSH_FAIL_STACK pushes.
+
+ We restore into the parameters, all of which should be lvalues:
+ STR -- the saved data position.
+ PAT -- the saved pattern position.
+ REGSTART, REGEND -- arrays of string positions.
+
+ Also assumes the variables `fail_stack' and (if debugging), `bufp',
+ `pend', `string1', `size1', `string2', and `size2'. */
+
+#define POP_FAILURE_POINT(str, pat) \
+do { \
+ assert (!FAIL_STACK_EMPTY ()); \
+ \
+ /* Remove failure points and point to how many regs pushed. */ \
+ DEBUG_PRINT ("POP_FAILURE_POINT:\n"); \
+ DEBUG_PRINT (" Before pop, next avail: %zd\n", fail_stack.avail); \
+ DEBUG_PRINT (" size: %zd\n", fail_stack.size); \
+ \
+ /* Pop the saved registers. */ \
+ while (fail_stack.frame < fail_stack.avail) \
+ POP_FAILURE_REG_OR_COUNT (); \
+ \
+ pat = POP_FAILURE_POINTER (); \
+ DEBUG_PRINT (" Popping pattern %p: ", pat); \
+ DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
+ \
+ /* If the saved string location is NULL, it came from an \
+ on_failure_keep_string_jump opcode, and we want to throw away the \
+ saved NULL, thus retaining our current position in the string. */ \
+ str = POP_FAILURE_POINTER (); \
+ DEBUG_PRINT (" Popping string %p: \"", str); \
+ DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
+ DEBUG_PRINT ("\"\n"); \
+ \
+ fail_stack.frame = POP_FAILURE_INT (); \
+ DEBUG_PRINT (" Popping frame index: %zd\n", fail_stack.frame); \
+ \
+ assert (fail_stack.avail >= 0); \
+ assert (fail_stack.frame <= fail_stack.avail); \
+ \
+ DEBUG_STATEMENT (nfailure_points_popped++); \
+} while (0) /* POP_FAILURE_POINT */
+
+
+\f
+/* Registers are set to a sentinel when they haven't yet matched. */
+#define REG_UNSET(e) ((e) == NULL)
+\f
+/* Subroutine declarations and macros for regex_compile. */
+
+static reg_errcode_t regex_compile (re_char *pattern, size_t size,
+#ifdef emacs
+ bool posix_backtracking,
+ const char *whitespace_regexp,
+#else
+ reg_syntax_t syntax,
+#endif
+ struct re_pattern_buffer *bufp);
+static void store_op1 (re_opcode_t op, unsigned char *loc, int arg);
+static void store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2);
+static void insert_op1 (re_opcode_t op, unsigned char *loc,
+ int arg, unsigned char *end);
+static void insert_op2 (re_opcode_t op, unsigned char *loc,
+ int arg1, int arg2, unsigned char *end);
+static boolean at_begline_loc_p (re_char *pattern, re_char *p,
+ reg_syntax_t syntax);
+static boolean at_endline_loc_p (re_char *p, re_char *pend,
+ reg_syntax_t syntax);
+static re_char *skip_one_char (re_char *p);
+static int analyze_first (re_char *p, re_char *pend,
+ char *fastmap, const int multibyte);
+
+/* Fetch the next character in the uncompiled pattern, with no
+ translation. */
+#define PATFETCH(c) \
+ do { \
+ int len; \
+ if (p == pend) return REG_EEND; \
+ c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
+ p += len; \
+ } while (0)
+
+
+/* If `translate' is non-null, return translate[D], else just D. We
+ cast the subscript to translate because some data is declared as
+ `char *', to avoid warnings when a string constant is passed. But
+ when we use a character as a subscript we must make it unsigned. */
+#ifndef TRANSLATE
+# define TRANSLATE(d) \
+ (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
+#endif
+
+
+/* Macros for outputting the compiled pattern into `buffer'. */
+
+/* If the buffer isn't allocated when it comes in, use this. */
+#define INIT_BUF_SIZE 32
+
+/* Make sure we have at least N more bytes of space in buffer. */
+#define GET_BUFFER_SPACE(n) \
+ while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
+ EXTEND_BUFFER ()
+
+/* Make sure we have one more byte of buffer space and then add C to it. */
+#define BUF_PUSH(c) \
+ do { \
+ GET_BUFFER_SPACE (1); \
+ *b++ = (unsigned char) (c); \
+ } while (0)
+
+
+/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
+#define BUF_PUSH_2(c1, c2) \
+ do { \
+ GET_BUFFER_SPACE (2); \
+ *b++ = (unsigned char) (c1); \
+ *b++ = (unsigned char) (c2); \
+ } while (0)
+
+
+/* Store a jump with opcode OP at LOC to location TO. We store a
+ relative address offset by the three bytes the jump itself occupies. */
+#define STORE_JUMP(op, loc, to) \
+ store_op1 (op, loc, (to) - (loc) - 3)
+
+/* Likewise, for a two-argument jump. */
+#define STORE_JUMP2(op, loc, to, arg) \
+ store_op2 (op, loc, (to) - (loc) - 3, arg)
+
+/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
+#define INSERT_JUMP(op, loc, to) \
+ insert_op1 (op, loc, (to) - (loc) - 3, b)
+
+/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
+#define INSERT_JUMP2(op, loc, to, arg) \
+ insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
+
+
+/* This is not an arbitrary limit: the arguments which represent offsets
+ into the pattern are two bytes long. So if 2^15 bytes turns out to
+ be too small, many things would have to change. */
+# define MAX_BUF_SIZE (1L << 15)
+
+/* Extend the buffer by twice its current size via realloc and
+ reset the pointers that pointed into the old block to point to the
+ correct places in the new one. If extending the buffer results in it
+ being larger than MAX_BUF_SIZE, then flag memory exhausted. */
+#define EXTEND_BUFFER() \
+ do { \
+ unsigned char *old_buffer = bufp->buffer; \
+ if (bufp->allocated == MAX_BUF_SIZE) \
+ return REG_ESIZE; \
+ bufp->allocated <<= 1; \
+ if (bufp->allocated > MAX_BUF_SIZE) \
+ bufp->allocated = MAX_BUF_SIZE; \
+ ptrdiff_t b_off = b - old_buffer; \
+ ptrdiff_t begalt_off = begalt - old_buffer; \
+ bool fixup_alt_jump_set = !!fixup_alt_jump; \
+ bool laststart_set = !!laststart; \
+ bool pending_exact_set = !!pending_exact; \
+ ptrdiff_t fixup_alt_jump_off, laststart_off, pending_exact_off; \
+ if (fixup_alt_jump_set) fixup_alt_jump_off = fixup_alt_jump - old_buffer; \
+ if (laststart_set) laststart_off = laststart - old_buffer; \
+ if (pending_exact_set) pending_exact_off = pending_exact - old_buffer; \
+ RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
+ if (bufp->buffer == NULL) \
+ return REG_ESPACE; \
+ unsigned char *new_buffer = bufp->buffer; \
+ b = new_buffer + b_off; \
+ begalt = new_buffer + begalt_off; \
+ if (fixup_alt_jump_set) fixup_alt_jump = new_buffer + fixup_alt_jump_off; \
+ if (laststart_set) laststart = new_buffer + laststart_off; \
+ if (pending_exact_set) pending_exact = new_buffer + pending_exact_off; \
+ } while (0)
+
+
+/* Since we have one byte reserved for the register number argument to
+ {start,stop}_memory, the maximum number of groups we can report
+ things about is what fits in that byte. */
+#define MAX_REGNUM 255
+
+/* But patterns can have more than `MAX_REGNUM' registers. We just
+ ignore the excess. */
+typedef int regnum_t;
+
+
+/* Macros for the compile stack. */
+
+/* Since offsets can go either forwards or backwards, this type needs to
+ be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
+/* int may be not enough when sizeof(int) == 2. */
+typedef long pattern_offset_t;
+
+typedef struct
+{
+ pattern_offset_t begalt_offset;
+ pattern_offset_t fixup_alt_jump;
+ pattern_offset_t laststart_offset;
+ regnum_t regnum;
+} compile_stack_elt_t;
+
+
+typedef struct
+{
+ compile_stack_elt_t *stack;
+ size_t size;
+ size_t avail; /* Offset of next open position. */
+} compile_stack_type;
+
+
+#define INIT_COMPILE_STACK_SIZE 32
+
+#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
+#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
+
+/* The next available element. */
+#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
+
+/* Explicit quit checking is needed for Emacs, which uses polling to
+ process input events. */
+#ifndef emacs
+static void maybe_quit (void) {}
+#endif
+\f
+/* Structure to manage work area for range table. */
+struct range_table_work_area
+{
+ int *table; /* actual work area. */
+ int allocated; /* allocated size for work area in bytes. */
+ int used; /* actually used size in words. */
+ int bits; /* flag to record character classes */
+};
+
+#ifdef emacs
+
+/* Make sure that WORK_AREA can hold more N multibyte characters.
+ This is used only in set_image_of_range and set_image_of_range_1.
+ It expects WORK_AREA to be a pointer.
+ If it can't get the space, it returns from the surrounding function. */
+
+#define EXTEND_RANGE_TABLE(work_area, n) \
+ do { \
+ if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
+ { \
+ extend_range_table_work_area (&work_area); \
+ if ((work_area).table == 0) \
+ return (REG_ESPACE); \
+ } \
+ } while (0)
+
+#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
+ (work_area).bits |= (bit)
+
+/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
+#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
+ do { \
+ EXTEND_RANGE_TABLE ((work_area), 2); \
+ (work_area).table[(work_area).used++] = (range_start); \
+ (work_area).table[(work_area).used++] = (range_end); \
+ } while (0)
+
+#endif /* emacs */
+
+/* Free allocated memory for WORK_AREA. */
+#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
+ do { \
+ if ((work_area).table) \
+ free ((work_area).table); \
+ } while (0)
+
+#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
+#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
+#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
+#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
+
+/* Bits used to implement the multibyte-part of the various character classes
+ such as [:alnum:] in a charset's range table. The code currently assumes
+ that only the low 16 bits are used. */
+#define BIT_WORD 0x1
+#define BIT_LOWER 0x2
+#define BIT_PUNCT 0x4
+#define BIT_SPACE 0x8
+#define BIT_UPPER 0x10
+#define BIT_MULTIBYTE 0x20
+#define BIT_ALPHA 0x40
+#define BIT_ALNUM 0x80
+#define BIT_GRAPH 0x100
+#define BIT_PRINT 0x200
+#define BIT_BLANK 0x400
+\f
+
+/* Set the bit for character C in a list. */
+#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
+
+
+#ifdef emacs
+
+/* Store characters in the range FROM to TO in the bitmap at B (for
+ ASCII and unibyte characters) and WORK_AREA (for multibyte
+ characters) while translating them and paying attention to the
+ continuity of translated characters.
+
+ Implementation note: It is better to implement these fairly big
+ macros by a function, but it's not that easy because macros called
+ in this macro assume various local variables already declared. */
+
+/* Both FROM and TO are ASCII characters. */
+
+#define SETUP_ASCII_RANGE(work_area, FROM, TO) \
+ do { \
+ int C0, C1; \
+ \
+ for (C0 = (FROM); C0 <= (TO); C0++) \
+ { \
+ C1 = TRANSLATE (C0); \
+ if (! ASCII_CHAR_P (C1)) \
+ { \
+ SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
+ if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
+ C1 = C0; \
+ } \
+ SET_LIST_BIT (C1); \
+ } \
+ } while (0)
+
+
+/* Both FROM and TO are unibyte characters (0x80..0xFF). */
+
+#define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
+ do { \
+ int C0, C1, C2, I; \
+ int USED = RANGE_TABLE_WORK_USED (work_area); \
+ \
+ for (C0 = (FROM); C0 <= (TO); C0++) \
+ { \
+ C1 = RE_CHAR_TO_MULTIBYTE (C0); \
+ if (CHAR_BYTE8_P (C1)) \
+ SET_LIST_BIT (C0); \
+ else \
+ { \
+ C2 = TRANSLATE (C1); \
+ if (C2 == C1 \
+ || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
+ C1 = C0; \
+ SET_LIST_BIT (C1); \
+ for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
+ { \
+ int from = RANGE_TABLE_WORK_ELT (work_area, I); \
+ int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
+ \
+ if (C2 >= from - 1 && C2 <= to + 1) \
+ { \
+ if (C2 == from - 1) \
+ RANGE_TABLE_WORK_ELT (work_area, I)--; \
+ else if (C2 == to + 1) \
+ RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
+ break; \
+ } \
+ } \
+ if (I < USED) \
+ SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
+ } \
+ } \
+ } while (0)
+
+
+/* Both FROM and TO are multibyte characters. */
+
+#define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
+ do { \
+ int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
+ \
+ SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
+ for (C0 = (FROM); C0 <= (TO); C0++) \
+ { \
+ C1 = TRANSLATE (C0); \
+ if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
+ || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
+ SET_LIST_BIT (C2); \
+ if (C1 >= (FROM) && C1 <= (TO)) \
+ continue; \
+ for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
+ { \
+ int from = RANGE_TABLE_WORK_ELT (work_area, I); \
+ int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
+ \
+ if (C1 >= from - 1 && C1 <= to + 1) \
+ { \
+ if (C1 == from - 1) \
+ RANGE_TABLE_WORK_ELT (work_area, I)--; \
+ else if (C1 == to + 1) \
+ RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
+ break; \
+ } \
+ } \
+ if (I < USED) \
+ SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
+ } \
+ } while (0)
+
+#endif /* emacs */
+
+/* Get the next unsigned number in the uncompiled pattern. */
+#define GET_INTERVAL_COUNT(num) \
+ do { \
+ if (p == pend) \
+ FREE_STACK_RETURN (REG_EBRACE); \
+ else \
+ { \
+ PATFETCH (c); \
+ while ('0' <= c && c <= '9') \
+ { \
+ if (num < 0) \
+ num = 0; \
+ if (RE_DUP_MAX / 10 - (RE_DUP_MAX % 10 < c - '0') < num) \
+ FREE_STACK_RETURN (REG_ESIZEBR); \
+ num = num * 10 + c - '0'; \
+ if (p == pend) \
+ FREE_STACK_RETURN (REG_EBRACE); \
+ PATFETCH (c); \
+ } \
+ } \
+ } while (0)
+\f
+#if ! WIDE_CHAR_SUPPORT
+
+/* Parse a character class, i.e. string such as "[:name:]". *strp
+ points to the string to be parsed and limit is length, in bytes, of
+ that string.
+
+ If *strp point to a string that begins with "[:name:]", where name is
+ a non-empty sequence of lower case letters, *strp will be advanced past the
+ closing square bracket and RECC_* constant which maps to the name will be
+ returned. If name is not a valid character class name zero, or RECC_ERROR,
+ is returned.
+
+ Otherwise, if *strp doesn't begin with "[:name:]", -1 is returned.
+
+ The function can be used on ASCII and multibyte (UTF-8-encoded) strings.
+ */
+re_wctype_t
+re_wctype_parse (const unsigned char **strp, unsigned limit)
+{
+ const char *beg = (const char *)*strp, *it;
+
+ if (limit < 4 || beg[0] != '[' || beg[1] != ':')
+ return -1;
+
+ beg += 2; /* skip opening "[:" */
+ limit -= 3; /* opening "[:" and half of closing ":]"; --limit handles rest */
+ for (it = beg; it[0] != ':' || it[1] != ']'; ++it)
+ if (!--limit)
+ return -1;
+
+ *strp = (const unsigned char *)(it + 2);
+
+ /* Sort tests in the length=five case by frequency the classes to minimize
+ number of times we fail the comparison. The frequencies of character class
+ names used in Emacs sources as of 2016-07-27:
+
+ $ find \( -name \*.c -o -name \*.el \) -exec grep -h '\[:[a-z]*:]' {} + |
+ sed 's/]/]\n/g' |grep -o '\[:[a-z]*:]' |sort |uniq -c |sort -nr
+ 213 [:alnum:]
+ 104 [:alpha:]
+ 62 [:space:]
+ 39 [:digit:]
+ 36 [:blank:]
+ 26 [:word:]
+ 26 [:upper:]
+ 21 [:lower:]
+ 10 [:xdigit:]
+ 10 [:punct:]
+ 10 [:ascii:]
+ 4 [:nonascii:]
+ 4 [:graph:]
+ 2 [:print:]
+ 2 [:cntrl:]
+ 1 [:ff:]
+
+ If you update this list, consider also updating chain of or'ed conditions
+ in execute_charset function.
+ */
+
+ switch (it - beg) {
+ case 4:
+ if (!memcmp (beg, "word", 4)) return RECC_WORD;
+ break;
+ case 5:
+ if (!memcmp (beg, "alnum", 5)) return RECC_ALNUM;
+ if (!memcmp (beg, "alpha", 5)) return RECC_ALPHA;
+ if (!memcmp (beg, "space", 5)) return RECC_SPACE;
+ if (!memcmp (beg, "digit", 5)) return RECC_DIGIT;
+ if (!memcmp (beg, "blank", 5)) return RECC_BLANK;
+ if (!memcmp (beg, "upper", 5)) return RECC_UPPER;
+ if (!memcmp (beg, "lower", 5)) return RECC_LOWER;
+ if (!memcmp (beg, "punct", 5)) return RECC_PUNCT;
+ if (!memcmp (beg, "ascii", 5)) return RECC_ASCII;
+ if (!memcmp (beg, "graph", 5)) return RECC_GRAPH;
+ if (!memcmp (beg, "print", 5)) return RECC_PRINT;
+ if (!memcmp (beg, "cntrl", 5)) return RECC_CNTRL;
+ break;
+ case 6:
+ if (!memcmp (beg, "xdigit", 6)) return RECC_XDIGIT;
+ break;
+ case 7:
+ if (!memcmp (beg, "unibyte", 7)) return RECC_UNIBYTE;
+ break;
+ case 8:
+ if (!memcmp (beg, "nonascii", 8)) return RECC_NONASCII;
+ break;
+ case 9:
+ if (!memcmp (beg, "multibyte", 9)) return RECC_MULTIBYTE;
+ break;
+ }
+
+ return RECC_ERROR;
+}
+
+/* True if CH is in the char class CC. */
+boolean
+re_iswctype (int ch, re_wctype_t cc)
+{
+ switch (cc)
+ {
+ case RECC_ALNUM: return ISALNUM (ch) != 0;
+ case RECC_ALPHA: return ISALPHA (ch) != 0;
+ case RECC_BLANK: return ISBLANK (ch) != 0;
+ case RECC_CNTRL: return ISCNTRL (ch) != 0;
+ case RECC_DIGIT: return ISDIGIT (ch) != 0;
+ case RECC_GRAPH: return ISGRAPH (ch) != 0;
+ case RECC_LOWER: return ISLOWER (ch) != 0;
+ case RECC_PRINT: return ISPRINT (ch) != 0;
+ case RECC_PUNCT: return ISPUNCT (ch) != 0;
+ case RECC_SPACE: return ISSPACE (ch) != 0;
+ case RECC_UPPER: return ISUPPER (ch) != 0;
+ case RECC_XDIGIT: return ISXDIGIT (ch) != 0;
+ case RECC_ASCII: return IS_REAL_ASCII (ch) != 0;
+ case RECC_NONASCII: return !IS_REAL_ASCII (ch);
+ case RECC_UNIBYTE: return ISUNIBYTE (ch) != 0;
+ case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
+ case RECC_WORD: return ISWORD (ch) != 0;
+ case RECC_ERROR: return false;
+ default:
+ abort ();
+ }
+}
+
+/* Return a bit-pattern to use in the range-table bits to match multibyte
+ chars of class CC. */
+static int
+re_wctype_to_bit (re_wctype_t cc)
+{
+ switch (cc)
+ {
+ case RECC_NONASCII:
+ case RECC_MULTIBYTE: return BIT_MULTIBYTE;
+ case RECC_ALPHA: return BIT_ALPHA;
+ case RECC_ALNUM: return BIT_ALNUM;
+ case RECC_WORD: return BIT_WORD;
+ case RECC_LOWER: return BIT_LOWER;
+ case RECC_UPPER: return BIT_UPPER;
+ case RECC_PUNCT: return BIT_PUNCT;
+ case RECC_SPACE: return BIT_SPACE;
+ case RECC_GRAPH: return BIT_GRAPH;
+ case RECC_PRINT: return BIT_PRINT;
+ case RECC_BLANK: return BIT_BLANK;
+ case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
+ case RECC_UNIBYTE: case RECC_ERROR: return 0;
+ default:
+ abort ();
+ }
+}
+#endif
+\f
+/* Filling in the work area of a range. */
+
+/* Actually extend the space in WORK_AREA. */
+
+static void
+extend_range_table_work_area (struct range_table_work_area *work_area)
+{
+ work_area->allocated += 16 * sizeof (int);
+ work_area->table = realloc (work_area->table, work_area->allocated);
+}
+
+#if 0
+#ifdef emacs
+
+/* Carefully find the ranges of codes that are equivalent
+ under case conversion to the range start..end when passed through
+ TRANSLATE. Handle the case where non-letters can come in between
+ two upper-case letters (which happens in Latin-1).
+ Also handle the case of groups of more than 2 case-equivalent chars.
+
+ The basic method is to look at consecutive characters and see
+ if they can form a run that can be handled as one.
+
+ Returns -1 if successful, REG_ESPACE if ran out of space. */
+
+static int
+set_image_of_range_1 (struct range_table_work_area *work_area,
+ re_wchar_t start, re_wchar_t end,
+ RE_TRANSLATE_TYPE translate)
+{
+ /* `one_case' indicates a character, or a run of characters,
+ each of which is an isolate (no case-equivalents).
+ This includes all ASCII non-letters.
+
+ `two_case' indicates a character, or a run of characters,
+ each of which has two case-equivalent forms.
+ This includes all ASCII letters.
+
+ `strange' indicates a character that has more than one
+ case-equivalent. */
+
+ enum case_type {one_case, two_case, strange};
+
+ /* Describe the run that is in progress,
+ which the next character can try to extend.
+ If run_type is strange, that means there really is no run.
+ If run_type is one_case, then run_start...run_end is the run.
+ If run_type is two_case, then the run is run_start...run_end,
+ and the case-equivalents end at run_eqv_end. */
+
+ enum case_type run_type = strange;
+ int run_start, run_end, run_eqv_end;
+
+ Lisp_Object eqv_table;
+
+ if (!RE_TRANSLATE_P (translate))
+ {
+ EXTEND_RANGE_TABLE (work_area, 2);
+ work_area->table[work_area->used++] = (start);
+ work_area->table[work_area->used++] = (end);
+ return -1;
+ }
+
+ eqv_table = XCHAR_TABLE (translate)->extras[2];
+
+ for (; start <= end; start++)
+ {
+ enum case_type this_type;
+ int eqv = RE_TRANSLATE (eqv_table, start);
+ int minchar, maxchar;
+
+ /* Classify this character */
+ if (eqv == start)
+ this_type = one_case;
+ else if (RE_TRANSLATE (eqv_table, eqv) == start)
+ this_type = two_case;
+ else
+ this_type = strange;
+
+ if (start < eqv)
+ minchar = start, maxchar = eqv;
+ else
+ minchar = eqv, maxchar = start;
+
+ /* Can this character extend the run in progress? */
+ if (this_type == strange || this_type != run_type
+ || !(minchar == run_end + 1
+ && (run_type == two_case
+ ? maxchar == run_eqv_end + 1 : 1)))
+ {
+ /* No, end the run.
+ Record each of its equivalent ranges. */
+ if (run_type == one_case)
+ {
+ EXTEND_RANGE_TABLE (work_area, 2);
+ work_area->table[work_area->used++] = run_start;
+ work_area->table[work_area->used++] = run_end;
+ }
+ else if (run_type == two_case)
+ {
+ EXTEND_RANGE_TABLE (work_area, 4);
+ work_area->table[work_area->used++] = run_start;
+ work_area->table[work_area->used++] = run_end;
+ work_area->table[work_area->used++]
+ = RE_TRANSLATE (eqv_table, run_start);
+ work_area->table[work_area->used++]
+ = RE_TRANSLATE (eqv_table, run_end);
+ }
+ run_type = strange;
+ }
+
+ if (this_type == strange)
+ {
+ /* For a strange character, add each of its equivalents, one
+ by one. Don't start a range. */
+ do
+ {
+ EXTEND_RANGE_TABLE (work_area, 2);
+ work_area->table[work_area->used++] = eqv;
+ work_area->table[work_area->used++] = eqv;
+ eqv = RE_TRANSLATE (eqv_table, eqv);
+ }
+ while (eqv != start);
+ }
+
+ /* Add this char to the run, or start a new run. */
+ else if (run_type == strange)
+ {
+ /* Initialize a new range. */
+ run_type = this_type;
+ run_start = start;
+ run_end = start;
+ run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
+ }
+ else
+ {
+ /* Extend a running range. */
+ run_end = minchar;
+ run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
+ }
+ }
+
+ /* If a run is still in progress at the end, finish it now
+ by recording its equivalent ranges. */
+ if (run_type == one_case)
+ {
+ EXTEND_RANGE_TABLE (work_area, 2);
+ work_area->table[work_area->used++] = run_start;
+ work_area->table[work_area->used++] = run_end;
+ }
+ else if (run_type == two_case)
+ {
+ EXTEND_RANGE_TABLE (work_area, 4);
+ work_area->table[work_area->used++] = run_start;
+ work_area->table[work_area->used++] = run_end;
+ work_area->table[work_area->used++]
+ = RE_TRANSLATE (eqv_table, run_start);
+ work_area->table[work_area->used++]
+ = RE_TRANSLATE (eqv_table, run_end);
+ }
+
+ return -1;
+}
+
+#endif /* emacs */
+
+/* Record the image of the range start..end when passed through
+ TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
+ and is not even necessarily contiguous.
+ Normally we approximate it with the smallest contiguous range that contains
+ all the chars we need. However, for Latin-1 we go to extra effort
+ to do a better job.
+
+ This function is not called for ASCII ranges.
+
+ Returns -1 if successful, REG_ESPACE if ran out of space. */
+
+static int
+set_image_of_range (struct range_table_work_area *work_area,
+ re_wchar_t start, re_wchar_t end,
+ RE_TRANSLATE_TYPE translate)
+{
+ re_wchar_t cmin, cmax;
+
+#ifdef emacs
+ /* For Latin-1 ranges, use set_image_of_range_1
+ to get proper handling of ranges that include letters and nonletters.
+ For a range that includes the whole of Latin-1, this is not necessary.
+ For other character sets, we don't bother to get this right. */
+ if (RE_TRANSLATE_P (translate) && start < 04400
+ && !(start < 04200 && end >= 04377))
+ {
+ int newend;
+ int tem;
+ newend = end;
+ if (newend > 04377)
+ newend = 04377;
+ tem = set_image_of_range_1 (work_area, start, newend, translate);
+ if (tem > 0)
+ return tem;
+
+ start = 04400;
+ if (end < 04400)
+ return -1;
+ }
+#endif
+
+ EXTEND_RANGE_TABLE (work_area, 2);
+ work_area->table[work_area->used++] = (start);
+ work_area->table[work_area->used++] = (end);
+
+ cmin = -1, cmax = -1;
+
+ if (RE_TRANSLATE_P (translate))
+ {
+ int ch;
+
+ for (ch = start; ch <= end; ch++)
+ {
+ re_wchar_t c = TRANSLATE (ch);
+ if (! (start <= c && c <= end))
+ {
+ if (cmin == -1)
+ cmin = c, cmax = c;
+ else
+ {
+ cmin = min (cmin, c);
+ cmax = max (cmax, c);
+ }
+ }
+ }
+
+ if (cmin != -1)
+ {
+ EXTEND_RANGE_TABLE (work_area, 2);
+ work_area->table[work_area->used++] = (cmin);
+ work_area->table[work_area->used++] = (cmax);
+ }
+ }
+
+ return -1;
+}
+#endif /* 0 */
+\f
+#ifndef MATCH_MAY_ALLOCATE
+
+/* If we cannot allocate large objects within re_match_2_internal,
+ we make the fail stack and register vectors global.
+ The fail stack, we grow to the maximum size when a regexp
+ is compiled.
+ The register vectors, we adjust in size each time we
+ compile a regexp, according to the number of registers it needs. */
+
+static fail_stack_type fail_stack;
+
+/* Size with which the following vectors are currently allocated.
+ That is so we can make them bigger as needed,
+ but never make them smaller. */
+static int regs_allocated_size;
+
+static re_char ** regstart, ** regend;
+static re_char **best_regstart, **best_regend;
+
+/* Make the register vectors big enough for NUM_REGS registers,
+ but don't make them smaller. */
+
+static
+regex_grow_registers (int num_regs)
+{
+ if (num_regs > regs_allocated_size)
+ {
+ RETALLOC_IF (regstart, num_regs, re_char *);
+ RETALLOC_IF (regend, num_regs, re_char *);
+ RETALLOC_IF (best_regstart, num_regs, re_char *);
+ RETALLOC_IF (best_regend, num_regs, re_char *);
+
+ regs_allocated_size = num_regs;
+ }
+}
+
+#endif /* not MATCH_MAY_ALLOCATE */
+\f
+static boolean group_in_compile_stack (compile_stack_type compile_stack,
+ regnum_t regnum);
+
+/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
+ Returns one of error codes defined in `regex-emacs.h', or zero for success.
+
+ If WHITESPACE_REGEXP is given (only #ifdef emacs), it is used instead of
+ a space character in PATTERN.
+
+ Assumes the `allocated' (and perhaps `buffer') and `translate'
+ fields are set in BUFP on entry.
+
+ If it succeeds, results are put in BUFP (if it returns an error, the
+ contents of BUFP are undefined):
+ `buffer' is the compiled pattern;
+ `syntax' is set to SYNTAX;
+ `used' is set to the length of the compiled pattern;
+ `fastmap_accurate' is zero;
+ `re_nsub' is the number of subexpressions in PATTERN;
+ `not_bol' and `not_eol' are zero;
+
+ The `fastmap' field is neither examined nor set. */
+
+/* Insert the `jump' from the end of last alternative to "here".
+ The space for the jump has already been allocated. */
+#define FIXUP_ALT_JUMP() \
+do { \
+ if (fixup_alt_jump) \
+ STORE_JUMP (jump, fixup_alt_jump, b); \
+} while (0)
+
+
+/* Return, freeing storage we allocated. */
+#define FREE_STACK_RETURN(value) \
+ do { \
+ FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
+ free (compile_stack.stack); \
+ return value; \
+ } while (0)
+
+static reg_errcode_t
+regex_compile (re_char *pattern, size_t size,
+#ifdef emacs
+# define syntax RE_SYNTAX_EMACS
+ bool posix_backtracking,
+ const char *whitespace_regexp,
+#else
+ reg_syntax_t syntax,
+# define posix_backtracking (!(syntax & RE_NO_POSIX_BACKTRACKING))
+#endif
+ struct re_pattern_buffer *bufp)
+{
+ /* We fetch characters from PATTERN here. */
+ register re_wchar_t c, c1;
+
+ /* Points to the end of the buffer, where we should append. */
+ register unsigned char *b;
+
+ /* Keeps track of unclosed groups. */
+ compile_stack_type compile_stack;
+
+ /* Points to the current (ending) position in the pattern. */
+#ifdef AIX
+ /* `const' makes AIX compiler fail. */
+ unsigned char *p = pattern;
+#else
+ re_char *p = pattern;
+#endif
+ re_char *pend = pattern + size;
+
+ /* How to translate the characters in the pattern. */
+ RE_TRANSLATE_TYPE translate = bufp->translate;
+
+ /* Address of the count-byte of the most recently inserted `exactn'
+ command. This makes it possible to tell if a new exact-match
+ character can be added to that command or if the character requires
+ a new `exactn' command. */
+ unsigned char *pending_exact = 0;
+
+ /* Address of start of the most recently finished expression.
+ This tells, e.g., postfix * where to find the start of its
+ operand. Reset at the beginning of groups and alternatives. */
+ unsigned char *laststart = 0;
+
+ /* Address of beginning of regexp, or inside of last group. */
+ unsigned char *begalt;
+
+ /* Place in the uncompiled pattern (i.e., the {) to
+ which to go back if the interval is invalid. */
+ re_char *beg_interval;
+
+ /* Address of the place where a forward jump should go to the end of
+ the containing expression. Each alternative of an `or' -- except the
+ last -- ends with a forward jump of this sort. */
+ unsigned char *fixup_alt_jump = 0;
+
+ /* Work area for range table of charset. */
+ struct range_table_work_area range_table_work;
+
+ /* If the object matched can contain multibyte characters. */
+ const boolean multibyte = RE_MULTIBYTE_P (bufp);
+
+#ifdef emacs
+ /* Nonzero if we have pushed down into a subpattern. */
+ int in_subpattern = 0;
+
+ /* These hold the values of p, pattern, and pend from the main
+ pattern when we have pushed into a subpattern. */
+ re_char *main_p;
+ re_char *main_pattern;
+ re_char *main_pend;
+#endif
+
+#ifdef DEBUG
+ debug++;
+ DEBUG_PRINT ("\nCompiling pattern: ");
+ if (debug > 0)
+ {
+ unsigned debug_count;
+
+ for (debug_count = 0; debug_count < size; debug_count++)
+ putchar (pattern[debug_count]);
+ putchar ('\n');
+ }
+#endif /* DEBUG */
+
+ /* Initialize the compile stack. */
+ compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
+ if (compile_stack.stack == NULL)
+ return REG_ESPACE;
+
+ compile_stack.size = INIT_COMPILE_STACK_SIZE;
+ compile_stack.avail = 0;
+
+ range_table_work.table = 0;
+ range_table_work.allocated = 0;
+
+ /* Initialize the pattern buffer. */
+#ifndef emacs
+ bufp->syntax = syntax;
+#endif
+ bufp->fastmap_accurate = 0;
+ bufp->not_bol = bufp->not_eol = 0;
+ bufp->used_syntax = 0;
+
+ /* Set `used' to zero, so that if we return an error, the pattern
+ printer (for debugging) will think there's no pattern. We reset it
+ at the end. */
+ bufp->used = 0;
+
+ /* Always count groups, whether or not bufp->no_sub is set. */
+ bufp->re_nsub = 0;
+
+#if !defined emacs && !defined SYNTAX_TABLE
+ /* Initialize the syntax table. */
+ init_syntax_once ();
+#endif
+
+ if (bufp->allocated == 0)
+ {
+ if (bufp->buffer)
+ { /* If zero allocated, but buffer is non-null, try to realloc
+ enough space. This loses if buffer's address is bogus, but
+ that is the user's responsibility. */
+ RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
+ }
+ else
+ { /* Caller did not allocate a buffer. Do it for them. */
+ bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
+ }
+ if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
+
+ bufp->allocated = INIT_BUF_SIZE;
+ }
+
+ begalt = b = bufp->buffer;
+
+ /* Loop through the uncompiled pattern until we're at the end. */
+ while (1)
+ {
+ if (p == pend)
+ {
+#ifdef emacs
+ /* If this is the end of an included regexp,
+ pop back to the main regexp and try again. */
+ if (in_subpattern)
+ {
+ in_subpattern = 0;
+ pattern = main_pattern;
+ p = main_p;
+ pend = main_pend;
+ continue;
+ }
+#endif
+ /* If this is the end of the main regexp, we are done. */
+ break;
+ }
+
+ PATFETCH (c);
+
+ switch (c)
+ {
+#ifdef emacs
+ case ' ':
+ {
+ re_char *p1 = p;
+
+ /* If there's no special whitespace regexp, treat
+ spaces normally. And don't try to do this recursively. */
+ if (!whitespace_regexp || in_subpattern)
+ goto normal_char;
+
+ /* Peek past following spaces. */
+ while (p1 != pend)
+ {
+ if (*p1 != ' ')
+ break;
+ p1++;
+ }
+ /* If the spaces are followed by a repetition op,
+ treat them normally. */
+ if (p1 != pend
+ && (*p1 == '*' || *p1 == '+' || *p1 == '?'
+ || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
+ goto normal_char;
+
+ /* Replace the spaces with the whitespace regexp. */
+ in_subpattern = 1;
+ main_p = p1;
+ main_pend = pend;
+ main_pattern = pattern;
+ p = pattern = (re_char *) whitespace_regexp;
+ pend = p + strlen (whitespace_regexp);
+ break;
+ }
+#endif
+
+ case '^':
+ {
+ if ( /* If at start of pattern, it's an operator. */
+ p == pattern + 1
+ /* If context independent, it's an operator. */
+ || syntax & RE_CONTEXT_INDEP_ANCHORS
+ /* Otherwise, depends on what's come before. */
+ || at_begline_loc_p (pattern, p, syntax))
+ BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
+ else
+ goto normal_char;
+ }
+ break;
+
+
+ case '$':
+ {
+ if ( /* If at end of pattern, it's an operator. */
+ p == pend
+ /* If context independent, it's an operator. */
+ || syntax & RE_CONTEXT_INDEP_ANCHORS
+ /* Otherwise, depends on what's next. */
+ || at_endline_loc_p (p, pend, syntax))
+ BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
+ else
+ goto normal_char;
+ }
+ break;
+
+
+ case '+':
+ case '?':
+ if ((syntax & RE_BK_PLUS_QM)
+ || (syntax & RE_LIMITED_OPS))
+ goto normal_char;
+ FALLTHROUGH;
+ case '*':
+ handle_plus:
+ /* If there is no previous pattern... */
+ if (!laststart)
+ {
+ if (syntax & RE_CONTEXT_INVALID_OPS)
+ FREE_STACK_RETURN (REG_BADRPT);
+ else if (!(syntax & RE_CONTEXT_INDEP_OPS))
+ goto normal_char;
+ }
+
+ {
+ /* 1 means zero (many) matches is allowed. */
+ boolean zero_times_ok = 0, many_times_ok = 0;
+ boolean greedy = 1;
+
+ /* If there is a sequence of repetition chars, collapse it
+ down to just one (the right one). We can't combine
+ interval operators with these because of, e.g., `a{2}*',
+ which should only match an even number of `a's. */
+
+ for (;;)
+ {
+ if ((syntax & RE_FRUGAL)
+ && c == '?' && (zero_times_ok || many_times_ok))
+ greedy = 0;
+ else
+ {
+ zero_times_ok |= c != '+';
+ many_times_ok |= c != '?';
+ }
+
+ if (p == pend)
+ break;
+ else if (*p == '*'
+ || (!(syntax & RE_BK_PLUS_QM)
+ && (*p == '+' || *p == '?')))
+ ;
+ else if (syntax & RE_BK_PLUS_QM && *p == '\\')
+ {
+ if (p+1 == pend)
+ FREE_STACK_RETURN (REG_EESCAPE);
+ if (p[1] == '+' || p[1] == '?')
+ PATFETCH (c); /* Gobble up the backslash. */
+ else
+ break;
+ }
+ else
+ break;
+ /* If we get here, we found another repeat character. */
+ PATFETCH (c);
+ }
+
+ /* Star, etc. applied to an empty pattern is equivalent
+ to an empty pattern. */
+ if (!laststart || laststart == b)
+ break;
+
+ /* Now we know whether or not zero matches is allowed
+ and also whether or not two or more matches is allowed. */
+ if (greedy)
+ {
+ if (many_times_ok)
+ {
+ boolean simple = skip_one_char (laststart) == b;
+ size_t startoffset = 0;
+ re_opcode_t ofj =
+ /* Check if the loop can match the empty string. */
+ (simple || !analyze_first (laststart, b, NULL, 0))
+ ? on_failure_jump : on_failure_jump_loop;
+ assert (skip_one_char (laststart) <= b);
+
+ if (!zero_times_ok && simple)
+ { /* Since simple * loops can be made faster by using
+ on_failure_keep_string_jump, we turn simple P+
+ into PP* if P is simple. */
+ unsigned char *p1, *p2;
+ startoffset = b - laststart;
+ GET_BUFFER_SPACE (startoffset);
+ p1 = b; p2 = laststart;
+ while (p2 < p1)
+ *b++ = *p2++;
+ zero_times_ok = 1;
+ }
+
+ GET_BUFFER_SPACE (6);
+ if (!zero_times_ok)
+ /* A + loop. */
+ STORE_JUMP (ofj, b, b + 6);
+ else
+ /* Simple * loops can use on_failure_keep_string_jump
+ depending on what follows. But since we don't know
+ that yet, we leave the decision up to
+ on_failure_jump_smart. */
+ INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
+ laststart + startoffset, b + 6);
+ b += 3;
+ STORE_JUMP (jump, b, laststart + startoffset);
+ b += 3;
+ }
+ else
+ {
+ /* A simple ? pattern. */
+ assert (zero_times_ok);
+ GET_BUFFER_SPACE (3);
+ INSERT_JUMP (on_failure_jump, laststart, b + 3);
+ b += 3;
+ }
+ }
+ else /* not greedy */
+ { /* I wish the greedy and non-greedy cases could be merged. */
+
+ GET_BUFFER_SPACE (7); /* We might use less. */
+ if (many_times_ok)
+ {
+ boolean emptyp = analyze_first (laststart, b, NULL, 0);
+
+ /* The non-greedy multiple match looks like
+ a repeat..until: we only need a conditional jump
+ at the end of the loop. */
+ if (emptyp) BUF_PUSH (no_op);
+ STORE_JUMP (emptyp ? on_failure_jump_nastyloop
+ : on_failure_jump, b, laststart);
+ b += 3;
+ if (zero_times_ok)
+ {
+ /* The repeat...until naturally matches one or more.
+ To also match zero times, we need to first jump to
+ the end of the loop (its conditional jump). */
+ INSERT_JUMP (jump, laststart, b);
+ b += 3;
+ }
+ }
+ else
+ {
+ /* non-greedy a?? */
+ INSERT_JUMP (jump, laststart, b + 3);
+ b += 3;
+ INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
+ b += 3;
+ }
+ }
+ }
+ pending_exact = 0;
+ break;
+
+
+ case '.':
+ laststart = b;
+ BUF_PUSH (anychar);
+ break;
+
+
+ case '[':
+ {
+ re_char *p1;
+
+ CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
+
+ if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+
+ /* Ensure that we have enough space to push a charset: the
+ opcode, the length count, and the bitset; 34 bytes in all. */
+ GET_BUFFER_SPACE (34);
+
+ laststart = b;
+
+ /* We test `*p == '^' twice, instead of using an if
+ statement, so we only need one BUF_PUSH. */
+ BUF_PUSH (*p == '^' ? charset_not : charset);
+ if (*p == '^')
+ p++;
+
+ /* Remember the first position in the bracket expression. */
+ p1 = p;
+
+ /* Push the number of bytes in the bitmap. */
+ BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
+
+ /* Clear the whole map. */
+ memset (b, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
+
+ /* charset_not matches newline according to a syntax bit. */
+ if ((re_opcode_t) b[-2] == charset_not
+ && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
+ SET_LIST_BIT ('\n');
+
+ /* Read in characters and ranges, setting map bits. */
+ for (;;)
+ {
+ boolean escaped_char = false;
+ const unsigned char *p2 = p;
+ re_wctype_t cc;
+ re_wchar_t ch;
+
+ if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+
+ /* See if we're at the beginning of a possible character
+ class. */
+ if (syntax & RE_CHAR_CLASSES &&
+ (cc = re_wctype_parse(&p, pend - p)) != -1)
+ {
+ if (cc == 0)
+ FREE_STACK_RETURN (REG_ECTYPE);
+
+ if (p == pend)
+ FREE_STACK_RETURN (REG_EBRACK);
+
+#ifndef emacs
+ for (ch = 0; ch < (1 << BYTEWIDTH); ++ch)
+ if (re_iswctype (btowc (ch), cc))
+ {
+ c = TRANSLATE (ch);
+ if (c < (1 << BYTEWIDTH))
+ SET_LIST_BIT (c);
+ }
+#else /* emacs */
+ /* Most character classes in a multibyte match just set
+ a flag. Exceptions are is_blank, is_digit, is_cntrl, and
+ is_xdigit, since they can only match ASCII characters.
+ We don't need to handle them for multibyte. */
+
+ /* Setup the gl_state object to its buffer-defined value.
+ This hardcodes the buffer-global syntax-table for ASCII
+ chars, while the other chars will obey syntax-table
+ properties. It's not ideal, but it's the way it's been
+ done until now. */
+ SETUP_BUFFER_SYNTAX_TABLE ();
+
+ for (c = 0; c < 0x80; ++c)
+ if (re_iswctype (c, cc))
+ {
+ SET_LIST_BIT (c);
+ c1 = TRANSLATE (c);
+ if (c1 == c)
+ continue;
+ if (ASCII_CHAR_P (c1))
+ SET_LIST_BIT (c1);
+ else if ((c1 = RE_CHAR_TO_UNIBYTE (c1)) >= 0)
+ SET_LIST_BIT (c1);
+ }
+ SET_RANGE_TABLE_WORK_AREA_BIT
+ (range_table_work, re_wctype_to_bit (cc));
+#endif /* emacs */
+ /* In most cases the matching rule for char classes only
+ uses the syntax table for multibyte chars, so that the
+ content of the syntax-table is not hardcoded in the
+ range_table. SPACE and WORD are the two exceptions. */
+ if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
+ bufp->used_syntax = 1;
+
+ /* Repeat the loop. */
+ continue;
+ }
+
+ /* Don't translate yet. The range TRANSLATE(X..Y) cannot
+ always be determined from TRANSLATE(X) and TRANSLATE(Y)
+ So the translation is done later in a loop. Example:
+ (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
+ PATFETCH (c);
+
+ /* \ might escape characters inside [...] and [^...]. */
+ if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
+ {
+ if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
+
+ PATFETCH (c);
+ escaped_char = true;
+ }
+ else
+ {
+ /* Could be the end of the bracket expression. If it's
+ not (i.e., when the bracket expression is `[]' so
+ far), the ']' character bit gets set way below. */
+ if (c == ']' && p2 != p1)
+ break;
+ }
+
+ if (p < pend && p[0] == '-' && p[1] != ']')
+ {
+
+ /* Discard the `-'. */
+ PATFETCH (c1);
+
+ /* Fetch the character which ends the range. */
+ PATFETCH (c1);
+#ifdef emacs
+ if (CHAR_BYTE8_P (c1)
+ && ! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
+ /* Treat the range from a multibyte character to
+ raw-byte character as empty. */
+ c = c1 + 1;
+#endif /* emacs */
+ }
+ else
+ /* Range from C to C. */
+ c1 = c;
+
+ if (c > c1)
+ {
+ if (syntax & RE_NO_EMPTY_RANGES)
+ FREE_STACK_RETURN (REG_ERANGEX);
+ /* Else, repeat the loop. */
+ }
+ else
+ {
+#ifndef emacs
+ /* Set the range into bitmap */
+ for (; c <= c1; c++)
+ {
+ ch = TRANSLATE (c);
+ if (ch < (1 << BYTEWIDTH))
+ SET_LIST_BIT (ch);
+ }
+#else /* emacs */
+ if (c < 128)
+ {
+ ch = min (127, c1);
+ SETUP_ASCII_RANGE (range_table_work, c, ch);
+ c = ch + 1;
+ if (CHAR_BYTE8_P (c1))
+ c = BYTE8_TO_CHAR (128);
+ }
+ if (c <= c1)
+ {
+ if (CHAR_BYTE8_P (c))
+ {
+ c = CHAR_TO_BYTE8 (c);
+ c1 = CHAR_TO_BYTE8 (c1);
+ for (; c <= c1; c++)
+ SET_LIST_BIT (c);
+ }
+ else if (multibyte)
+ {
+ SETUP_MULTIBYTE_RANGE (range_table_work, c, c1);
+ }
+ else
+ {
+ SETUP_UNIBYTE_RANGE (range_table_work, c, c1);
+ }
+ }
+#endif /* emacs */
+ }
+ }
+
+ /* Discard any (non)matching list bytes that are all 0 at the
+ end of the map. Decrease the map-length byte too. */
+ while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
+ b[-1]--;
+ b += b[-1];
+
+ /* Build real range table from work area. */
+ if (RANGE_TABLE_WORK_USED (range_table_work)
+ || RANGE_TABLE_WORK_BITS (range_table_work))
+ {
+ int i;
+ int used = RANGE_TABLE_WORK_USED (range_table_work);
+
+ /* Allocate space for COUNT + RANGE_TABLE. Needs two
+ bytes for flags, two for COUNT, and three bytes for
+ each character. */
+ GET_BUFFER_SPACE (4 + used * 3);
+
+ /* Indicate the existence of range table. */
+ laststart[1] |= 0x80;
+
+ /* Store the character class flag bits into the range table.
+ If not in emacs, these flag bits are always 0. */
+ *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
+ *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
+
+ STORE_NUMBER_AND_INCR (b, used / 2);
+ for (i = 0; i < used; i++)
+ STORE_CHARACTER_AND_INCR
+ (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
+ }
+ }
+ break;
+
+
+ case '(':
+ if (syntax & RE_NO_BK_PARENS)
+ goto handle_open;
+ else
+ goto normal_char;
+
+
+ case ')':
+ if (syntax & RE_NO_BK_PARENS)
+ goto handle_close;
+ else
+ goto normal_char;
+
+
+ case '\n':
+ if (syntax & RE_NEWLINE_ALT)
+ goto handle_alt;
+ else
+ goto normal_char;
+
+
+ case '|':
+ if (syntax & RE_NO_BK_VBAR)
+ goto handle_alt;
+ else
+ goto normal_char;
+
+
+ case '{':
+ if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
+ goto handle_interval;
+ else
+ goto normal_char;
+
+
+ case '\\':
+ if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
+
+ /* Do not translate the character after the \, so that we can
+ distinguish, e.g., \B from \b, even if we normally would
+ translate, e.g., B to b. */
+ PATFETCH (c);
+
+ switch (c)
+ {
+ case '(':
+ if (syntax & RE_NO_BK_PARENS)
+ goto normal_backslash;
+
+ handle_open:
+ {
+ int shy = 0;
+ regnum_t regnum = 0;
+ if (p+1 < pend)
+ {
+ /* Look for a special (?...) construct */
+ if ((syntax & RE_SHY_GROUPS) && *p == '?')
+ {
+ PATFETCH (c); /* Gobble up the '?'. */
+ while (!shy)
+ {
+ PATFETCH (c);
+ switch (c)
+ {
+ case ':': shy = 1; break;
+ case '0':
+ /* An explicitly specified regnum must start
+ with non-0. */
+ if (regnum == 0)
+ FREE_STACK_RETURN (REG_BADPAT);
+ FALLTHROUGH;
+ case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ regnum = 10*regnum + (c - '0'); break;
+ default:
+ /* Only (?:...) is supported right now. */
+ FREE_STACK_RETURN (REG_BADPAT);
+ }
+ }
+ }
+ }
+
+ if (!shy)
+ regnum = ++bufp->re_nsub;
+ else if (regnum)
+ { /* It's actually not shy, but explicitly numbered. */
+ shy = 0;
+ if (regnum > bufp->re_nsub)
+ bufp->re_nsub = regnum;
+ else if (regnum > bufp->re_nsub
+ /* Ideally, we'd want to check that the specified
+ group can't have matched (i.e. all subgroups
+ using the same regnum are in other branches of
+ OR patterns), but we don't currently keep track
+ of enough info to do that easily. */
+ || group_in_compile_stack (compile_stack, regnum))
+ FREE_STACK_RETURN (REG_BADPAT);
+ }
+ else
+ /* It's really shy. */
+ regnum = - bufp->re_nsub;
+
+ if (COMPILE_STACK_FULL)
+ {
+ RETALLOC (compile_stack.stack, compile_stack.size << 1,
+ compile_stack_elt_t);
+ if (compile_stack.stack == NULL) return REG_ESPACE;
+
+ compile_stack.size <<= 1;
+ }
+
+ /* These are the values to restore when we hit end of this
+ group. They are all relative offsets, so that if the
+ whole pattern moves because of realloc, they will still
+ be valid. */
+ COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
+ COMPILE_STACK_TOP.fixup_alt_jump
+ = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
+ COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
+ COMPILE_STACK_TOP.regnum = regnum;
+
+ /* Do not push a start_memory for groups beyond the last one
+ we can represent in the compiled pattern. */
+ if (regnum <= MAX_REGNUM && regnum > 0)
+ BUF_PUSH_2 (start_memory, regnum);
+
+ compile_stack.avail++;
+
+ fixup_alt_jump = 0;
+ laststart = 0;
+ begalt = b;
+ /* If we've reached MAX_REGNUM groups, then this open
+ won't actually generate any code, so we'll have to
+ clear pending_exact explicitly. */
+ pending_exact = 0;
+ break;
+ }
+
+ case ')':
+ if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
+
+ if (COMPILE_STACK_EMPTY)
+ {
+ if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
+ goto normal_backslash;
+ else
+ FREE_STACK_RETURN (REG_ERPAREN);
+ }
+
+ handle_close:
+ FIXUP_ALT_JUMP ();
+
+ /* See similar code for backslashed left paren above. */
+ if (COMPILE_STACK_EMPTY)
+ {
+ if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
+ goto normal_char;
+ else
+ FREE_STACK_RETURN (REG_ERPAREN);
+ }
+
+ /* Since we just checked for an empty stack above, this
+ ``can't happen''. */
+ assert (compile_stack.avail != 0);
+ {
+ /* We don't just want to restore into `regnum', because
+ later groups should continue to be numbered higher,
+ as in `(ab)c(de)' -- the second group is #2. */
+ regnum_t regnum;
+
+ compile_stack.avail--;
+ begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
+ fixup_alt_jump
+ = COMPILE_STACK_TOP.fixup_alt_jump
+ ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
+ : 0;
+ laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
+ regnum = COMPILE_STACK_TOP.regnum;
+ /* If we've reached MAX_REGNUM groups, then this open
+ won't actually generate any code, so we'll have to
+ clear pending_exact explicitly. */
+ pending_exact = 0;
+
+ /* We're at the end of the group, so now we know how many
+ groups were inside this one. */
+ if (regnum <= MAX_REGNUM && regnum > 0)
+ BUF_PUSH_2 (stop_memory, regnum);
+ }
+ break;
+
+
+ case '|': /* `\|'. */
+ if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
+ goto normal_backslash;
+ handle_alt:
+ if (syntax & RE_LIMITED_OPS)
+ goto normal_char;
+
+ /* Insert before the previous alternative a jump which
+ jumps to this alternative if the former fails. */
+ GET_BUFFER_SPACE (3);
+ INSERT_JUMP (on_failure_jump, begalt, b + 6);
+ pending_exact = 0;
+ b += 3;
+
+ /* The alternative before this one has a jump after it
+ which gets executed if it gets matched. Adjust that
+ jump so it will jump to this alternative's analogous
+ jump (put in below, which in turn will jump to the next
+ (if any) alternative's such jump, etc.). The last such
+ jump jumps to the correct final destination. A picture:
+ _____ _____
+ | | | |
+ | v | v
+ a | b | c
+
+ If we are at `b', then fixup_alt_jump right now points to a
+ three-byte space after `a'. We'll put in the jump, set
+ fixup_alt_jump to right after `b', and leave behind three
+ bytes which we'll fill in when we get to after `c'. */
+
+ FIXUP_ALT_JUMP ();
+
+ /* Mark and leave space for a jump after this alternative,
+ to be filled in later either by next alternative or
+ when know we're at the end of a series of alternatives. */
+ fixup_alt_jump = b;
+ GET_BUFFER_SPACE (3);
+ b += 3;
+
+ laststart = 0;
+ begalt = b;
+ break;
+
+
+ case '{':
+ /* If \{ is a literal. */
+ if (!(syntax & RE_INTERVALS)
+ /* If we're at `\{' and it's not the open-interval
+ operator. */
+ || (syntax & RE_NO_BK_BRACES))
+ goto normal_backslash;
+
+ handle_interval:
+ {
+ /* If got here, then the syntax allows intervals. */
+
+ /* At least (most) this many matches must be made. */
+ int lower_bound = 0, upper_bound = -1;
+
+ beg_interval = p;
+
+ GET_INTERVAL_COUNT (lower_bound);
+
+ if (c == ',')
+ GET_INTERVAL_COUNT (upper_bound);
+ else
+ /* Interval such as `{1}' => match exactly once. */
+ upper_bound = lower_bound;
+
+ if (lower_bound < 0
+ || (0 <= upper_bound && upper_bound < lower_bound))
+ FREE_STACK_RETURN (REG_BADBR);
+
+ if (!(syntax & RE_NO_BK_BRACES))
+ {
+ if (c != '\\')
+ FREE_STACK_RETURN (REG_BADBR);
+ if (p == pend)
+ FREE_STACK_RETURN (REG_EESCAPE);
+ PATFETCH (c);
+ }
+
+ if (c != '}')
+ FREE_STACK_RETURN (REG_BADBR);
+
+ /* We just parsed a valid interval. */
+
+ /* If it's invalid to have no preceding re. */
+ if (!laststart)
+ {
+ if (syntax & RE_CONTEXT_INVALID_OPS)
+ FREE_STACK_RETURN (REG_BADRPT);
+ else if (syntax & RE_CONTEXT_INDEP_OPS)
+ laststart = b;
+ else
+ goto unfetch_interval;
+ }
+
+ if (upper_bound == 0)
+ /* If the upper bound is zero, just drop the sub pattern
+ altogether. */
+ b = laststart;
+ else if (lower_bound == 1 && upper_bound == 1)
+ /* Just match it once: nothing to do here. */
+ ;
+
+ /* Otherwise, we have a nontrivial interval. When
+ we're all done, the pattern will look like:
+ set_number_at <jump count> <upper bound>
+ set_number_at <succeed_n count> <lower bound>
+ succeed_n <after jump addr> <succeed_n count>
+ <body of loop>
+ jump_n <succeed_n addr> <jump count>
+ (The upper bound and `jump_n' are omitted if
+ `upper_bound' is 1, though.) */
+ else
+ { /* If the upper bound is > 1, we need to insert
+ more at the end of the loop. */
+ unsigned int nbytes = (upper_bound < 0 ? 3
+ : upper_bound > 1 ? 5 : 0);
+ unsigned int startoffset = 0;
+
+ GET_BUFFER_SPACE (20); /* We might use less. */
+
+ if (lower_bound == 0)
+ {
+ /* A succeed_n that starts with 0 is really a
+ a simple on_failure_jump_loop. */
+ INSERT_JUMP (on_failure_jump_loop, laststart,
+ b + 3 + nbytes);
+ b += 3;
+ }
+ else
+ {
+ /* Initialize lower bound of the `succeed_n', even
+ though it will be set during matching by its
+ attendant `set_number_at' (inserted next),
+ because `re_compile_fastmap' needs to know.
+ Jump to the `jump_n' we might insert below. */
+ INSERT_JUMP2 (succeed_n, laststart,
+ b + 5 + nbytes,
+ lower_bound);
+ b += 5;
+
+ /* Code to initialize the lower bound. Insert
+ before the `succeed_n'. The `5' is the last two
+ bytes of this `set_number_at', plus 3 bytes of
+ the following `succeed_n'. */
+ insert_op2 (set_number_at, laststart, 5, lower_bound, b);
+ b += 5;
+ startoffset += 5;
+ }
+
+ if (upper_bound < 0)
+ {
+ /* A negative upper bound stands for infinity,
+ in which case it degenerates to a plain jump. */
+ STORE_JUMP (jump, b, laststart + startoffset);
+ b += 3;
+ }
+ else if (upper_bound > 1)
+ { /* More than one repetition is allowed, so
+ append a backward jump to the `succeed_n'
+ that starts this interval.
+
+ When we've reached this during matching,
+ we'll have matched the interval once, so
+ jump back only `upper_bound - 1' times. */
+ STORE_JUMP2 (jump_n, b, laststart + startoffset,
+ upper_bound - 1);
+ b += 5;
+
+ /* The location we want to set is the second
+ parameter of the `jump_n'; that is `b-2' as
+ an absolute address. `laststart' will be
+ the `set_number_at' we're about to insert;
+ `laststart+3' the number to set, the source
+ for the relative address. But we are
+ inserting into the middle of the pattern --
+ so everything is getting moved up by 5.
+ Conclusion: (b - 2) - (laststart + 3) + 5,
+ i.e., b - laststart.
+
+ We insert this at the beginning of the loop
+ so that if we fail during matching, we'll
+ reinitialize the bounds. */
+ insert_op2 (set_number_at, laststart, b - laststart,
+ upper_bound - 1, b);
+ b += 5;
+ }
+ }
+ pending_exact = 0;
+ beg_interval = NULL;
+ }
+ break;
+
+ unfetch_interval:
+ /* If an invalid interval, match the characters as literals. */
+ assert (beg_interval);
+ p = beg_interval;
+ beg_interval = NULL;
+
+ /* normal_char and normal_backslash need `c'. */
+ c = '{';
+
+ if (!(syntax & RE_NO_BK_BRACES))
+ {
+ assert (p > pattern && p[-1] == '\\');
+ goto normal_backslash;
+ }
+ else
+ goto normal_char;
+
+#ifdef emacs
+ case '=':
+ laststart = b;
+ BUF_PUSH (at_dot);
+ break;
+
+ case 's':
+ laststart = b;
+ PATFETCH (c);
+ BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
+ break;
+
+ case 'S':
+ laststart = b;
+ PATFETCH (c);
+ BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
+ break;
+
+ case 'c':
+ laststart = b;
+ PATFETCH (c);
+ BUF_PUSH_2 (categoryspec, c);
+ break;
+
+ case 'C':
+ laststart = b;
+ PATFETCH (c);
+ BUF_PUSH_2 (notcategoryspec, c);
+ break;
+#endif /* emacs */
+
+
+ case 'w':
+ if (syntax & RE_NO_GNU_OPS)
+ goto normal_char;
+ laststart = b;
+ BUF_PUSH_2 (syntaxspec, Sword);
+ break;
+
+
+ case 'W':
+ if (syntax & RE_NO_GNU_OPS)
+ goto normal_char;
+ laststart = b;
+ BUF_PUSH_2 (notsyntaxspec, Sword);
+ break;
+
+
+ case '<':
+ if (syntax & RE_NO_GNU_OPS)
+ goto normal_char;
+ laststart = b;
+ BUF_PUSH (wordbeg);
+ break;
+
+ case '>':
+ if (syntax & RE_NO_GNU_OPS)
+ goto normal_char;
+ laststart = b;
+ BUF_PUSH (wordend);
+ break;
+
+ case '_':
+ if (syntax & RE_NO_GNU_OPS)
+ goto normal_char;
+ laststart = b;
+ PATFETCH (c);
+ if (c == '<')
+ BUF_PUSH (symbeg);
+ else if (c == '>')
+ BUF_PUSH (symend);
+ else
+ FREE_STACK_RETURN (REG_BADPAT);
+ break;
+
+ case 'b':
+ if (syntax & RE_NO_GNU_OPS)
+ goto normal_char;
+ BUF_PUSH (wordbound);
+ break;
+
+ case 'B':
+ if (syntax & RE_NO_GNU_OPS)
+ goto normal_char;
+ BUF_PUSH (notwordbound);
+ break;
+
+ case '`':
+ if (syntax & RE_NO_GNU_OPS)
+ goto normal_char;
+ BUF_PUSH (begbuf);
+ break;
+
+ case '\'':
+ if (syntax & RE_NO_GNU_OPS)
+ goto normal_char;
+ BUF_PUSH (endbuf);
+ break;
+
+ case '1': case '2': case '3': case '4': case '5':
+ case '6': case '7': case '8': case '9':
+ {
+ regnum_t reg;
+
+ if (syntax & RE_NO_BK_REFS)
+ goto normal_backslash;
+
+ reg = c - '0';
+
+ if (reg > bufp->re_nsub || reg < 1
+ /* Can't back reference to a subexp before its end. */
+ || group_in_compile_stack (compile_stack, reg))
+ FREE_STACK_RETURN (REG_ESUBREG);
+
+ laststart = b;
+ BUF_PUSH_2 (duplicate, reg);
+ }
+ break;
+
+
+ case '+':
+ case '?':
+ if (syntax & RE_BK_PLUS_QM)
+ goto handle_plus;
+ else
+ goto normal_backslash;
+
+ default:
+ normal_backslash:
+ /* You might think it would be useful for \ to mean
+ not to translate; but if we don't translate it
+ it will never match anything. */
+ goto normal_char;
+ }
+ break;
+
+
+ default:
+ /* Expects the character in `c'. */
+ normal_char:
+ /* If no exactn currently being built. */
+ if (!pending_exact
+
+ /* If last exactn not at current position. */
+ || pending_exact + *pending_exact + 1 != b
+
+ /* We have only one byte following the exactn for the count. */
+ || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
+
+ /* If followed by a repetition operator. */
+ || (p != pend && (*p == '*' || *p == '^'))
+ || ((syntax & RE_BK_PLUS_QM)
+ ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
+ : p != pend && (*p == '+' || *p == '?'))
+ || ((syntax & RE_INTERVALS)
+ && ((syntax & RE_NO_BK_BRACES)
+ ? p != pend && *p == '{'
+ : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
+ {
+ /* Start building a new exactn. */
+
+ laststart = b;
+
+ BUF_PUSH_2 (exactn, 0);
+ pending_exact = b - 1;
+ }
+
+ GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
+ {
+ int len;
+
+ if (multibyte)
+ {
+ c = TRANSLATE (c);
+ len = CHAR_STRING (c, b);
+ b += len;
+ }
+ else
+ {
+ c1 = RE_CHAR_TO_MULTIBYTE (c);
+ if (! CHAR_BYTE8_P (c1))
+ {
+ re_wchar_t c2 = TRANSLATE (c1);
+
+ if (c1 != c2 && (c1 = RE_CHAR_TO_UNIBYTE (c2)) >= 0)
+ c = c1;
+ }
+ *b++ = c;
+ len = 1;
+ }
+ (*pending_exact) += len;
+ }
+
+ break;
+ } /* switch (c) */
+ } /* while p != pend */
+
+
+ /* Through the pattern now. */
+
+ FIXUP_ALT_JUMP ();
+
+ if (!COMPILE_STACK_EMPTY)
+ FREE_STACK_RETURN (REG_EPAREN);
+
+ /* If we don't want backtracking, force success
+ the first time we reach the end of the compiled pattern. */
+ if (!posix_backtracking)
+ BUF_PUSH (succeed);
+
+ /* We have succeeded; set the length of the buffer. */
+ bufp->used = b - bufp->buffer;
+
+#ifdef DEBUG
+ if (debug > 0)
+ {
+ re_compile_fastmap (bufp);
+ DEBUG_PRINT ("\nCompiled pattern: \n");
+ print_compiled_pattern (bufp);
+ }
+ debug--;
+#endif /* DEBUG */
+
+#ifndef MATCH_MAY_ALLOCATE
+ /* Initialize the failure stack to the largest possible stack. This
+ isn't necessary unless we're trying to avoid calling alloca in
+ the search and match routines. */
+ {
+ int num_regs = bufp->re_nsub + 1;
+
+ if (fail_stack.size < emacs_re_max_failures * TYPICAL_FAILURE_SIZE)
+ {
+ fail_stack.size = emacs_re_max_failures * TYPICAL_FAILURE_SIZE;
+ falk_stack.stack = realloc (fail_stack.stack,
+ fail_stack.size * sizeof *falk_stack.stack);
+ }
+
+ regex_grow_registers (num_regs);
+ }
+#endif /* not MATCH_MAY_ALLOCATE */
+
+ FREE_STACK_RETURN (REG_NOERROR);
+
+#ifdef emacs
+# undef syntax
+#else
+# undef posix_backtracking
+#endif
+} /* regex_compile */
+\f
+/* Subroutines for `regex_compile'. */
+
+/* Store OP at LOC followed by two-byte integer parameter ARG. */
+
+static void
+store_op1 (re_opcode_t op, unsigned char *loc, int arg)
+{
+ *loc = (unsigned char) op;
+ STORE_NUMBER (loc + 1, arg);
+}
+
+
+/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
+
+static void
+store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2)
+{
+ *loc = (unsigned char) op;
+ STORE_NUMBER (loc + 1, arg1);
+ STORE_NUMBER (loc + 3, arg2);
+}
+
+
+/* Copy the bytes from LOC to END to open up three bytes of space at LOC
+ for OP followed by two-byte integer parameter ARG. */
+
+static void
+insert_op1 (re_opcode_t op, unsigned char *loc, int arg, unsigned char *end)
+{
+ register unsigned char *pfrom = end;
+ register unsigned char *pto = end + 3;
+
+ while (pfrom != loc)
+ *--pto = *--pfrom;
+
+ store_op1 (op, loc, arg);
+}
+
+
+/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
+
+static void
+insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end)
+{
+ register unsigned char *pfrom = end;
+ register unsigned char *pto = end + 5;
+
+ while (pfrom != loc)
+ *--pto = *--pfrom;
+
+ store_op2 (op, loc, arg1, arg2);
+}
+
+
+/* P points to just after a ^ in PATTERN. Return true if that ^ comes
+ after an alternative or a begin-subexpression. We assume there is at
+ least one character before the ^. */
+
+static boolean
+at_begline_loc_p (re_char *pattern, re_char *p, reg_syntax_t syntax)
+{
+ re_char *prev = p - 2;
+ boolean odd_backslashes;
+
+ /* After a subexpression? */
+ if (*prev == '(')
+ odd_backslashes = (syntax & RE_NO_BK_PARENS) == 0;
+
+ /* After an alternative? */
+ else if (*prev == '|')
+ odd_backslashes = (syntax & RE_NO_BK_VBAR) == 0;
+
+ /* After a shy subexpression? */
+ else if (*prev == ':' && (syntax & RE_SHY_GROUPS))
+ {
+ /* Skip over optional regnum. */
+ while (prev - 1 >= pattern && prev[-1] >= '0' && prev[-1] <= '9')
+ --prev;
+
+ if (!(prev - 2 >= pattern
+ && prev[-1] == '?' && prev[-2] == '('))
+ return false;
+ prev -= 2;
+ odd_backslashes = (syntax & RE_NO_BK_PARENS) == 0;
+ }
+ else
+ return false;
+
+ /* Count the number of preceding backslashes. */
+ p = prev;
+ while (prev - 1 >= pattern && prev[-1] == '\\')
+ --prev;
+ return (p - prev) & odd_backslashes;
+}
+
+
+/* The dual of at_begline_loc_p. This one is for $. We assume there is
+ at least one character after the $, i.e., `P < PEND'. */
+
+static boolean
+at_endline_loc_p (re_char *p, re_char *pend, reg_syntax_t syntax)
+{
+ re_char *next = p;
+ boolean next_backslash = *next == '\\';
+ re_char *next_next = p + 1 < pend ? p + 1 : 0;
+
+ return
+ /* Before a subexpression? */
+ (syntax & RE_NO_BK_PARENS ? *next == ')'
+ : next_backslash && next_next && *next_next == ')')
+ /* Before an alternative? */
+ || (syntax & RE_NO_BK_VBAR ? *next == '|'
+ : next_backslash && next_next && *next_next == '|');
+}
+
+
+/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
+ false if it's not. */
+
+static boolean
+group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
+{
+ ssize_t this_element;
+
+ for (this_element = compile_stack.avail - 1;
+ this_element >= 0;
+ this_element--)
+ if (compile_stack.stack[this_element].regnum == regnum)
+ return true;
+
+ return false;
+}
+\f
+/* analyze_first.
+ If fastmap is non-NULL, go through the pattern and fill fastmap
+ with all the possible leading chars. If fastmap is NULL, don't
+ bother filling it up (obviously) and only return whether the
+ pattern could potentially match the empty string.
+
+ Return 1 if p..pend might match the empty string.
+ Return 0 if p..pend matches at least one char.
+ Return -1 if fastmap was not updated accurately. */
+
+static int
+analyze_first (re_char *p, re_char *pend, char *fastmap,
+ const int multibyte)
+{
+ int j, k;
+ boolean not;
+
+ /* If all elements for base leading-codes in fastmap is set, this
+ flag is set true. */
+ boolean match_any_multibyte_characters = false;
+
+ assert (p);
+
+ /* The loop below works as follows:
+ - It has a working-list kept in the PATTERN_STACK and which basically
+ starts by only containing a pointer to the first operation.
+ - If the opcode we're looking at is a match against some set of
+ chars, then we add those chars to the fastmap and go on to the
+ next work element from the worklist (done via `break').
+ - If the opcode is a control operator on the other hand, we either
+ ignore it (if it's meaningless at this point, such as `start_memory')
+ or execute it (if it's a jump). If the jump has several destinations
+ (i.e. `on_failure_jump'), then we push the other destination onto the
+ worklist.
+ We guarantee termination by ignoring backward jumps (more or less),
+ so that `p' is monotonically increasing. More to the point, we
+ never set `p' (or push) anything `<= p1'. */
+
+ while (p < pend)
+ {
+ /* `p1' is used as a marker of how far back a `on_failure_jump'
+ can go without being ignored. It is normally equal to `p'
+ (which prevents any backward `on_failure_jump') except right
+ after a plain `jump', to allow patterns such as:
+ 0: jump 10
+ 3..9: <body>
+ 10: on_failure_jump 3
+ as used for the *? operator. */
+ re_char *p1 = p;
+
+ switch (*p++)
+ {
+ case succeed:
+ return 1;
+
+ case duplicate:
+ /* If the first character has to match a backreference, that means
+ that the group was empty (since it already matched). Since this
+ is the only case that interests us here, we can assume that the
+ backreference must match the empty string. */
+ p++;
+ continue;
+
+
+ /* Following are the cases which match a character. These end
+ with `break'. */
+
+ case exactn:
+ if (fastmap)
+ {
+ /* If multibyte is nonzero, the first byte of each
+ character is an ASCII or a leading code. Otherwise,
+ each byte is a character. Thus, this works in both
+ cases. */
+ fastmap[p[1]] = 1;
+ if (! multibyte)
+ {
+ /* For the case of matching this unibyte regex
+ against multibyte, we must set a leading code of
+ the corresponding multibyte character. */
+ int c = RE_CHAR_TO_MULTIBYTE (p[1]);
+
+ fastmap[CHAR_LEADING_CODE (c)] = 1;
+ }
+ }
+ break;
+
+
+ case anychar:
+ /* We could put all the chars except for \n (and maybe \0)
+ but we don't bother since it is generally not worth it. */
+ if (!fastmap) break;
+ return -1;
+
+
+ case charset_not:
+ if (!fastmap) break;
+ {
+ /* Chars beyond end of bitmap are possible matches. */
+ for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
+ j < (1 << BYTEWIDTH); j++)
+ fastmap[j] = 1;
+ }
+ FALLTHROUGH;
+ case charset:
+ if (!fastmap) break;
+ not = (re_opcode_t) *(p - 1) == charset_not;
+ for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
+ j >= 0; j--)
+ if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
+ fastmap[j] = 1;
+
+#ifdef emacs
+ if (/* Any leading code can possibly start a character
+ which doesn't match the specified set of characters. */
+ not
+ ||
+ /* If we can match a character class, we can match any
+ multibyte characters. */
+ (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
+ && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
+
+ {
+ if (match_any_multibyte_characters == false)
+ {
+ for (j = MIN_MULTIBYTE_LEADING_CODE;
+ j <= MAX_MULTIBYTE_LEADING_CODE; j++)
+ fastmap[j] = 1;
+ match_any_multibyte_characters = true;
+ }
+ }
+
+ else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
+ && match_any_multibyte_characters == false)
+ {
+ /* Set fastmap[I] to 1 where I is a leading code of each
+ multibyte character in the range table. */
+ int c, count;
+ unsigned char lc1, lc2;
+
+ /* Make P points the range table. `+ 2' is to skip flag
+ bits for a character class. */
+ p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
+
+ /* Extract the number of ranges in range table into COUNT. */
+ EXTRACT_NUMBER_AND_INCR (count, p);
+ for (; count > 0; count--, p += 3)
+ {
+ /* Extract the start and end of each range. */
+ EXTRACT_CHARACTER (c, p);
+ lc1 = CHAR_LEADING_CODE (c);
+ p += 3;
+ EXTRACT_CHARACTER (c, p);
+ lc2 = CHAR_LEADING_CODE (c);
+ for (j = lc1; j <= lc2; j++)
+ fastmap[j] = 1;
+ }
+ }
+#endif
+ break;
+
+ case syntaxspec:
+ case notsyntaxspec:
+ if (!fastmap) break;
+#ifndef emacs
+ not = (re_opcode_t)p[-1] == notsyntaxspec;
+ k = *p++;
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
+ fastmap[j] = 1;
+ break;
+#else /* emacs */
+ /* This match depends on text properties. These end with
+ aborting optimizations. */
+ return -1;
+
+ case categoryspec:
+ case notcategoryspec:
+ if (!fastmap) break;
+ not = (re_opcode_t)p[-1] == notcategoryspec;
+ k = *p++;
+ for (j = (1 << BYTEWIDTH); j >= 0; j--)
+ if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
+ fastmap[j] = 1;
+
+ /* Any leading code can possibly start a character which
+ has or doesn't has the specified category. */
+ if (match_any_multibyte_characters == false)
+ {
+ for (j = MIN_MULTIBYTE_LEADING_CODE;
+ j <= MAX_MULTIBYTE_LEADING_CODE; j++)
+ fastmap[j] = 1;
+ match_any_multibyte_characters = true;
+ }
+ break;
+
+ /* All cases after this match the empty string. These end with
+ `continue'. */
+
+ case at_dot:
+#endif /* !emacs */
+ case no_op:
+ case begline:
+ case endline:
+ case begbuf:
+ case endbuf:
+ case wordbound:
+ case notwordbound:
+ case wordbeg:
+ case wordend:
+ case symbeg:
+ case symend:
+ continue;
+
+
+ case jump:
+ EXTRACT_NUMBER_AND_INCR (j, p);
+ if (j < 0)
+ /* Backward jumps can only go back to code that we've already
+ visited. `re_compile' should make sure this is true. */
+ break;
+ p += j;
+ switch (*p)
+ {
+ case on_failure_jump:
+ case on_failure_keep_string_jump:
+ case on_failure_jump_loop:
+ case on_failure_jump_nastyloop:
+ case on_failure_jump_smart:
+ p++;
+ break;
+ default:
+ continue;
+ };
+ /* Keep `p1' to allow the `on_failure_jump' we are jumping to
+ to jump back to "just after here". */
+ FALLTHROUGH;
+ case on_failure_jump:
+ case on_failure_keep_string_jump:
+ case on_failure_jump_nastyloop:
+ case on_failure_jump_loop:
+ case on_failure_jump_smart:
+ EXTRACT_NUMBER_AND_INCR (j, p);
+ if (p + j <= p1)
+ ; /* Backward jump to be ignored. */
+ else
+ { /* We have to look down both arms.
+ We first go down the "straight" path so as to minimize
+ stack usage when going through alternatives. */
+ int r = analyze_first (p, pend, fastmap, multibyte);
+ if (r) return r;
+ p += j;
+ }
+ continue;
+
+
+ case jump_n:
+ /* This code simply does not properly handle forward jump_n. */
+ DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
+ p += 4;
+ /* jump_n can either jump or fall through. The (backward) jump
+ case has already been handled, so we only need to look at the
+ fallthrough case. */
+ continue;
+
+ case succeed_n:
+ /* If N == 0, it should be an on_failure_jump_loop instead. */
+ DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
+ p += 4;
+ /* We only care about one iteration of the loop, so we don't
+ need to consider the case where this behaves like an
+ on_failure_jump. */
+ continue;
+
+
+ case set_number_at:
+ p += 4;
+ continue;
+
+
+ case start_memory:
+ case stop_memory:
+ p += 1;
+ continue;
+
+
+ default:
+ abort (); /* We have listed all the cases. */
+ } /* switch *p++ */
+
+ /* Getting here means we have found the possible starting
+ characters for one path of the pattern -- and that the empty
+ string does not match. We need not follow this path further. */
+ return 0;
+ } /* while p */
+
+ /* We reached the end without matching anything. */
+ return 1;
+
+} /* analyze_first */
+\f
+/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
+ BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
+ characters can start a string that matches the pattern. This fastmap
+ is used by re_search to skip quickly over impossible starting points.
+
+ Character codes above (1 << BYTEWIDTH) are not represented in the
+ fastmap, but the leading codes are represented. Thus, the fastmap
+ indicates which character sets could start a match.
+
+ The caller must supply the address of a (1 << BYTEWIDTH)-byte data
+ area as BUFP->fastmap.
+
+ We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
+ the pattern buffer.
+
+ Returns 0 if we succeed, -2 if an internal error. */
+
+int
+re_compile_fastmap (struct re_pattern_buffer *bufp)
+{
+ char *fastmap = bufp->fastmap;
+ int analysis;
+
+ assert (fastmap && bufp->buffer);
+
+ memset (fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */
+ bufp->fastmap_accurate = 1; /* It will be when we're done. */
+
+ analysis = analyze_first (bufp->buffer, bufp->buffer + bufp->used,
+ fastmap, RE_MULTIBYTE_P (bufp));
+ bufp->can_be_null = (analysis != 0);
+ return 0;
+} /* re_compile_fastmap */
+\f
+/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
+ ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
+ this memory for recording register information. STARTS and ENDS
+ must be allocated using the malloc library routine, and must each
+ be at least NUM_REGS * sizeof (regoff_t) bytes long.
+
+ If NUM_REGS == 0, then subsequent matches should allocate their own
+ register data.
+
+ Unless this function is called, the first search or match using
+ PATTERN_BUFFER will allocate its own register data, without
+ freeing the old data. */
+
+void
+re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, unsigned int num_regs, regoff_t *starts, regoff_t *ends)
+{
+ if (num_regs)
+ {
+ bufp->regs_allocated = REGS_REALLOCATE;
+ regs->num_regs = num_regs;
+ regs->start = starts;
+ regs->end = ends;
+ }
+ else
+ {
+ bufp->regs_allocated = REGS_UNALLOCATED;
+ regs->num_regs = 0;
+ regs->start = regs->end = 0;
+ }
+}
+WEAK_ALIAS (__re_set_registers, re_set_registers)
+\f
+/* Searching routines. */
+
+/* Like re_search_2, below, but only one string is specified, and
+ doesn't let you say where to stop matching. */
+
+regoff_t
+re_search (struct re_pattern_buffer *bufp, const char *string, size_t size,
+ ssize_t startpos, ssize_t range, struct re_registers *regs)
+{
+ return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
+ regs, size);
+}
+WEAK_ALIAS (__re_search, re_search)
+
+/* Head address of virtual concatenation of string. */
+#define HEAD_ADDR_VSTRING(P) \
+ (((P) >= size1 ? string2 : string1))
+
+/* Address of POS in the concatenation of virtual string. */
+#define POS_ADDR_VSTRING(POS) \
+ (((POS) >= size1 ? string2 - size1 : string1) + (POS))
+
+/* Using the compiled pattern in BUFP->buffer, first tries to match the
+ virtual concatenation of STRING1 and STRING2, starting first at index
+ STARTPOS, then at STARTPOS + 1, and so on.
+
+ STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
+
+ RANGE is how far to scan while trying to match. RANGE = 0 means try
+ only at STARTPOS; in general, the last start tried is STARTPOS +
+ RANGE.
+
+ In REGS, return the indices of the virtual concatenation of STRING1
+ and STRING2 that matched the entire BUFP->buffer and its contained
+ subexpressions.
+
+ Do not consider matching one past the index STOP in the virtual
+ concatenation of STRING1 and STRING2.
+
+ We return either the position in the strings at which the match was
+ found, -1 if no match, or -2 if error (such as failure
+ stack overflow). */
+
+regoff_t
+re_search_2 (struct re_pattern_buffer *bufp, const char *str1, size_t size1,
+ const char *str2, size_t size2, ssize_t startpos, ssize_t range,
+ struct re_registers *regs, ssize_t stop)
+{
+ regoff_t val;
+ re_char *string1 = (re_char *) str1;
+ re_char *string2 = (re_char *) str2;
+ register char *fastmap = bufp->fastmap;
+ register RE_TRANSLATE_TYPE translate = bufp->translate;
+ size_t total_size = size1 + size2;
+ ssize_t endpos = startpos + range;
+ boolean anchored_start;
+ /* Nonzero if we are searching multibyte string. */
+ const boolean multibyte = RE_TARGET_MULTIBYTE_P (bufp);
+
+ /* Check for out-of-range STARTPOS. */
+ if (startpos < 0 || startpos > total_size)
+ return -1;
+
+ /* Fix up RANGE if it might eventually take us outside
+ the virtual concatenation of STRING1 and STRING2.
+ Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
+ if (endpos < 0)
+ range = 0 - startpos;
+ else if (endpos > total_size)
+ range = total_size - startpos;
+
+ /* If the search isn't to be a backwards one, don't waste time in a
+ search for a pattern anchored at beginning of buffer. */
+ if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
+ {
+ if (startpos > 0)
+ return -1;
+ else
+ range = 0;
+ }
+
+#ifdef emacs
+ /* In a forward search for something that starts with \=.
+ don't keep searching past point. */
+ if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
+ {
+ range = PT_BYTE - BEGV_BYTE - startpos;
+ if (range < 0)
+ return -1;
+ }
+#endif /* emacs */
+
+ /* Update the fastmap now if not correct already. */
+ if (fastmap && !bufp->fastmap_accurate)
+ re_compile_fastmap (bufp);
+
+ /* See whether the pattern is anchored. */
+ anchored_start = (bufp->buffer[0] == begline);
+
+#ifdef emacs
+ gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
+ {
+ ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
+
+ SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
+ }
+#endif
+
+ /* Loop through the string, looking for a place to start matching. */
+ for (;;)
+ {
+ /* If the pattern is anchored,
+ skip quickly past places we cannot match.
+ We don't bother to treat startpos == 0 specially
+ because that case doesn't repeat. */
+ if (anchored_start && startpos > 0)
+ {
+ if (! ((startpos <= size1 ? string1[startpos - 1]
+ : string2[startpos - size1 - 1])
+ == '\n'))
+ goto advance;
+ }
+
+ /* If a fastmap is supplied, skip quickly over characters that
+ cannot be the start of a match. If the pattern can match the
+ null string, however, we don't need to skip characters; we want
+ the first null string. */
+ if (fastmap && startpos < total_size && !bufp->can_be_null)
+ {
+ register re_char *d;
+ register re_wchar_t buf_ch;
+
+ d = POS_ADDR_VSTRING (startpos);
+
+ if (range > 0) /* Searching forwards. */
+ {
+ ssize_t irange = range, lim = 0;
+
+ if (startpos < size1 && startpos + range >= size1)
+ lim = range - (size1 - startpos);
+
+ /* Written out as an if-else to avoid testing `translate'
+ inside the loop. */
+ if (RE_TRANSLATE_P (translate))
+ {
+ if (multibyte)
+ while (range > lim)
+ {
+ int buf_charlen;
+
+ buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
+ buf_ch = RE_TRANSLATE (translate, buf_ch);
+ if (fastmap[CHAR_LEADING_CODE (buf_ch)])
+ break;
+
+ range -= buf_charlen;
+ d += buf_charlen;
+ }
+ else
+ while (range > lim)
+ {
+ register re_wchar_t ch, translated;
+
+ buf_ch = *d;
+ ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
+ translated = RE_TRANSLATE (translate, ch);
+ if (translated != ch
+ && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
+ buf_ch = ch;
+ if (fastmap[buf_ch])
+ break;
+ d++;
+ range--;
+ }
+ }
+ else
+ {
+ if (multibyte)
+ while (range > lim)
+ {
+ int buf_charlen;
+
+ buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
+ if (fastmap[CHAR_LEADING_CODE (buf_ch)])
+ break;
+ range -= buf_charlen;
+ d += buf_charlen;
+ }
+ else
+ while (range > lim && !fastmap[*d])
+ {
+ d++;
+ range--;
+ }
+ }
+ startpos += irange - range;
+ }
+ else /* Searching backwards. */
+ {
+ if (multibyte)
+ {
+ buf_ch = STRING_CHAR (d);
+ buf_ch = TRANSLATE (buf_ch);
+ if (! fastmap[CHAR_LEADING_CODE (buf_ch)])
+ goto advance;
+ }
+ else
+ {
+ register re_wchar_t ch, translated;
+
+ buf_ch = *d;
+ ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
+ translated = TRANSLATE (ch);
+ if (translated != ch
+ && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
+ buf_ch = ch;
+ if (! fastmap[TRANSLATE (buf_ch)])
+ goto advance;
+ }
+ }
+ }
+
+ /* If can't match the null string, and that's all we have left, fail. */
+ if (range >= 0 && startpos == total_size && fastmap
+ && !bufp->can_be_null)
+ return -1;
+
+ val = re_match_2_internal (bufp, string1, size1, string2, size2,
+ startpos, regs, stop);
+
+ if (val >= 0)
+ return startpos;
+
+ if (val == -2)
+ return -2;
+
+ advance:
+ if (!range)
+ break;
+ else if (range > 0)
+ {
+ /* Update STARTPOS to the next character boundary. */
+ if (multibyte)
+ {
+ re_char *p = POS_ADDR_VSTRING (startpos);
+ int len = BYTES_BY_CHAR_HEAD (*p);
+
+ range -= len;
+ if (range < 0)
+ break;
+ startpos += len;
+ }
+ else
+ {
+ range--;
+ startpos++;
+ }
+ }
+ else
+ {
+ range++;
+ startpos--;
+
+ /* Update STARTPOS to the previous character boundary. */
+ if (multibyte)
+ {
+ re_char *p = POS_ADDR_VSTRING (startpos) + 1;
+ re_char *p0 = p;
+ re_char *phead = HEAD_ADDR_VSTRING (startpos);
+
+ /* Find the head of multibyte form. */
+ PREV_CHAR_BOUNDARY (p, phead);
+ range += p0 - 1 - p;
+ if (range > 0)
+ break;
+
+ startpos -= p0 - 1 - p;
+ }
+ }
+ }
+ return -1;
+} /* re_search_2 */
+WEAK_ALIAS (__re_search_2, re_search_2)
+\f
+/* Declarations and macros for re_match_2. */
+
+static int bcmp_translate (re_char *s1, re_char *s2,
+ register ssize_t len,
+ RE_TRANSLATE_TYPE translate,
+ const int multibyte);
+
+/* This converts PTR, a pointer into one of the search strings `string1'
+ and `string2' into an offset from the beginning of that string. */
+#define POINTER_TO_OFFSET(ptr) \
+ (FIRST_STRING_P (ptr) \
+ ? (ptr) - string1 \
+ : (ptr) - string2 + (ptrdiff_t) size1)
+
+/* Call before fetching a character with *d. This switches over to
+ string2 if necessary.
+ Check re_match_2_internal for a discussion of why end_match_2 might
+ not be within string2 (but be equal to end_match_1 instead). */
+#define PREFETCH() \
+ while (d == dend) \
+ { \
+ /* End of string2 => fail. */ \
+ if (dend == end_match_2) \
+ goto fail; \
+ /* End of string1 => advance to string2. */ \
+ d = string2; \
+ dend = end_match_2; \
+ }
+
+/* Call before fetching a char with *d if you already checked other limits.
+ This is meant for use in lookahead operations like wordend, etc..
+ where we might need to look at parts of the string that might be
+ outside of the LIMITs (i.e past `stop'). */
+#define PREFETCH_NOLIMIT() \
+ if (d == end1) \
+ { \
+ d = string2; \
+ dend = end_match_2; \
+ } \
+
+/* Test if at very beginning or at very end of the virtual concatenation
+ of `string1' and `string2'. If only one string, it's `string2'. */
+#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
+#define AT_STRINGS_END(d) ((d) == end2)
+
+/* Disabled due to a compiler bug -- see comment at case wordbound */
+
+/* The comment at case wordbound is following one, but we don't use
+ AT_WORD_BOUNDARY anymore to support multibyte form.
+
+ The DEC Alpha C compiler 3.x generates incorrect code for the
+ test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
+ AT_WORD_BOUNDARY, so this code is disabled. Expanding the
+ macro and introducing temporary variables works around the bug. */
+
+#if 0
+/* Test if D points to a character which is word-constituent. We have
+ two special cases to check for: if past the end of string1, look at
+ the first character in string2; and if before the beginning of
+ string2, look at the last character in string1. */
+#define WORDCHAR_P(d) \
+ (SYNTAX ((d) == end1 ? *string2 \
+ : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
+ == Sword)
+
+/* Test if the character before D and the one at D differ with respect
+ to being word-constituent. */
+#define AT_WORD_BOUNDARY(d) \
+ (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
+ || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
+#endif
+
+/* Free everything we malloc. */
+#ifdef MATCH_MAY_ALLOCATE
+# define FREE_VAR(var) \
+ do { \
+ if (var) \
+ { \
+ REGEX_FREE (var); \
+ var = NULL; \
+ } \
+ } while (0)
+# define FREE_VARIABLES() \
+ do { \
+ REGEX_FREE_STACK (fail_stack.stack); \
+ FREE_VAR (regstart); \
+ FREE_VAR (regend); \
+ FREE_VAR (best_regstart); \
+ FREE_VAR (best_regend); \
+ REGEX_SAFE_FREE (); \
+ } while (0)
+#else
+# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
+#endif /* not MATCH_MAY_ALLOCATE */
+
+\f
+/* Optimization routines. */
+
+/* If the operation is a match against one or more chars,
+ return a pointer to the next operation, else return NULL. */
+static re_char *
+skip_one_char (re_char *p)
+{
+ switch (*p++)
+ {
+ case anychar:
+ break;
+
+ case exactn:
+ p += *p + 1;
+ break;
+
+ case charset_not:
+ case charset:
+ if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
+ {
+ int mcnt;
+ p = CHARSET_RANGE_TABLE (p - 1);
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ p = CHARSET_RANGE_TABLE_END (p, mcnt);
+ }
+ else
+ p += 1 + CHARSET_BITMAP_SIZE (p - 1);
+ break;
+
+ case syntaxspec:
+ case notsyntaxspec:
+#ifdef emacs
+ case categoryspec:
+ case notcategoryspec:
+#endif /* emacs */
+ p++;
+ break;
+
+ default:
+ p = NULL;
+ }
+ return p;
+}
+
+
+/* Jump over non-matching operations. */
+static re_char *
+skip_noops (re_char *p, re_char *pend)
+{
+ int mcnt;
+ while (p < pend)
+ {
+ switch (*p)
+ {
+ case start_memory:
+ case stop_memory:
+ p += 2; break;
+ case no_op:
+ p += 1; break;
+ case jump:
+ p += 1;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ p += mcnt;
+ break;
+ default:
+ return p;
+ }
+ }
+ assert (p == pend);
+ return p;
+}
+
+/* Test if C matches charset op. *PP points to the charset or charset_not
+ opcode. When the function finishes, *PP will be advanced past that opcode.
+ C is character to test (possibly after translations) and CORIG is original
+ character (i.e. without any translations). UNIBYTE denotes whether c is
+ unibyte or multibyte character. */
+static bool
+execute_charset (re_char **pp, unsigned c, unsigned corig, bool unibyte)
+{
+ re_char *p = *pp, *rtp = NULL;
+ bool not = (re_opcode_t) *p == charset_not;
+
+ if (CHARSET_RANGE_TABLE_EXISTS_P (p))
+ {
+ int count;
+ rtp = CHARSET_RANGE_TABLE (p);
+ EXTRACT_NUMBER_AND_INCR (count, rtp);
+ *pp = CHARSET_RANGE_TABLE_END ((rtp), (count));
+ }
+ else
+ *pp += 2 + CHARSET_BITMAP_SIZE (p);
+
+ if (unibyte && c < (1 << BYTEWIDTH))
+ { /* Lookup bitmap. */
+ /* Cast to `unsigned' instead of `unsigned char' in
+ case the bit list is a full 32 bytes long. */
+ if (c < (unsigned) (CHARSET_BITMAP_SIZE (p) * BYTEWIDTH)
+ && p[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
+ return !not;
+ }
+#ifdef emacs
+ else if (rtp)
+ {
+ int class_bits = CHARSET_RANGE_TABLE_BITS (p);
+ re_wchar_t range_start, range_end;
+
+ /* Sort tests by the most commonly used classes with some adjustment to which
+ tests are easiest to perform. Take a look at comment in re_wctype_parse
+ for table with frequencies of character class names. */
+
+ if ((class_bits & BIT_MULTIBYTE) ||
+ (class_bits & BIT_ALNUM && ISALNUM (c)) ||
+ (class_bits & BIT_ALPHA && ISALPHA (c)) ||
+ (class_bits & BIT_SPACE && ISSPACE (c)) ||
+ (class_bits & BIT_BLANK && ISBLANK (c)) ||
+ (class_bits & BIT_WORD && ISWORD (c)) ||
+ ((class_bits & BIT_UPPER) &&
+ (ISUPPER (c) || (corig != c &&
+ c == downcase (corig) && ISLOWER (c)))) ||
+ ((class_bits & BIT_LOWER) &&
+ (ISLOWER (c) || (corig != c &&
+ c == upcase (corig) && ISUPPER(c)))) ||
+ (class_bits & BIT_PUNCT && ISPUNCT (c)) ||
+ (class_bits & BIT_GRAPH && ISGRAPH (c)) ||
+ (class_bits & BIT_PRINT && ISPRINT (c)))
+ return !not;
+
+ for (p = *pp; rtp < p; rtp += 2 * 3)
+ {
+ EXTRACT_CHARACTER (range_start, rtp);
+ EXTRACT_CHARACTER (range_end, rtp + 3);
+ if (range_start <= c && c <= range_end)
+ return !not;
+ }
+ }
+#endif /* emacs */
+ return not;
+}
+
+/* Non-zero if "p1 matches something" implies "p2 fails". */
+static int
+mutually_exclusive_p (struct re_pattern_buffer *bufp, re_char *p1,
+ re_char *p2)
+{
+ re_opcode_t op2;
+ const boolean multibyte = RE_MULTIBYTE_P (bufp);
+ unsigned char *pend = bufp->buffer + bufp->used;
+
+ assert (p1 >= bufp->buffer && p1 < pend
+ && p2 >= bufp->buffer && p2 <= pend);
+
+ /* Skip over open/close-group commands.
+ If what follows this loop is a ...+ construct,
+ look at what begins its body, since we will have to
+ match at least one of that. */
+ p2 = skip_noops (p2, pend);
+ /* The same skip can be done for p1, except that this function
+ is only used in the case where p1 is a simple match operator. */
+ /* p1 = skip_noops (p1, pend); */
+
+ assert (p1 >= bufp->buffer && p1 < pend
+ && p2 >= bufp->buffer && p2 <= pend);
+
+ op2 = p2 == pend ? succeed : *p2;
+
+ switch (op2)
+ {
+ case succeed:
+ case endbuf:
+ /* If we're at the end of the pattern, we can change. */
+ if (skip_one_char (p1))
+ {
+ DEBUG_PRINT (" End of pattern: fast loop.\n");
+ return 1;
+ }
+ break;
+
+ case endline:
+ case exactn:
+ {
+ register re_wchar_t c
+ = (re_opcode_t) *p2 == endline ? '\n'
+ : RE_STRING_CHAR (p2 + 2, multibyte);
+
+ if ((re_opcode_t) *p1 == exactn)
+ {
+ if (c != RE_STRING_CHAR (p1 + 2, multibyte))
+ {
+ DEBUG_PRINT (" '%c' != '%c' => fast loop.\n", c, p1[2]);
+ return 1;
+ }
+ }
+
+ else if ((re_opcode_t) *p1 == charset
+ || (re_opcode_t) *p1 == charset_not)
+ {
+ if (!execute_charset (&p1, c, c, !multibyte || IS_REAL_ASCII (c)))
+ {
+ DEBUG_PRINT (" No match => fast loop.\n");
+ return 1;
+ }
+ }
+ else if ((re_opcode_t) *p1 == anychar
+ && c == '\n')
+ {
+ DEBUG_PRINT (" . != \\n => fast loop.\n");
+ return 1;
+ }
+ }
+ break;
+
+ case charset:
+ {
+ if ((re_opcode_t) *p1 == exactn)
+ /* Reuse the code above. */
+ return mutually_exclusive_p (bufp, p2, p1);
+
+ /* It is hard to list up all the character in charset
+ P2 if it includes multibyte character. Give up in
+ such case. */
+ else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
+ {
+ /* Now, we are sure that P2 has no range table.
+ So, for the size of bitmap in P2, `p2[1]' is
+ enough. But P1 may have range table, so the
+ size of bitmap table of P1 is extracted by
+ using macro `CHARSET_BITMAP_SIZE'.
+
+ In a multibyte case, we know that all the character
+ listed in P2 is ASCII. In a unibyte case, P1 has only a
+ bitmap table. So, in both cases, it is enough to test
+ only the bitmap table of P1. */
+
+ if ((re_opcode_t) *p1 == charset)
+ {
+ int idx;
+ /* We win if the charset inside the loop
+ has no overlap with the one after the loop. */
+ for (idx = 0;
+ (idx < (int) p2[1]
+ && idx < CHARSET_BITMAP_SIZE (p1));
+ idx++)
+ if ((p2[2 + idx] & p1[2 + idx]) != 0)
+ break;
+
+ if (idx == p2[1]
+ || idx == CHARSET_BITMAP_SIZE (p1))
+ {
+ DEBUG_PRINT (" No match => fast loop.\n");
+ return 1;
+ }
+ }
+ else if ((re_opcode_t) *p1 == charset_not)
+ {
+ int idx;
+ /* We win if the charset_not inside the loop lists
+ every character listed in the charset after. */
+ for (idx = 0; idx < (int) p2[1]; idx++)
+ if (! (p2[2 + idx] == 0
+ || (idx < CHARSET_BITMAP_SIZE (p1)
+ && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
+ break;
+
+ if (idx == p2[1])
+ {
+ DEBUG_PRINT (" No match => fast loop.\n");
+ return 1;
+ }
+ }
+ }
+ }
+ break;
+
+ case charset_not:
+ switch (*p1)
+ {
+ case exactn:
+ case charset:
+ /* Reuse the code above. */
+ return mutually_exclusive_p (bufp, p2, p1);
+ case charset_not:
+ /* When we have two charset_not, it's very unlikely that
+ they don't overlap. The union of the two sets of excluded
+ chars should cover all possible chars, which, as a matter of
+ fact, is virtually impossible in multibyte buffers. */
+ break;
+ }
+ break;
+
+ case wordend:
+ return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
+ case symend:
+ return ((re_opcode_t) *p1 == syntaxspec
+ && (p1[1] == Ssymbol || p1[1] == Sword));
+ case notsyntaxspec:
+ return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
+
+ case wordbeg:
+ return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
+ case symbeg:
+ return ((re_opcode_t) *p1 == notsyntaxspec
+ && (p1[1] == Ssymbol || p1[1] == Sword));
+ case syntaxspec:
+ return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
+
+ case wordbound:
+ return (((re_opcode_t) *p1 == notsyntaxspec
+ || (re_opcode_t) *p1 == syntaxspec)
+ && p1[1] == Sword);
+
+#ifdef emacs
+ case categoryspec:
+ return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
+ case notcategoryspec:
+ return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
+#endif /* emacs */
+
+ default:
+ ;
+ }
+
+ /* Safe default. */
+ return 0;
+}
+
+\f
+/* Matching routines. */
+
+#ifndef emacs /* Emacs never uses this. */
+/* re_match is like re_match_2 except it takes only a single string. */
+
+regoff_t
+re_match (struct re_pattern_buffer *bufp, const char *string,
+ size_t size, ssize_t pos, struct re_registers *regs)
+{
+ regoff_t result = re_match_2_internal (bufp, NULL, 0, (re_char *) string,
+ size, pos, regs, size);
+ return result;
+}
+WEAK_ALIAS (__re_match, re_match)
+#endif /* not emacs */
+
+/* re_match_2 matches the compiled pattern in BUFP against the
+ the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
+ and SIZE2, respectively). We start matching at POS, and stop
+ matching at STOP.
+
+ If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
+ store offsets for the substring each group matched in REGS. See the
+ documentation for exactly how many groups we fill.
+
+ We return -1 if no match, -2 if an internal error (such as the
+ failure stack overflowing). Otherwise, we return the length of the
+ matched substring. */
+
+regoff_t
+re_match_2 (struct re_pattern_buffer *bufp, const char *string1,
+ size_t size1, const char *string2, size_t size2, ssize_t pos,
+ struct re_registers *regs, ssize_t stop)
+{
+ regoff_t result;
+
+#ifdef emacs
+ ssize_t charpos;
+ gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
+ charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
+ SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
+#endif
+
+ result = re_match_2_internal (bufp, (re_char *) string1, size1,
+ (re_char *) string2, size2,
+ pos, regs, stop);
+ return result;
+}
+WEAK_ALIAS (__re_match_2, re_match_2)
+
+
+/* This is a separate function so that we can force an alloca cleanup
+ afterwards. */
+static regoff_t
+re_match_2_internal (struct re_pattern_buffer *bufp, re_char *string1,
+ size_t size1, re_char *string2, size_t size2,
+ ssize_t pos, struct re_registers *regs, ssize_t stop)
+{
+ /* General temporaries. */
+ int mcnt;
+ size_t reg;
+
+ /* Just past the end of the corresponding string. */
+ re_char *end1, *end2;
+
+ /* Pointers into string1 and string2, just past the last characters in
+ each to consider matching. */
+ re_char *end_match_1, *end_match_2;
+
+ /* Where we are in the data, and the end of the current string. */
+ re_char *d, *dend;
+
+ /* Used sometimes to remember where we were before starting matching
+ an operator so that we can go back in case of failure. This "atomic"
+ behavior of matching opcodes is indispensable to the correctness
+ of the on_failure_keep_string_jump optimization. */
+ re_char *dfail;
+
+ /* Where we are in the pattern, and the end of the pattern. */
+ re_char *p = bufp->buffer;
+ re_char *pend = p + bufp->used;
+
+ /* We use this to map every character in the string. */
+ RE_TRANSLATE_TYPE translate = bufp->translate;
+
+ /* Nonzero if BUFP is setup from a multibyte regex. */
+ const boolean multibyte = RE_MULTIBYTE_P (bufp);
+
+ /* Nonzero if STRING1/STRING2 are multibyte. */
+ const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
+
+ /* Failure point stack. Each place that can handle a failure further
+ down the line pushes a failure point on this stack. It consists of
+ regstart, and regend for all registers corresponding to
+ the subexpressions we're currently inside, plus the number of such
+ registers, and, finally, two char *'s. The first char * is where
+ to resume scanning the pattern; the second one is where to resume
+ scanning the strings. */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
+ fail_stack_type fail_stack;
+#endif
+#ifdef DEBUG_COMPILES_ARGUMENTS
+ unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
+#endif
+
+#if defined REL_ALLOC && defined REGEX_MALLOC
+ /* This holds the pointer to the failure stack, when
+ it is allocated relocatably. */
+ fail_stack_elt_t *failure_stack_ptr;
+#endif
+
+ /* We fill all the registers internally, independent of what we
+ return, for use in backreferences. The number here includes
+ an element for register zero. */
+ size_t num_regs = bufp->re_nsub + 1;
+
+ /* Information on the contents of registers. These are pointers into
+ the input strings; they record just what was matched (on this
+ attempt) by a subexpression part of the pattern, that is, the
+ regnum-th regstart pointer points to where in the pattern we began
+ matching and the regnum-th regend points to right after where we
+ stopped matching the regnum-th subexpression. (The zeroth register
+ keeps track of what the whole pattern matches.) */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
+ re_char **regstart, **regend;
+#endif
+
+ /* The following record the register info as found in the above
+ variables when we find a match better than any we've seen before.
+ This happens as we backtrack through the failure points, which in
+ turn happens only if we have not yet matched the entire string. */
+ unsigned best_regs_set = false;
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
+ re_char **best_regstart, **best_regend;
+#endif
+
+ /* Logically, this is `best_regend[0]'. But we don't want to have to
+ allocate space for that if we're not allocating space for anything
+ else (see below). Also, we never need info about register 0 for
+ any of the other register vectors, and it seems rather a kludge to
+ treat `best_regend' differently than the rest. So we keep track of
+ the end of the best match so far in a separate variable. We
+ initialize this to NULL so that when we backtrack the first time
+ and need to test it, it's not garbage. */
+ re_char *match_end = NULL;
+
+#ifdef DEBUG_COMPILES_ARGUMENTS
+ /* Counts the total number of registers pushed. */
+ unsigned num_regs_pushed = 0;
+#endif
+
+ DEBUG_PRINT ("\n\nEntering re_match_2.\n");
+
+ REGEX_USE_SAFE_ALLOCA;
+
+ INIT_FAIL_STACK ();
+
+#ifdef MATCH_MAY_ALLOCATE
+ /* Do not bother to initialize all the register variables if there are
+ no groups in the pattern, as it takes a fair amount of time. If
+ there are groups, we include space for register 0 (the whole
+ pattern), even though we never use it, since it simplifies the
+ array indexing. We should fix this. */
+ if (bufp->re_nsub)
+ {
+ regstart = REGEX_TALLOC (num_regs, re_char *);
+ regend = REGEX_TALLOC (num_regs, re_char *);
+ best_regstart = REGEX_TALLOC (num_regs, re_char *);
+ best_regend = REGEX_TALLOC (num_regs, re_char *);
+
+ if (!(regstart && regend && best_regstart && best_regend))
+ {
+ FREE_VARIABLES ();
+ return -2;
+ }
+ }
+ else
+ {
+ /* We must initialize all our variables to NULL, so that
+ `FREE_VARIABLES' doesn't try to free them. */
+ regstart = regend = best_regstart = best_regend = NULL;
+ }
+#endif /* MATCH_MAY_ALLOCATE */
+
+ /* The starting position is bogus. */
+ if (pos < 0 || pos > size1 + size2)
+ {
+ FREE_VARIABLES ();
+ return -1;
+ }
+
+ /* Initialize subexpression text positions to -1 to mark ones that no
+ start_memory/stop_memory has been seen for. Also initialize the
+ register information struct. */
+ for (reg = 1; reg < num_regs; reg++)
+ regstart[reg] = regend[reg] = NULL;
+
+ /* We move `string1' into `string2' if the latter's empty -- but not if
+ `string1' is null. */
+ if (size2 == 0 && string1 != NULL)
+ {
+ string2 = string1;
+ size2 = size1;
+ string1 = 0;
+ size1 = 0;
+ }
+ end1 = string1 + size1;
+ end2 = string2 + size2;
+
+ /* `p' scans through the pattern as `d' scans through the data.
+ `dend' is the end of the input string that `d' points within. `d'
+ is advanced into the following input string whenever necessary, but
+ this happens before fetching; therefore, at the beginning of the
+ loop, `d' can be pointing at the end of a string, but it cannot
+ equal `string2'. */
+ if (pos >= size1)
+ {
+ /* Only match within string2. */
+ d = string2 + pos - size1;
+ dend = end_match_2 = string2 + stop - size1;
+ end_match_1 = end1; /* Just to give it a value. */
+ }
+ else
+ {
+ if (stop < size1)
+ {
+ /* Only match within string1. */
+ end_match_1 = string1 + stop;
+ /* BEWARE!
+ When we reach end_match_1, PREFETCH normally switches to string2.
+ But in the present case, this means that just doing a PREFETCH
+ makes us jump from `stop' to `gap' within the string.
+ What we really want here is for the search to stop as
+ soon as we hit end_match_1. That's why we set end_match_2
+ to end_match_1 (since PREFETCH fails as soon as we hit
+ end_match_2). */
+ end_match_2 = end_match_1;
+ }
+ else
+ { /* It's important to use this code when stop == size so that
+ moving `d' from end1 to string2 will not prevent the d == dend
+ check from catching the end of string. */
+ end_match_1 = end1;
+ end_match_2 = string2 + stop - size1;
+ }
+ d = string1 + pos;
+ dend = end_match_1;
+ }
+
+ DEBUG_PRINT ("The compiled pattern is: ");
+ DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
+ DEBUG_PRINT ("The string to match is: \"");
+ DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
+ DEBUG_PRINT ("\"\n");
+
+ /* This loops over pattern commands. It exits by returning from the
+ function if the match is complete, or it drops through if the match
+ fails at this starting point in the input data. */
+ for (;;)
+ {
+ DEBUG_PRINT ("\n%p: ", p);
+
+ if (p == pend)
+ {
+ /* End of pattern means we might have succeeded. */
+ DEBUG_PRINT ("end of pattern ... ");
+
+ /* If we haven't matched the entire string, and we want the
+ longest match, try backtracking. */
+ if (d != end_match_2)
+ {
+ /* True if this match is the best seen so far. */
+ bool best_match_p;
+
+ {
+ /* True if this match ends in the same string (string1
+ or string2) as the best previous match. */
+ bool same_str_p = (FIRST_STRING_P (match_end)
+ == FIRST_STRING_P (d));
+
+ /* AIX compiler got confused when this was combined
+ with the previous declaration. */
+ if (same_str_p)
+ best_match_p = d > match_end;
+ else
+ best_match_p = !FIRST_STRING_P (d);
+ }
+
+ DEBUG_PRINT ("backtracking.\n");
+
+ if (!FAIL_STACK_EMPTY ())
+ { /* More failure points to try. */
+
+ /* If exceeds best match so far, save it. */
+ if (!best_regs_set || best_match_p)
+ {
+ best_regs_set = true;
+ match_end = d;
+
+ DEBUG_PRINT ("\nSAVING match as best so far.\n");
+
+ for (reg = 1; reg < num_regs; reg++)
+ {
+ best_regstart[reg] = regstart[reg];
+ best_regend[reg] = regend[reg];
+ }
+ }
+ goto fail;
+ }
+
+ /* If no failure points, don't restore garbage. And if
+ last match is real best match, don't restore second
+ best one. */
+ else if (best_regs_set && !best_match_p)
+ {
+ restore_best_regs:
+ /* Restore best match. It may happen that `dend ==
+ end_match_1' while the restored d is in string2.
+ For example, the pattern `x.*y.*z' against the
+ strings `x-' and `y-z-', if the two strings are
+ not consecutive in memory. */
+ DEBUG_PRINT ("Restoring best registers.\n");
+
+ d = match_end;
+ dend = ((d >= string1 && d <= end1)
+ ? end_match_1 : end_match_2);
+
+ for (reg = 1; reg < num_regs; reg++)
+ {
+ regstart[reg] = best_regstart[reg];
+ regend[reg] = best_regend[reg];
+ }
+ }
+ } /* d != end_match_2 */
+
+ succeed_label:
+ DEBUG_PRINT ("Accepting match.\n");
+
+ /* If caller wants register contents data back, do it. */
+ if (regs && !bufp->no_sub)
+ {
+ /* Have the register data arrays been allocated? */
+ if (bufp->regs_allocated == REGS_UNALLOCATED)
+ { /* No. So allocate them with malloc. We need one
+ extra element beyond `num_regs' for the `-1' marker
+ GNU code uses. */
+ regs->num_regs = max (RE_NREGS, num_regs + 1);
+ regs->start = TALLOC (regs->num_regs, regoff_t);
+ regs->end = TALLOC (regs->num_regs, regoff_t);
+ if (regs->start == NULL || regs->end == NULL)
+ {
+ FREE_VARIABLES ();
+ return -2;
+ }
+ bufp->regs_allocated = REGS_REALLOCATE;
+ }
+ else if (bufp->regs_allocated == REGS_REALLOCATE)
+ { /* Yes. If we need more elements than were already
+ allocated, reallocate them. If we need fewer, just
+ leave it alone. */
+ if (regs->num_regs < num_regs + 1)
+ {
+ regs->num_regs = num_regs + 1;
+ RETALLOC (regs->start, regs->num_regs, regoff_t);
+ RETALLOC (regs->end, regs->num_regs, regoff_t);
+ if (regs->start == NULL || regs->end == NULL)
+ {
+ FREE_VARIABLES ();
+ return -2;
+ }
+ }
+ }
+ else
+ {
+ /* These braces fend off a "empty body in an else-statement"
+ warning under GCC when assert expands to nothing. */
+ assert (bufp->regs_allocated == REGS_FIXED);
+ }
+
+ /* Convert the pointer data in `regstart' and `regend' to
+ indices. Register zero has to be set differently,
+ since we haven't kept track of any info for it. */
+ if (regs->num_regs > 0)
+ {
+ regs->start[0] = pos;
+ regs->end[0] = POINTER_TO_OFFSET (d);
+ }
+
+ /* Go through the first `min (num_regs, regs->num_regs)'
+ registers, since that is all we initialized. */
+ for (reg = 1; reg < min (num_regs, regs->num_regs); reg++)
+ {
+ if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
+ regs->start[reg] = regs->end[reg] = -1;
+ else
+ {
+ regs->start[reg] = POINTER_TO_OFFSET (regstart[reg]);
+ regs->end[reg] = POINTER_TO_OFFSET (regend[reg]);
+ }
+ }
+
+ /* If the regs structure we return has more elements than
+ were in the pattern, set the extra elements to -1. If
+ we (re)allocated the registers, this is the case,
+ because we always allocate enough to have at least one
+ -1 at the end. */
+ for (reg = num_regs; reg < regs->num_regs; reg++)
+ regs->start[reg] = regs->end[reg] = -1;
+ } /* regs && !bufp->no_sub */
+
+ DEBUG_PRINT ("%u failure points pushed, %u popped (%u remain).\n",
+ nfailure_points_pushed, nfailure_points_popped,
+ nfailure_points_pushed - nfailure_points_popped);
+ DEBUG_PRINT ("%u registers pushed.\n", num_regs_pushed);
+
+ ptrdiff_t dcnt = POINTER_TO_OFFSET (d) - pos;
+
+ DEBUG_PRINT ("Returning %td from re_match_2.\n", dcnt);
+
+ FREE_VARIABLES ();
+ return dcnt;
+ }
+
+ /* Otherwise match next pattern command. */
+ switch (*p++)
+ {
+ /* Ignore these. Used to ignore the n of succeed_n's which
+ currently have n == 0. */
+ case no_op:
+ DEBUG_PRINT ("EXECUTING no_op.\n");
+ break;
+
+ case succeed:
+ DEBUG_PRINT ("EXECUTING succeed.\n");
+ goto succeed_label;
+
+ /* Match the next n pattern characters exactly. The following
+ byte in the pattern defines n, and the n bytes after that
+ are the characters to match. */
+ case exactn:
+ mcnt = *p++;
+ DEBUG_PRINT ("EXECUTING exactn %d.\n", mcnt);
+
+ /* Remember the start point to rollback upon failure. */
+ dfail = d;
+
+#ifndef emacs
+ /* This is written out as an if-else so we don't waste time
+ testing `translate' inside the loop. */
+ if (RE_TRANSLATE_P (translate))
+ do
+ {
+ PREFETCH ();
+ if (RE_TRANSLATE (translate, *d) != *p++)
+ {
+ d = dfail;
+ goto fail;
+ }
+ d++;
+ }
+ while (--mcnt);
+ else
+ do
+ {
+ PREFETCH ();
+ if (*d++ != *p++)
+ {
+ d = dfail;
+ goto fail;
+ }
+ }
+ while (--mcnt);
+#else /* emacs */
+ /* The cost of testing `translate' is comparatively small. */
+ if (target_multibyte)
+ do
+ {
+ int pat_charlen, buf_charlen;
+ int pat_ch, buf_ch;
+
+ PREFETCH ();
+ if (multibyte)
+ pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
+ else
+ {
+ pat_ch = RE_CHAR_TO_MULTIBYTE (*p);
+ pat_charlen = 1;
+ }
+ buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
+
+ if (TRANSLATE (buf_ch) != pat_ch)
+ {
+ d = dfail;
+ goto fail;
+ }
+
+ p += pat_charlen;
+ d += buf_charlen;
+ mcnt -= pat_charlen;
+ }
+ while (mcnt > 0);
+ else
+ do
+ {
+ int pat_charlen;
+ int pat_ch, buf_ch;
+
+ PREFETCH ();
+ if (multibyte)
+ {
+ pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
+ pat_ch = RE_CHAR_TO_UNIBYTE (pat_ch);
+ }
+ else
+ {
+ pat_ch = *p;
+ pat_charlen = 1;
+ }
+ buf_ch = RE_CHAR_TO_MULTIBYTE (*d);
+ if (! CHAR_BYTE8_P (buf_ch))
+ {
+ buf_ch = TRANSLATE (buf_ch);
+ buf_ch = RE_CHAR_TO_UNIBYTE (buf_ch);
+ if (buf_ch < 0)
+ buf_ch = *d;
+ }
+ else
+ buf_ch = *d;
+ if (buf_ch != pat_ch)
+ {
+ d = dfail;
+ goto fail;
+ }
+ p += pat_charlen;
+ d++;
+ }
+ while (--mcnt);
+#endif
+ break;
+
+
+ /* Match any character except possibly a newline or a null. */
+ case anychar:
+ {
+ int buf_charlen;
+ re_wchar_t buf_ch;
+ reg_syntax_t syntax;
+
+ DEBUG_PRINT ("EXECUTING anychar.\n");
+
+ PREFETCH ();
+ buf_ch = RE_STRING_CHAR_AND_LENGTH (d, buf_charlen,
+ target_multibyte);
+ buf_ch = TRANSLATE (buf_ch);
+
+#ifdef emacs
+ syntax = RE_SYNTAX_EMACS;
+#else
+ syntax = bufp->syntax;
+#endif
+
+ if ((!(syntax & RE_DOT_NEWLINE) && buf_ch == '\n')
+ || ((syntax & RE_DOT_NOT_NULL) && buf_ch == '\000'))
+ goto fail;
+
+ DEBUG_PRINT (" Matched \"%d\".\n", *d);
+ d += buf_charlen;
+ }
+ break;
+
+
+ case charset:
+ case charset_not:
+ {
+ register unsigned int c, corig;
+ int len;
+
+ /* Whether matching against a unibyte character. */
+ boolean unibyte_char = false;
+
+ DEBUG_PRINT ("EXECUTING charset%s.\n",
+ (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
+
+ PREFETCH ();
+ corig = c = RE_STRING_CHAR_AND_LENGTH (d, len, target_multibyte);
+ if (target_multibyte)
+ {
+ int c1;
+
+ c = TRANSLATE (c);
+ c1 = RE_CHAR_TO_UNIBYTE (c);
+ if (c1 >= 0)
+ {
+ unibyte_char = true;
+ c = c1;
+ }
+ }
+ else
+ {
+ int c1 = RE_CHAR_TO_MULTIBYTE (c);
+
+ if (! CHAR_BYTE8_P (c1))
+ {
+ c1 = TRANSLATE (c1);
+ c1 = RE_CHAR_TO_UNIBYTE (c1);
+ if (c1 >= 0)
+ {
+ unibyte_char = true;
+ c = c1;
+ }
+ }
+ else
+ unibyte_char = true;
+ }
+
+ p -= 1;
+ if (!execute_charset (&p, c, corig, unibyte_char))
+ goto fail;
+
+ d += len;
+ }
+ break;
+
+
+ /* The beginning of a group is represented by start_memory.
+ The argument is the register number. The text
+ matched within the group is recorded (in the internal
+ registers data structure) under the register number. */
+ case start_memory:
+ DEBUG_PRINT ("EXECUTING start_memory %d:\n", *p);
+
+ /* In case we need to undo this operation (via backtracking). */
+ PUSH_FAILURE_REG (*p);
+
+ regstart[*p] = d;
+ regend[*p] = NULL; /* probably unnecessary. -sm */
+ DEBUG_PRINT (" regstart: %td\n", POINTER_TO_OFFSET (regstart[*p]));
+
+ /* Move past the register number and inner group count. */
+ p += 1;
+ break;
+
+
+ /* The stop_memory opcode represents the end of a group. Its
+ argument is the same as start_memory's: the register number. */
+ case stop_memory:
+ DEBUG_PRINT ("EXECUTING stop_memory %d:\n", *p);
+
+ assert (!REG_UNSET (regstart[*p]));
+ /* Strictly speaking, there should be code such as:
+
+ assert (REG_UNSET (regend[*p]));
+ PUSH_FAILURE_REGSTOP ((unsigned int)*p);
+
+ But the only info to be pushed is regend[*p] and it is known to
+ be UNSET, so there really isn't anything to push.
+ Not pushing anything, on the other hand deprives us from the
+ guarantee that regend[*p] is UNSET since undoing this operation
+ will not reset its value properly. This is not important since
+ the value will only be read on the next start_memory or at
+ the very end and both events can only happen if this stop_memory
+ is *not* undone. */
+
+ regend[*p] = d;
+ DEBUG_PRINT (" regend: %td\n", POINTER_TO_OFFSET (regend[*p]));
+
+ /* Move past the register number and the inner group count. */
+ p += 1;
+ break;
+
+
+ /* \<digit> has been turned into a `duplicate' command which is
+ followed by the numeric value of <digit> as the register number. */
+ case duplicate:
+ {
+ register re_char *d2, *dend2;
+ int regno = *p++; /* Get which register to match against. */
+ DEBUG_PRINT ("EXECUTING duplicate %d.\n", regno);
+
+ /* Can't back reference a group which we've never matched. */
+ if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
+ goto fail;
+
+ /* Where in input to try to start matching. */
+ d2 = regstart[regno];
+
+ /* Remember the start point to rollback upon failure. */
+ dfail = d;
+
+ /* Where to stop matching; if both the place to start and
+ the place to stop matching are in the same string, then
+ set to the place to stop, otherwise, for now have to use
+ the end of the first string. */
+
+ dend2 = ((FIRST_STRING_P (regstart[regno])
+ == FIRST_STRING_P (regend[regno]))
+ ? regend[regno] : end_match_1);
+ for (;;)
+ {
+ ptrdiff_t dcnt;
+
+ /* If necessary, advance to next segment in register
+ contents. */
+ while (d2 == dend2)
+ {
+ if (dend2 == end_match_2) break;
+ if (dend2 == regend[regno]) break;
+
+ /* End of string1 => advance to string2. */
+ d2 = string2;
+ dend2 = regend[regno];
+ }
+ /* At end of register contents => success */
+ if (d2 == dend2) break;
+
+ /* If necessary, advance to next segment in data. */
+ PREFETCH ();
+
+ /* How many characters left in this segment to match. */
+ dcnt = dend - d;
+
+ /* Want how many consecutive characters we can match in
+ one shot, so, if necessary, adjust the count. */
+ if (dcnt > dend2 - d2)
+ dcnt = dend2 - d2;
+
+ /* Compare that many; failure if mismatch, else move
+ past them. */
+ if (RE_TRANSLATE_P (translate)
+ ? bcmp_translate (d, d2, dcnt, translate, target_multibyte)
+ : memcmp (d, d2, dcnt))
+ {
+ d = dfail;
+ goto fail;
+ }
+ d += dcnt, d2 += dcnt;
+ }
+ }
+ break;
+
+
+ /* begline matches the empty string at the beginning of the string
+ (unless `not_bol' is set in `bufp'), and after newlines. */
+ case begline:
+ DEBUG_PRINT ("EXECUTING begline.\n");
+
+ if (AT_STRINGS_BEG (d))
+ {
+ if (!bufp->not_bol) break;
+ }
+ else
+ {
+ unsigned c;
+ GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
+ if (c == '\n')
+ break;
+ }
+ /* In all other cases, we fail. */
+ goto fail;
+
+
+ /* endline is the dual of begline. */
+ case endline:
+ DEBUG_PRINT ("EXECUTING endline.\n");
+
+ if (AT_STRINGS_END (d))
+ {
+ if (!bufp->not_eol) break;
+ }
+ else
+ {
+ PREFETCH_NOLIMIT ();
+ if (*d == '\n')
+ break;
+ }
+ goto fail;
+
+
+ /* Match at the very beginning of the data. */
+ case begbuf:
+ DEBUG_PRINT ("EXECUTING begbuf.\n");
+ if (AT_STRINGS_BEG (d))
+ break;
+ goto fail;
+
+
+ /* Match at the very end of the data. */
+ case endbuf:
+ DEBUG_PRINT ("EXECUTING endbuf.\n");
+ if (AT_STRINGS_END (d))
+ break;
+ goto fail;
+
+
+ /* on_failure_keep_string_jump is used to optimize `.*\n'. It
+ pushes NULL as the value for the string on the stack. Then
+ `POP_FAILURE_POINT' will keep the current value for the
+ string, instead of restoring it. To see why, consider
+ matching `foo\nbar' against `.*\n'. The .* matches the foo;
+ then the . fails against the \n. But the next thing we want
+ to do is match the \n against the \n; if we restored the
+ string value, we would be back at the foo.
+
+ Because this is used only in specific cases, we don't need to
+ check all the things that `on_failure_jump' does, to make
+ sure the right things get saved on the stack. Hence we don't
+ share its code. The only reason to push anything on the
+ stack at all is that otherwise we would have to change
+ `anychar's code to do something besides goto fail in this
+ case; that seems worse than this. */
+ case on_failure_keep_string_jump:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
+ mcnt, p + mcnt);
+
+ PUSH_FAILURE_POINT (p - 3, NULL);
+ break;
+
+ /* A nasty loop is introduced by the non-greedy *? and +?.
+ With such loops, the stack only ever contains one failure point
+ at a time, so that a plain on_failure_jump_loop kind of
+ cycle detection cannot work. Worse yet, such a detection
+ can not only fail to detect a cycle, but it can also wrongly
+ detect a cycle (between different instantiations of the same
+ loop).
+ So the method used for those nasty loops is a little different:
+ We use a special cycle-detection-stack-frame which is pushed
+ when the on_failure_jump_nastyloop failure-point is *popped*.
+ This special frame thus marks the beginning of one iteration
+ through the loop and we can hence easily check right here
+ whether something matched between the beginning and the end of
+ the loop. */
+ case on_failure_jump_nastyloop:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
+ mcnt, p + mcnt);
+
+ assert ((re_opcode_t)p[-4] == no_op);
+ {
+ int cycle = 0;
+ CHECK_INFINITE_LOOP (p - 4, d);
+ if (!cycle)
+ /* If there's a cycle, just continue without pushing
+ this failure point. The failure point is the "try again"
+ option, which shouldn't be tried.
+ We want (x?)*?y\1z to match both xxyz and xxyxz. */
+ PUSH_FAILURE_POINT (p - 3, d);
+ }
+ break;
+
+ /* Simple loop detecting on_failure_jump: just check on the
+ failure stack if the same spot was already hit earlier. */
+ case on_failure_jump_loop:
+ on_failure:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT ("EXECUTING on_failure_jump_loop %d (to %p):\n",
+ mcnt, p + mcnt);
+ {
+ int cycle = 0;
+ CHECK_INFINITE_LOOP (p - 3, d);
+ if (cycle)
+ /* If there's a cycle, get out of the loop, as if the matching
+ had failed. We used to just `goto fail' here, but that was
+ aborting the search a bit too early: we want to keep the
+ empty-loop-match and keep matching after the loop.
+ We want (x?)*y\1z to match both xxyz and xxyxz. */
+ p += mcnt;
+ else
+ PUSH_FAILURE_POINT (p - 3, d);
+ }
+ break;
+
+
+ /* Uses of on_failure_jump:
+
+ Each alternative starts with an on_failure_jump that points
+ to the beginning of the next alternative. Each alternative
+ except the last ends with a jump that in effect jumps past
+ the rest of the alternatives. (They really jump to the
+ ending jump of the following alternative, because tensioning
+ these jumps is a hassle.)
+
+ Repeats start with an on_failure_jump that points past both
+ the repetition text and either the following jump or
+ pop_failure_jump back to this on_failure_jump. */
+ case on_failure_jump:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT ("EXECUTING on_failure_jump %d (to %p):\n",
+ mcnt, p + mcnt);
+
+ PUSH_FAILURE_POINT (p -3, d);
+ break;
+
+ /* This operation is used for greedy *.
+ Compare the beginning of the repeat with what in the
+ pattern follows its end. If we can establish that there
+ is nothing that they would both match, i.e., that we
+ would have to backtrack because of (as in, e.g., `a*a')
+ then we can use a non-backtracking loop based on
+ on_failure_keep_string_jump instead of on_failure_jump. */
+ case on_failure_jump_smart:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT ("EXECUTING on_failure_jump_smart %d (to %p).\n",
+ mcnt, p + mcnt);
+ {
+ re_char *p1 = p; /* Next operation. */
+ /* Here, we discard `const', making re_match non-reentrant. */
+ unsigned char *p2 = (unsigned char *) p + mcnt; /* Jump dest. */
+ unsigned char *p3 = (unsigned char *) p - 3; /* opcode location. */
+
+ p -= 3; /* Reset so that we will re-execute the
+ instruction once it's been changed. */
+
+ EXTRACT_NUMBER (mcnt, p2 - 2);
+
+ /* Ensure this is indeed the trivial kind of loop
+ we are expecting. */
+ assert (skip_one_char (p1) == p2 - 3);
+ assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
+ DEBUG_STATEMENT (debug += 2);
+ if (mutually_exclusive_p (bufp, p1, p2))
+ {
+ /* Use a fast `on_failure_keep_string_jump' loop. */
+ DEBUG_PRINT (" smart exclusive => fast loop.\n");
+ *p3 = (unsigned char) on_failure_keep_string_jump;
+ STORE_NUMBER (p2 - 2, mcnt + 3);
+ }
+ else
+ {
+ /* Default to a safe `on_failure_jump' loop. */
+ DEBUG_PRINT (" smart default => slow loop.\n");
+ *p3 = (unsigned char) on_failure_jump;
+ }
+ DEBUG_STATEMENT (debug -= 2);
+ }
+ break;
+
+ /* Unconditionally jump (without popping any failure points). */
+ case jump:
+ unconditional_jump:
+ maybe_quit ();
+ EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
+ DEBUG_PRINT ("EXECUTING jump %d ", mcnt);
+ p += mcnt; /* Do the jump. */
+ DEBUG_PRINT ("(to %p).\n", p);
+ break;
+
+
+ /* Have to succeed matching what follows at least n times.
+ After that, handle like `on_failure_jump'. */
+ case succeed_n:
+ /* Signedness doesn't matter since we only compare MCNT to 0. */
+ EXTRACT_NUMBER (mcnt, p + 2);
+ DEBUG_PRINT ("EXECUTING succeed_n %d.\n", mcnt);
+
+ /* Originally, mcnt is how many times we HAVE to succeed. */
+ if (mcnt != 0)
+ {
+ /* Here, we discard `const', making re_match non-reentrant. */
+ unsigned char *p2 = (unsigned char *) p + 2; /* counter loc. */
+ mcnt--;
+ p += 4;
+ PUSH_NUMBER (p2, mcnt);
+ }
+ else
+ /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
+ goto on_failure;
+ break;
+
+ case jump_n:
+ /* Signedness doesn't matter since we only compare MCNT to 0. */
+ EXTRACT_NUMBER (mcnt, p + 2);
+ DEBUG_PRINT ("EXECUTING jump_n %d.\n", mcnt);
+
+ /* Originally, this is how many times we CAN jump. */
+ if (mcnt != 0)
+ {
+ /* Here, we discard `const', making re_match non-reentrant. */
+ unsigned char *p2 = (unsigned char *) p + 2; /* counter loc. */
+ mcnt--;
+ PUSH_NUMBER (p2, mcnt);
+ goto unconditional_jump;
+ }
+ /* If don't have to jump any more, skip over the rest of command. */
+ else
+ p += 4;
+ break;
+
+ case set_number_at:
+ {
+ unsigned char *p2; /* Location of the counter. */
+ DEBUG_PRINT ("EXECUTING set_number_at.\n");
+
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ /* Here, we discard `const', making re_match non-reentrant. */
+ p2 = (unsigned char *) p + mcnt;
+ /* Signedness doesn't matter since we only copy MCNT's bits. */
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT (" Setting %p to %d.\n", p2, mcnt);
+ PUSH_NUMBER (p2, mcnt);
+ break;
+ }
+
+ case wordbound:
+ case notwordbound:
+ {
+ boolean not = (re_opcode_t) *(p - 1) == notwordbound;
+ DEBUG_PRINT ("EXECUTING %swordbound.\n", not ? "not" : "");
+
+ /* We SUCCEED (or FAIL) in one of the following cases: */
+
+ /* Case 1: D is at the beginning or the end of string. */
+ if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
+ not = !not;
+ else
+ {
+ /* C1 is the character before D, S1 is the syntax of C1, C2
+ is the character at D, and S2 is the syntax of C2. */
+ re_wchar_t c1, c2;
+ int s1, s2;
+ int dummy;
+#ifdef emacs
+ ssize_t offset = PTR_TO_OFFSET (d - 1);
+ ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
+ UPDATE_SYNTAX_TABLE (charpos);
+#endif
+ GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
+ s1 = SYNTAX (c1);
+#ifdef emacs
+ UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
+#endif
+ PREFETCH_NOLIMIT ();
+ GET_CHAR_AFTER (c2, d, dummy);
+ s2 = SYNTAX (c2);
+
+ if (/* Case 2: Only one of S1 and S2 is Sword. */
+ ((s1 == Sword) != (s2 == Sword))
+ /* Case 3: Both of S1 and S2 are Sword, and macro
+ WORD_BOUNDARY_P (C1, C2) returns nonzero. */
+ || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
+ not = !not;
+ }
+ if (not)
+ break;
+ else
+ goto fail;
+ }
+
+ case wordbeg:
+ DEBUG_PRINT ("EXECUTING wordbeg.\n");
+
+ /* We FAIL in one of the following cases: */
+
+ /* Case 1: D is at the end of string. */
+ if (AT_STRINGS_END (d))
+ goto fail;
+ else
+ {
+ /* C1 is the character before D, S1 is the syntax of C1, C2
+ is the character at D, and S2 is the syntax of C2. */
+ re_wchar_t c1, c2;
+ int s1, s2;
+ int dummy;
+#ifdef emacs
+ ssize_t offset = PTR_TO_OFFSET (d);
+ ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
+ UPDATE_SYNTAX_TABLE (charpos);
+#endif
+ PREFETCH ();
+ GET_CHAR_AFTER (c2, d, dummy);
+ s2 = SYNTAX (c2);
+
+ /* Case 2: S2 is not Sword. */
+ if (s2 != Sword)
+ goto fail;
+
+ /* Case 3: D is not at the beginning of string ... */
+ if (!AT_STRINGS_BEG (d))
+ {
+ GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
+#ifdef emacs
+ UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
+#endif
+ s1 = SYNTAX (c1);
+
+ /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
+ returns 0. */
+ if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
+ goto fail;
+ }
+ }
+ break;
+
+ case wordend:
+ DEBUG_PRINT ("EXECUTING wordend.\n");
+
+ /* We FAIL in one of the following cases: */
+
+ /* Case 1: D is at the beginning of string. */
+ if (AT_STRINGS_BEG (d))
+ goto fail;
+ else
+ {
+ /* C1 is the character before D, S1 is the syntax of C1, C2
+ is the character at D, and S2 is the syntax of C2. */
+ re_wchar_t c1, c2;
+ int s1, s2;
+ int dummy;
+#ifdef emacs
+ ssize_t offset = PTR_TO_OFFSET (d) - 1;
+ ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
+ UPDATE_SYNTAX_TABLE (charpos);
+#endif
+ GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
+ s1 = SYNTAX (c1);
+
+ /* Case 2: S1 is not Sword. */
+ if (s1 != Sword)
+ goto fail;
+
+ /* Case 3: D is not at the end of string ... */
+ if (!AT_STRINGS_END (d))
+ {
+ PREFETCH_NOLIMIT ();
+ GET_CHAR_AFTER (c2, d, dummy);
+#ifdef emacs
+ UPDATE_SYNTAX_TABLE_FORWARD (charpos);
+#endif
+ s2 = SYNTAX (c2);
+
+ /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
+ returns 0. */
+ if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
+ goto fail;
+ }
+ }
+ break;
+
+ case symbeg:
+ DEBUG_PRINT ("EXECUTING symbeg.\n");
+
+ /* We FAIL in one of the following cases: */
+
+ /* Case 1: D is at the end of string. */
+ if (AT_STRINGS_END (d))
+ goto fail;
+ else
+ {
+ /* C1 is the character before D, S1 is the syntax of C1, C2
+ is the character at D, and S2 is the syntax of C2. */
+ re_wchar_t c1, c2;
+ int s1, s2;
+#ifdef emacs
+ ssize_t offset = PTR_TO_OFFSET (d);
+ ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
+ UPDATE_SYNTAX_TABLE (charpos);
+#endif
+ PREFETCH ();
+ c2 = RE_STRING_CHAR (d, target_multibyte);
+ s2 = SYNTAX (c2);
+
+ /* Case 2: S2 is neither Sword nor Ssymbol. */
+ if (s2 != Sword && s2 != Ssymbol)
+ goto fail;
+
+ /* Case 3: D is not at the beginning of string ... */
+ if (!AT_STRINGS_BEG (d))
+ {
+ GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
+#ifdef emacs
+ UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
+#endif
+ s1 = SYNTAX (c1);
+
+ /* ... and S1 is Sword or Ssymbol. */
+ if (s1 == Sword || s1 == Ssymbol)
+ goto fail;
+ }
+ }
+ break;
+
+ case symend:
+ DEBUG_PRINT ("EXECUTING symend.\n");
+
+ /* We FAIL in one of the following cases: */
+
+ /* Case 1: D is at the beginning of string. */
+ if (AT_STRINGS_BEG (d))
+ goto fail;
+ else
+ {
+ /* C1 is the character before D, S1 is the syntax of C1, C2
+ is the character at D, and S2 is the syntax of C2. */
+ re_wchar_t c1, c2;
+ int s1, s2;
+#ifdef emacs
+ ssize_t offset = PTR_TO_OFFSET (d) - 1;
+ ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
+ UPDATE_SYNTAX_TABLE (charpos);
+#endif
+ GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
+ s1 = SYNTAX (c1);
+
+ /* Case 2: S1 is neither Ssymbol nor Sword. */
+ if (s1 != Sword && s1 != Ssymbol)
+ goto fail;
+
+ /* Case 3: D is not at the end of string ... */
+ if (!AT_STRINGS_END (d))
+ {
+ PREFETCH_NOLIMIT ();
+ c2 = RE_STRING_CHAR (d, target_multibyte);
+#ifdef emacs
+ UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
+#endif
+ s2 = SYNTAX (c2);
+
+ /* ... and S2 is Sword or Ssymbol. */
+ if (s2 == Sword || s2 == Ssymbol)
+ goto fail;
+ }
+ }
+ break;
+
+ case syntaxspec:
+ case notsyntaxspec:
+ {
+ boolean not = (re_opcode_t) *(p - 1) == notsyntaxspec;
+ mcnt = *p++;
+ DEBUG_PRINT ("EXECUTING %ssyntaxspec %d.\n", not ? "not" : "",
+ mcnt);
+ PREFETCH ();
+#ifdef emacs
+ {
+ ssize_t offset = PTR_TO_OFFSET (d);
+ ssize_t pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
+ UPDATE_SYNTAX_TABLE (pos1);
+ }
+#endif
+ {
+ int len;
+ re_wchar_t c;
+
+ GET_CHAR_AFTER (c, d, len);
+ if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
+ goto fail;
+ d += len;
+ }
+ }
+ break;
+
+#ifdef emacs
+ case at_dot:
+ DEBUG_PRINT ("EXECUTING at_dot.\n");
+ if (PTR_BYTE_POS (d) != PT_BYTE)
+ goto fail;
+ break;
+
+ case categoryspec:
+ case notcategoryspec:
+ {
+ boolean not = (re_opcode_t) *(p - 1) == notcategoryspec;
+ mcnt = *p++;
+ DEBUG_PRINT ("EXECUTING %scategoryspec %d.\n",
+ not ? "not" : "", mcnt);
+ PREFETCH ();
+
+ {
+ int len;
+ re_wchar_t c;
+ GET_CHAR_AFTER (c, d, len);
+ if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
+ goto fail;
+ d += len;
+ }
+ }
+ break;
+
+#endif /* emacs */
+
+ default:
+ abort ();
+ }
+ continue; /* Successfully executed one pattern command; keep going. */
+
+
+ /* We goto here if a matching operation fails. */
+ fail:
+ maybe_quit ();
+ if (!FAIL_STACK_EMPTY ())
+ {
+ re_char *str, *pat;
+ /* A restart point is known. Restore to that state. */
+ DEBUG_PRINT ("\nFAIL:\n");
+ POP_FAILURE_POINT (str, pat);
+ switch (*pat++)
+ {
+ case on_failure_keep_string_jump:
+ assert (str == NULL);
+ goto continue_failure_jump;
+
+ case on_failure_jump_nastyloop:
+ assert ((re_opcode_t)pat[-2] == no_op);
+ PUSH_FAILURE_POINT (pat - 2, str);
+ FALLTHROUGH;
+ case on_failure_jump_loop:
+ case on_failure_jump:
+ case succeed_n:
+ d = str;
+ continue_failure_jump:
+ EXTRACT_NUMBER_AND_INCR (mcnt, pat);
+ p = pat + mcnt;
+ break;
+
+ case no_op:
+ /* A special frame used for nastyloops. */
+ goto fail;
+
+ default:
+ abort ();
+ }
+
+ assert (p >= bufp->buffer && p <= pend);
+
+ if (d >= string1 && d <= end1)
+ dend = end_match_1;
+ }
+ else
+ break; /* Matching at this starting point really fails. */
+ } /* for (;;) */
+
+ if (best_regs_set)
+ goto restore_best_regs;
+
+ FREE_VARIABLES ();
+
+ return -1; /* Failure to match. */
+}
+\f
+/* Subroutine definitions for re_match_2. */
+
+/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
+ bytes; nonzero otherwise. */
+
+static int
+bcmp_translate (re_char *s1, re_char *s2, ssize_t len,
+ RE_TRANSLATE_TYPE translate, const int target_multibyte)
+{
+ re_char *p1 = s1, *p2 = s2;
+ re_char *p1_end = s1 + len;
+ re_char *p2_end = s2 + len;
+
+ /* FIXME: Checking both p1 and p2 presumes that the two strings might have
+ different lengths, but relying on a single `len' would break this. -sm */
+ while (p1 < p1_end && p2 < p2_end)
+ {
+ int p1_charlen, p2_charlen;
+ re_wchar_t p1_ch, p2_ch;
+
+ GET_CHAR_AFTER (p1_ch, p1, p1_charlen);
+ GET_CHAR_AFTER (p2_ch, p2, p2_charlen);
+
+ if (RE_TRANSLATE (translate, p1_ch)
+ != RE_TRANSLATE (translate, p2_ch))
+ return 1;
+
+ p1 += p1_charlen, p2 += p2_charlen;
+ }
+
+ if (p1 != p1_end || p2 != p2_end)
+ return 1;
+
+ return 0;
+}
+\f
+/* Entry points for GNU code. */
+
+/* re_compile_pattern is the GNU regular expression compiler: it
+ compiles PATTERN (of length SIZE) and puts the result in BUFP.
+ Returns 0 if the pattern was valid, otherwise an error string.
+
+ Assumes the `allocated' (and perhaps `buffer') and `translate' fields
+ are set in BUFP on entry.
+
+ We call regex_compile to do the actual compilation. */
+
+const char *
+re_compile_pattern (const char *pattern, size_t length,
+#ifdef emacs
+ bool posix_backtracking, const char *whitespace_regexp,
+#endif
+ struct re_pattern_buffer *bufp)
+{
+ reg_errcode_t ret;
+
+ /* GNU code is written to assume at least RE_NREGS registers will be set
+ (and at least one extra will be -1). */
+ bufp->regs_allocated = REGS_UNALLOCATED;
+
+ /* And GNU code determines whether or not to get register information
+ by passing null for the REGS argument to re_match, etc., not by
+ setting no_sub. */
+ bufp->no_sub = 0;
+
+ ret = regex_compile ((re_char *) pattern, length,
+#ifdef emacs
+ posix_backtracking,
+ whitespace_regexp,
+#else
+ re_syntax_options,
+#endif
+ bufp);
+
+ if (!ret)
+ return NULL;
+ return gettext (re_error_msgid[(int) ret]);
+}
+WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
+\f
+/* Entry points compatible with 4.2 BSD regex library. We don't define
+ them unless specifically requested. */
+
+#if defined _REGEX_RE_COMP || defined _LIBC
+
+/* BSD has one and only one pattern buffer. */
+static struct re_pattern_buffer re_comp_buf;
+
+char *
+# ifdef _LIBC
+/* Make these definitions weak in libc, so POSIX programs can redefine
+ these names if they don't use our functions, and still use
+ regcomp/regexec below without link errors. */
+weak_function
+# endif
+re_comp (const char *s)
+{
+ reg_errcode_t ret;
+
+ if (!s)
+ {
+ if (!re_comp_buf.buffer)
+ /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
+ return (char *) gettext ("No previous regular expression");
+ return 0;
+ }
+
+ if (!re_comp_buf.buffer)
+ {
+ re_comp_buf.buffer = malloc (200);
+ if (re_comp_buf.buffer == NULL)
+ /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
+ return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
+ re_comp_buf.allocated = 200;
+
+ re_comp_buf.fastmap = malloc (1 << BYTEWIDTH);
+ if (re_comp_buf.fastmap == NULL)
+ /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
+ return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
+ }
+
+ /* Since `re_exec' always passes NULL for the `regs' argument, we
+ don't need to initialize the pattern buffer fields which affect it. */
+
+ ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
+
+ if (!ret)
+ return NULL;
+
+ /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
+ return (char *) gettext (re_error_msgid[(int) ret]);
+}
+
+
+int
+# ifdef _LIBC
+weak_function
+# endif
+re_exec (const char *s)
+{
+ const size_t len = strlen (s);
+ return re_search (&re_comp_buf, s, len, 0, len, 0) >= 0;
+}
+#endif /* _REGEX_RE_COMP */
+\f
+/* POSIX.2 functions. Don't define these for Emacs. */
+
+#ifndef emacs
+
+/* regcomp takes a regular expression as a string and compiles it.
+
+ PREG is a regex_t *. We do not expect any fields to be initialized,
+ since POSIX says we shouldn't. Thus, we set
+
+ `buffer' to the compiled pattern;
+ `used' to the length of the compiled pattern;
+ `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
+ REG_EXTENDED bit in CFLAGS is set; otherwise, to
+ RE_SYNTAX_POSIX_BASIC;
+ `fastmap' to an allocated space for the fastmap;
+ `fastmap_accurate' to zero;
+ `re_nsub' to the number of subexpressions in PATTERN.
+
+ PATTERN is the address of the pattern string.
+
+ CFLAGS is a series of bits which affect compilation.
+
+ If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
+ use POSIX basic syntax.
+
+ If REG_NEWLINE is set, then . and [^...] don't match newline.
+ Also, regexec will try a match beginning after every newline.
+
+ If REG_ICASE is set, then we considers upper- and lowercase
+ versions of letters to be equivalent when matching.
+
+ If REG_NOSUB is set, then when PREG is passed to regexec, that
+ routine will report only success or failure, and nothing about the
+ registers.
+
+ It returns 0 if it succeeds, nonzero if it doesn't. (See regex-emacs.h for
+ the return codes and their meanings.) */
+
+reg_errcode_t
+regcomp (regex_t *_Restrict_ preg, const char *_Restrict_ pattern,
+ int cflags)
+{
+ reg_errcode_t ret;
+ reg_syntax_t syntax
+ = (cflags & REG_EXTENDED) ?
+ RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
+
+ /* regex_compile will allocate the space for the compiled pattern. */
+ preg->buffer = 0;
+ preg->allocated = 0;
+ preg->used = 0;
+
+ /* Try to allocate space for the fastmap. */
+ preg->fastmap = malloc (1 << BYTEWIDTH);
+
+ if (cflags & REG_ICASE)
+ {
+ unsigned i;
+
+ preg->translate = malloc (CHAR_SET_SIZE * sizeof *preg->translate);
+ if (preg->translate == NULL)
+ return (int) REG_ESPACE;
+
+ /* Map uppercase characters to corresponding lowercase ones. */
+ for (i = 0; i < CHAR_SET_SIZE; i++)
+ preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
+ }
+ else
+ preg->translate = NULL;
+
+ /* If REG_NEWLINE is set, newlines are treated differently. */
+ if (cflags & REG_NEWLINE)
+ { /* REG_NEWLINE implies neither . nor [^...] match newline. */
+ syntax &= ~RE_DOT_NEWLINE;
+ syntax |= RE_HAT_LISTS_NOT_NEWLINE;
+ }
+ else
+ syntax |= RE_NO_NEWLINE_ANCHOR;
+
+ preg->no_sub = !!(cflags & REG_NOSUB);
+
+ /* POSIX says a null character in the pattern terminates it, so we
+ can use strlen here in compiling the pattern. */
+ ret = regex_compile ((re_char *) pattern, strlen (pattern), syntax, preg);
+
+ /* POSIX doesn't distinguish between an unmatched open-group and an
+ unmatched close-group: both are REG_EPAREN. */
+ if (ret == REG_ERPAREN)
+ ret = REG_EPAREN;
+
+ if (ret == REG_NOERROR && preg->fastmap)
+ { /* Compute the fastmap now, since regexec cannot modify the pattern
+ buffer. */
+ re_compile_fastmap (preg);
+ if (preg->can_be_null)
+ { /* The fastmap can't be used anyway. */
+ free (preg->fastmap);
+ preg->fastmap = NULL;
+ }
+ }
+ return ret;
+}
+WEAK_ALIAS (__regcomp, regcomp)
+
+
+/* regexec searches for a given pattern, specified by PREG, in the
+ string STRING.
+
+ If NMATCH is zero or REG_NOSUB was set in the cflags argument to
+ `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
+ least NMATCH elements, and we set them to the offsets of the
+ corresponding matched substrings.
+
+ EFLAGS specifies `execution flags' which affect matching: if
+ REG_NOTBOL is set, then ^ does not match at the beginning of the
+ string; if REG_NOTEOL is set, then $ does not match at the end.
+
+ We return 0 if we find a match and REG_NOMATCH if not. */
+
+reg_errcode_t
+regexec (const regex_t *_Restrict_ preg, const char *_Restrict_ string,
+ size_t nmatch, regmatch_t pmatch[_Restrict_arr_], int eflags)
+{
+ regoff_t ret;
+ struct re_registers regs;
+ regex_t private_preg;
+ size_t len = strlen (string);
+ boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
+
+ private_preg = *preg;
+
+ private_preg.not_bol = !!(eflags & REG_NOTBOL);
+ private_preg.not_eol = !!(eflags & REG_NOTEOL);
+
+ /* The user has told us exactly how many registers to return
+ information about, via `nmatch'. We have to pass that on to the
+ matching routines. */
+ private_preg.regs_allocated = REGS_FIXED;
+
+ if (want_reg_info)
+ {
+ regs.num_regs = nmatch;
+ regs.start = TALLOC (nmatch * 2, regoff_t);
+ if (regs.start == NULL)
+ return REG_NOMATCH;
+ regs.end = regs.start + nmatch;
+ }
+
+ /* Instead of using not_eol to implement REG_NOTEOL, we could simply
+ pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
+ was a little bit longer but still only matching the real part.
+ This works because the `endline' will check for a '\n' and will find a
+ '\0', correctly deciding that this is not the end of a line.
+ But it doesn't work out so nicely for REG_NOTBOL, since we don't have
+ a convenient '\0' there. For all we know, the string could be preceded
+ by '\n' which would throw things off. */
+
+ /* Perform the searching operation. */
+ ret = re_search (&private_preg, string, len,
+ /* start: */ 0, /* range: */ len,
+ want_reg_info ? ®s : 0);
+
+ /* Copy the register information to the POSIX structure. */
+ if (want_reg_info)
+ {
+ if (ret >= 0)
+ {
+ unsigned r;
+
+ for (r = 0; r < nmatch; r++)
+ {
+ pmatch[r].rm_so = regs.start[r];
+ pmatch[r].rm_eo = regs.end[r];
+ }
+ }
+
+ /* If we needed the temporary register info, free the space now. */
+ free (regs.start);
+ }
+
+ /* We want zero return to mean success, unlike `re_search'. */
+ return ret >= 0 ? REG_NOERROR : REG_NOMATCH;
+}
+WEAK_ALIAS (__regexec, regexec)
+
+
+/* Returns a message corresponding to an error code, ERR_CODE, returned
+ from either regcomp or regexec. We don't use PREG here.
+
+ ERR_CODE was previously called ERRCODE, but that name causes an
+ error with msvc8 compiler. */
+
+size_t
+regerror (int err_code, const regex_t *preg, char *errbuf, size_t errbuf_size)
+{
+ const char *msg;
+ size_t msg_size;
+
+ if (err_code < 0
+ || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
+ /* Only error codes returned by the rest of the code should be passed
+ to this routine. If we are given anything else, or if other regex
+ code generates an invalid error code, then the program has a bug.
+ Dump core so we can fix it. */
+ abort ();
+
+ msg = gettext (re_error_msgid[err_code]);
+
+ msg_size = strlen (msg) + 1; /* Includes the null. */
+
+ if (errbuf_size != 0)
+ {
+ if (msg_size > errbuf_size)
+ {
+ memcpy (errbuf, msg, errbuf_size - 1);
+ errbuf[errbuf_size - 1] = 0;
+ }
+ else
+ strcpy (errbuf, msg);
+ }
+
+ return msg_size;
+}
+WEAK_ALIAS (__regerror, regerror)
+
+
+/* Free dynamically allocated space used by PREG. */
+
+void
+regfree (regex_t *preg)
+{
+ free (preg->buffer);
+ preg->buffer = NULL;
+
+ preg->allocated = 0;
+ preg->used = 0;
+
+ free (preg->fastmap);
+ preg->fastmap = NULL;
+ preg->fastmap_accurate = 0;
+
+ free (preg->translate);
+ preg->translate = NULL;
+}
+WEAK_ALIAS (__regfree, regfree)
+
+#endif /* not emacs */
--- /dev/null
+/* Definitions for data structures and routines for the regular
+ expression library, version 0.12.
+
+ Copyright (C) 1985, 1989-1993, 1995, 2000-2018 Free Software
+ Foundation, Inc.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <https://www.gnu.org/licenses/>. */
+
+#ifndef _REGEX_H
+#define _REGEX_H 1
+
+#if defined emacs && (defined _REGEX_RE_COMP || defined _LIBC)
+/* We're not defining re_set_syntax and using a different prototype of
+ re_compile_pattern when building Emacs so fail compilation early with
+ a (somewhat helpful) error message when conflict is detected. */
+# error "_REGEX_RE_COMP nor _LIBC can be defined if emacs is defined."
+#endif
+
+#include <sys/types.h>
+
+/* Allow the use in C++ code. */
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#if !defined _POSIX_C_SOURCE && !defined _POSIX_SOURCE && defined VMS
+/* VMS doesn't have `size_t' in <sys/types.h>, even though POSIX says it
+ should be there. */
+# include <stddef.h>
+#endif
+
+/* The following bits are used to determine the regexp syntax we
+ recognize. The set/not-set meanings where historically chosen so
+ that Emacs syntax had the value 0.
+ The bits are given in alphabetical order, and
+ the definitions shifted by one from the previous bit; thus, when we
+ add or remove a bit, only one other definition need change. */
+typedef unsigned long reg_syntax_t;
+
+/* If this bit is not set, then \ inside a bracket expression is literal.
+ If set, then such a \ quotes the following character. */
+#define RE_BACKSLASH_ESCAPE_IN_LISTS ((unsigned long int) 1)
+
+/* If this bit is not set, then + and ? are operators, and \+ and \? are
+ literals.
+ If set, then \+ and \? are operators and + and ? are literals. */
+#define RE_BK_PLUS_QM (RE_BACKSLASH_ESCAPE_IN_LISTS << 1)
+
+/* If this bit is set, then character classes are supported. They are:
+ [:alpha:], [:upper:], [:lower:], [:digit:], [:alnum:], [:xdigit:],
+ [:space:], [:print:], [:punct:], [:graph:], and [:cntrl:].
+ If not set, then character classes are not supported. */
+#define RE_CHAR_CLASSES (RE_BK_PLUS_QM << 1)
+
+/* If this bit is set, then ^ and $ are always anchors (outside bracket
+ expressions, of course).
+ If this bit is not set, then it depends:
+ ^ is an anchor if it is at the beginning of a regular
+ expression or after an open-group or an alternation operator;
+ $ is an anchor if it is at the end of a regular expression, or
+ before a close-group or an alternation operator.
+
+ This bit could be (re)combined with RE_CONTEXT_INDEP_OPS, because
+ POSIX draft 11.2 says that * etc. in leading positions is undefined.
+ We already implemented a previous draft which made those constructs
+ invalid, though, so we haven't changed the code back. */
+#define RE_CONTEXT_INDEP_ANCHORS (RE_CHAR_CLASSES << 1)
+
+/* If this bit is set, then special characters are always special
+ regardless of where they are in the pattern.
+ If this bit is not set, then special characters are special only in
+ some contexts; otherwise they are ordinary. Specifically,
+ * + ? and intervals are only special when not after the beginning,
+ open-group, or alternation operator. */
+#define RE_CONTEXT_INDEP_OPS (RE_CONTEXT_INDEP_ANCHORS << 1)
+
+/* If this bit is set, then *, +, ?, and { cannot be first in an re or
+ immediately after an alternation or begin-group operator. */
+#define RE_CONTEXT_INVALID_OPS (RE_CONTEXT_INDEP_OPS << 1)
+
+/* If this bit is set, then . matches newline.
+ If not set, then it doesn't. */
+#define RE_DOT_NEWLINE (RE_CONTEXT_INVALID_OPS << 1)
+
+/* If this bit is set, then . doesn't match NUL.
+ If not set, then it does. */
+#define RE_DOT_NOT_NULL (RE_DOT_NEWLINE << 1)
+
+/* If this bit is set, nonmatching lists [^...] do not match newline.
+ If not set, they do. */
+#define RE_HAT_LISTS_NOT_NEWLINE (RE_DOT_NOT_NULL << 1)
+
+/* If this bit is set, either \{...\} or {...} defines an
+ interval, depending on RE_NO_BK_BRACES.
+ If not set, \{, \}, {, and } are literals. */
+#define RE_INTERVALS (RE_HAT_LISTS_NOT_NEWLINE << 1)
+
+/* If this bit is set, +, ? and | aren't recognized as operators.
+ If not set, they are. */
+#define RE_LIMITED_OPS (RE_INTERVALS << 1)
+
+/* If this bit is set, newline is an alternation operator.
+ If not set, newline is literal. */
+#define RE_NEWLINE_ALT (RE_LIMITED_OPS << 1)
+
+/* If this bit is set, then `{...}' defines an interval, and \{ and \}
+ are literals.
+ If not set, then `\{...\}' defines an interval. */
+#define RE_NO_BK_BRACES (RE_NEWLINE_ALT << 1)
+
+/* If this bit is set, (...) defines a group, and \( and \) are literals.
+ If not set, \(...\) defines a group, and ( and ) are literals. */
+#define RE_NO_BK_PARENS (RE_NO_BK_BRACES << 1)
+
+/* If this bit is set, then \<digit> matches <digit>.
+ If not set, then \<digit> is a back-reference. */
+#define RE_NO_BK_REFS (RE_NO_BK_PARENS << 1)
+
+/* If this bit is set, then | is an alternation operator, and \| is literal.
+ If not set, then \| is an alternation operator, and | is literal. */
+#define RE_NO_BK_VBAR (RE_NO_BK_REFS << 1)
+
+/* If this bit is set, then an ending range point collating higher
+ than the starting range point, as in [z-a], is invalid.
+ If not set, then when ending range point collates higher than the
+ starting range point, the range is ignored. */
+#define RE_NO_EMPTY_RANGES (RE_NO_BK_VBAR << 1)
+
+/* If this bit is set, then an unmatched ) is ordinary.
+ If not set, then an unmatched ) is invalid. */
+#define RE_UNMATCHED_RIGHT_PAREN_ORD (RE_NO_EMPTY_RANGES << 1)
+
+/* If this bit is set, succeed as soon as we match the whole pattern,
+ without further backtracking. */
+#define RE_NO_POSIX_BACKTRACKING (RE_UNMATCHED_RIGHT_PAREN_ORD << 1)
+
+/* If this bit is set, do not process the GNU regex operators.
+ If not set, then the GNU regex operators are recognized. */
+#define RE_NO_GNU_OPS (RE_NO_POSIX_BACKTRACKING << 1)
+
+/* If this bit is set, then *?, +? and ?? match non greedily. */
+#define RE_FRUGAL (RE_NO_GNU_OPS << 1)
+
+/* If this bit is set, then (?:...) is treated as a shy group. */
+#define RE_SHY_GROUPS (RE_FRUGAL << 1)
+
+/* If this bit is set, ^ and $ only match at beg/end of buffer. */
+#define RE_NO_NEWLINE_ANCHOR (RE_SHY_GROUPS << 1)
+
+/* If this bit is set, turn on internal regex debugging.
+ If not set, and debugging was on, turn it off.
+ This only works if regex-emacs.c is compiled -DDEBUG.
+ We define this bit always, so that all that's needed to turn on
+ debugging is to recompile regex-emacs.c; the calling code can always have
+ this bit set, and it won't affect anything in the normal case. */
+#define RE_DEBUG (RE_NO_NEWLINE_ANCHOR << 1)
+
+/* This global variable defines the particular regexp syntax to use (for
+ some interfaces). When a regexp is compiled, the syntax used is
+ stored in the pattern buffer, so changing this does not affect
+ already-compiled regexps. */
+/* extern reg_syntax_t re_syntax_options; */
+
+#ifdef emacs
+# include "lisp.h"
+/* In Emacs, this is the string or buffer in which we are matching.
+ It is used for looking up syntax properties.
+
+ If the value is a Lisp string object, we are matching text in that
+ string; if it's nil, we are matching text in the current buffer; if
+ it's t, we are matching text in a C string.
+
+ This value is effectively another parameter to re_search_2 and
+ re_match_2. No calls into Lisp or thread switches are allowed
+ before setting re_match_object and calling into the regex search
+ and match functions. These functions capture the current value of
+ re_match_object into gl_state on entry.
+
+ TODO: once we get rid of the !emacs case in this code, turn into an
+ actual function parameter. */
+extern Lisp_Object re_match_object;
+#endif
+
+/* Roughly the maximum number of failure points on the stack. */
+extern size_t emacs_re_max_failures;
+
+#ifdef emacs
+/* Amount of memory that we can safely stack allocate. */
+extern ptrdiff_t emacs_re_safe_alloca;
+#endif
+
+\f
+/* Define combinations of the above bits for the standard possibilities.
+ (The [[[ comments delimit what gets put into the Texinfo file, so
+ don't delete them!) */
+/* [[[begin syntaxes]]] */
+#define RE_SYNTAX_EMACS \
+ (RE_CHAR_CLASSES | RE_INTERVALS | RE_SHY_GROUPS | RE_FRUGAL)
+
+#define RE_SYNTAX_AWK \
+ (RE_BACKSLASH_ESCAPE_IN_LISTS | RE_DOT_NOT_NULL \
+ | RE_NO_BK_PARENS | RE_NO_BK_REFS \
+ | RE_NO_BK_VBAR | RE_NO_EMPTY_RANGES \
+ | RE_DOT_NEWLINE | RE_CONTEXT_INDEP_ANCHORS \
+ | RE_UNMATCHED_RIGHT_PAREN_ORD | RE_NO_GNU_OPS)
+
+#define RE_SYNTAX_GNU_AWK \
+ ((RE_SYNTAX_POSIX_EXTENDED | RE_BACKSLASH_ESCAPE_IN_LISTS | RE_DEBUG) \
+ & ~(RE_DOT_NOT_NULL | RE_INTERVALS | RE_CONTEXT_INDEP_OPS))
+
+#define RE_SYNTAX_POSIX_AWK \
+ (RE_SYNTAX_POSIX_EXTENDED | RE_BACKSLASH_ESCAPE_IN_LISTS \
+ | RE_INTERVALS | RE_NO_GNU_OPS)
+
+#define RE_SYNTAX_GREP \
+ (RE_BK_PLUS_QM | RE_CHAR_CLASSES \
+ | RE_HAT_LISTS_NOT_NEWLINE | RE_INTERVALS \
+ | RE_NEWLINE_ALT)
+
+#define RE_SYNTAX_EGREP \
+ (RE_CHAR_CLASSES | RE_CONTEXT_INDEP_ANCHORS \
+ | RE_CONTEXT_INDEP_OPS | RE_HAT_LISTS_NOT_NEWLINE \
+ | RE_NEWLINE_ALT | RE_NO_BK_PARENS \
+ | RE_NO_BK_VBAR)
+
+#define RE_SYNTAX_POSIX_EGREP \
+ (RE_SYNTAX_EGREP | RE_INTERVALS | RE_NO_BK_BRACES)
+
+/* P1003.2/D11.2, section 4.20.7.1, lines 5078ff. */
+#define RE_SYNTAX_ED RE_SYNTAX_POSIX_BASIC
+
+#define RE_SYNTAX_SED RE_SYNTAX_POSIX_BASIC
+
+/* Syntax bits common to both basic and extended POSIX regex syntax. */
+#define _RE_SYNTAX_POSIX_COMMON \
+ (RE_CHAR_CLASSES | RE_DOT_NEWLINE | RE_DOT_NOT_NULL \
+ | RE_INTERVALS | RE_NO_EMPTY_RANGES)
+
+#define RE_SYNTAX_POSIX_BASIC \
+ (_RE_SYNTAX_POSIX_COMMON | RE_BK_PLUS_QM)
+
+/* Differs from ..._POSIX_BASIC only in that RE_BK_PLUS_QM becomes
+ RE_LIMITED_OPS, i.e., \? \+ \| are not recognized. Actually, this
+ isn't minimal, since other operators, such as \`, aren't disabled. */
+#define RE_SYNTAX_POSIX_MINIMAL_BASIC \
+ (_RE_SYNTAX_POSIX_COMMON | RE_LIMITED_OPS)
+
+#define RE_SYNTAX_POSIX_EXTENDED \
+ (_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS \
+ | RE_CONTEXT_INDEP_OPS | RE_NO_BK_BRACES \
+ | RE_NO_BK_PARENS | RE_NO_BK_VBAR \
+ | RE_CONTEXT_INVALID_OPS | RE_UNMATCHED_RIGHT_PAREN_ORD)
+
+/* Differs from ..._POSIX_EXTENDED in that RE_CONTEXT_INDEP_OPS is
+ removed and RE_NO_BK_REFS is added. */
+#define RE_SYNTAX_POSIX_MINIMAL_EXTENDED \
+ (_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS \
+ | RE_CONTEXT_INVALID_OPS | RE_NO_BK_BRACES \
+ | RE_NO_BK_PARENS | RE_NO_BK_REFS \
+ | RE_NO_BK_VBAR | RE_UNMATCHED_RIGHT_PAREN_ORD)
+/* [[[end syntaxes]]] */
+\f
+/* Maximum number of duplicates an interval can allow. Some systems
+ (erroneously) define this in other header files, but we want our
+ value, so remove any previous define. */
+#ifdef RE_DUP_MAX
+# undef RE_DUP_MAX
+#endif
+/* Repeat counts are stored in opcodes as 2 byte integers. This was
+ previously limited to 7fff because the parsing code uses signed
+ ints. But Emacs only runs on 32 bit platforms anyway. */
+#define RE_DUP_MAX (0xffff)
+
+
+/* POSIX `cflags' bits (i.e., information for `regcomp'). */
+
+/* If this bit is set, then use extended regular expression syntax.
+ If not set, then use basic regular expression syntax. */
+#define REG_EXTENDED 1
+
+/* If this bit is set, then ignore case when matching.
+ If not set, then case is significant. */
+#define REG_ICASE (REG_EXTENDED << 1)
+
+/* If this bit is set, then anchors do not match at newline
+ characters in the string.
+ If not set, then anchors do match at newlines. */
+#define REG_NEWLINE (REG_ICASE << 1)
+
+/* If this bit is set, then report only success or fail in regexec.
+ If not set, then returns differ between not matching and errors. */
+#define REG_NOSUB (REG_NEWLINE << 1)
+
+
+/* POSIX `eflags' bits (i.e., information for regexec). */
+
+/* If this bit is set, then the beginning-of-line operator doesn't match
+ the beginning of the string (presumably because it's not the
+ beginning of a line).
+ If not set, then the beginning-of-line operator does match the
+ beginning of the string. */
+#define REG_NOTBOL 1
+
+/* Like REG_NOTBOL, except for the end-of-line. */
+#define REG_NOTEOL (1 << 1)
+
+
+/* If any error codes are removed, changed, or added, update the
+ `re_error_msg' table in regex-emacs.c. */
+typedef enum
+{
+#ifdef _XOPEN_SOURCE
+ REG_ENOSYS = -1, /* This will never happen for this implementation. */
+#endif
+
+ REG_NOERROR = 0, /* Success. */
+ REG_NOMATCH, /* Didn't find a match (for regexec). */
+
+ /* POSIX regcomp return error codes. (In the order listed in the
+ standard.) */
+ REG_BADPAT, /* Invalid pattern. */
+ REG_ECOLLATE, /* Not implemented. */
+ REG_ECTYPE, /* Invalid character class name. */
+ REG_EESCAPE, /* Trailing backslash. */
+ REG_ESUBREG, /* Invalid back reference. */
+ REG_EBRACK, /* Unmatched left bracket. */
+ REG_EPAREN, /* Parenthesis imbalance. */
+ REG_EBRACE, /* Unmatched \{. */
+ REG_BADBR, /* Invalid contents of \{\}. */
+ REG_ERANGE, /* Invalid range end. */
+ REG_ESPACE, /* Ran out of memory. */
+ REG_BADRPT, /* No preceding re for repetition op. */
+
+ /* Error codes we've added. */
+ REG_EEND, /* Premature end. */
+ REG_ESIZE, /* Compiled pattern bigger than 2^16 bytes. */
+ REG_ERPAREN, /* Unmatched ) or \); not returned from regcomp. */
+ REG_ERANGEX, /* Range striding over charsets. */
+ REG_ESIZEBR /* n or m too big in \{n,m\} */
+} reg_errcode_t;
+\f
+/* This data structure represents a compiled pattern. Before calling
+ the pattern compiler, the fields `buffer', `allocated', `fastmap',
+ `translate', and `no_sub' can be set. After the pattern has been
+ compiled, the `re_nsub' field is available. All other fields are
+ private to the regex routines. */
+
+#ifndef RE_TRANSLATE_TYPE
+# define RE_TRANSLATE_TYPE char *
+#endif
+
+struct re_pattern_buffer
+{
+/* [[[begin pattern_buffer]]] */
+ /* Space that holds the compiled pattern. It is declared as
+ `unsigned char *' because its elements are
+ sometimes used as array indexes. */
+ unsigned char *buffer;
+
+ /* Number of bytes to which `buffer' points. */
+ size_t allocated;
+
+ /* Number of bytes actually used in `buffer'. */
+ size_t used;
+
+#ifdef emacs
+ /* Charset of unibyte characters at compiling time. */
+ int charset_unibyte;
+#else
+ /* Syntax setting with which the pattern was compiled. */
+ reg_syntax_t syntax;
+#endif
+ /* Pointer to a fastmap, if any, otherwise zero. re_search uses
+ the fastmap, if there is one, to skip over impossible
+ starting points for matches. */
+ char *fastmap;
+
+ /* Either a translate table to apply to all characters before
+ comparing them, or zero for no translation. The translation
+ is applied to a pattern when it is compiled and to a string
+ when it is matched. */
+ RE_TRANSLATE_TYPE translate;
+
+ /* Number of subexpressions found by the compiler. */
+ size_t re_nsub;
+
+ /* Zero if this pattern cannot match the empty string, one else.
+ Well, in truth it's used only in `re_search_2', to see
+ whether or not we should use the fastmap, so we don't set
+ this absolutely perfectly; see `re_compile_fastmap'. */
+ unsigned can_be_null : 1;
+
+ /* If REGS_UNALLOCATED, allocate space in the `regs' structure
+ for `max (RE_NREGS, re_nsub + 1)' groups.
+ If REGS_REALLOCATE, reallocate space if necessary.
+ If REGS_FIXED, use what's there. */
+#define REGS_UNALLOCATED 0
+#define REGS_REALLOCATE 1
+#define REGS_FIXED 2
+ unsigned regs_allocated : 2;
+
+ /* Set to zero when `regex_compile' compiles a pattern; set to one
+ by `re_compile_fastmap' if it updates the fastmap. */
+ unsigned fastmap_accurate : 1;
+
+ /* If set, `re_match_2' does not return information about
+ subexpressions. */
+ unsigned no_sub : 1;
+
+ /* If set, a beginning-of-line anchor doesn't match at the
+ beginning of the string. */
+ unsigned not_bol : 1;
+
+ /* Similarly for an end-of-line anchor. */
+ unsigned not_eol : 1;
+
+ /* If true, the compilation of the pattern had to look up the syntax table,
+ so the compiled pattern is only valid for the current syntax table. */
+ unsigned used_syntax : 1;
+
+#ifdef emacs
+ /* If true, multi-byte form in the regexp pattern should be
+ recognized as a multibyte character. */
+ unsigned multibyte : 1;
+
+ /* If true, multi-byte form in the target of match should be
+ recognized as a multibyte character. */
+ unsigned target_multibyte : 1;
+#endif
+
+/* [[[end pattern_buffer]]] */
+};
+
+typedef struct re_pattern_buffer regex_t;
+\f
+/* POSIX 1003.1-2008 requires that regoff_t be at least as wide as
+ ptrdiff_t and ssize_t. We don't know of any hosts where ptrdiff_t
+ is wider than ssize_t, so ssize_t is safe. ptrdiff_t is not
+ necessarily visible here, so use ssize_t. */
+typedef ssize_t regoff_t;
+
+
+/* This is the structure we store register match data in. See
+ regex.texinfo for a full description of what registers match. */
+struct re_registers
+{
+ unsigned num_regs;
+ regoff_t *start;
+ regoff_t *end;
+};
+
+
+/* If `regs_allocated' is REGS_UNALLOCATED in the pattern buffer,
+ `re_match_2' returns information about at least this many registers
+ the first time a `regs' structure is passed. */
+#ifndef RE_NREGS
+# define RE_NREGS 30
+#endif
+
+
+/* POSIX specification for registers. Aside from the different names than
+ `re_registers', POSIX uses an array of structures, instead of a
+ structure of arrays. */
+typedef struct
+{
+ regoff_t rm_so; /* Byte offset from string's start to substring's start. */
+ regoff_t rm_eo; /* Byte offset from string's start to substring's end. */
+} regmatch_t;
+\f
+/* Declarations for routines. */
+
+#ifndef emacs
+
+/* Sets the current default syntax to SYNTAX, and return the old syntax.
+ You can also simply assign to the `re_syntax_options' variable. */
+extern reg_syntax_t re_set_syntax (reg_syntax_t __syntax);
+
+#endif
+
+/* Compile the regular expression PATTERN, with length LENGTH
+ and syntax given by the global `re_syntax_options', into the buffer
+ BUFFER. Return NULL if successful, and an error string if not. */
+extern const char *re_compile_pattern (const char *__pattern, size_t __length,
+#ifdef emacs
+ bool posix_backtracking,
+ const char *whitespace_regexp,
+#endif
+ struct re_pattern_buffer *__buffer);
+
+
+/* Compile a fastmap for the compiled pattern in BUFFER; used to
+ accelerate searches. Return 0 if successful and -2 if was an
+ internal error. */
+extern int re_compile_fastmap (struct re_pattern_buffer *__buffer);
+
+
+/* Search in the string STRING (with length LENGTH) for the pattern
+ compiled into BUFFER. Start searching at position START, for RANGE
+ characters. Return the starting position of the match, -1 for no
+ match, or -2 for an internal error. Also return register
+ information in REGS (if REGS and BUFFER->no_sub are nonzero). */
+extern regoff_t re_search (struct re_pattern_buffer *__buffer,
+ const char *__string, size_t __length,
+ ssize_t __start, ssize_t __range,
+ struct re_registers *__regs);
+
+
+/* Like `re_search', but search in the concatenation of STRING1 and
+ STRING2. Also, stop searching at index START + STOP. */
+extern regoff_t re_search_2 (struct re_pattern_buffer *__buffer,
+ const char *__string1, size_t __length1,
+ const char *__string2, size_t __length2,
+ ssize_t __start, ssize_t __range,
+ struct re_registers *__regs,
+ ssize_t __stop);
+
+
+/* Like `re_search', but return how many characters in STRING the regexp
+ in BUFFER matched, starting at position START. */
+extern regoff_t re_match (struct re_pattern_buffer *__buffer,
+ const char *__string, size_t __length,
+ ssize_t __start, struct re_registers *__regs);
+
+
+/* Relates to `re_match' as `re_search_2' relates to `re_search'. */
+extern regoff_t re_match_2 (struct re_pattern_buffer *__buffer,
+ const char *__string1, size_t __length1,
+ const char *__string2, size_t __length2,
+ ssize_t __start, struct re_registers *__regs,
+ ssize_t __stop);
+
+
+/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
+ ENDS. Subsequent matches using BUFFER and REGS will use this memory
+ for recording register information. STARTS and ENDS must be
+ allocated with malloc, and must each be at least `NUM_REGS * sizeof
+ (regoff_t)' bytes long.
+
+ If NUM_REGS == 0, then subsequent matches should allocate their own
+ register data.
+
+ Unless this function is called, the first search or match using
+ PATTERN_BUFFER will allocate its own register data, without
+ freeing the old data. */
+extern void re_set_registers (struct re_pattern_buffer *__buffer,
+ struct re_registers *__regs,
+ unsigned __num_regs,
+ regoff_t *__starts, regoff_t *__ends);
+
+#if defined _REGEX_RE_COMP || defined _LIBC
+# ifndef _CRAY
+/* 4.2 bsd compatibility. */
+extern char *re_comp (const char *);
+extern int re_exec (const char *);
+# endif
+#endif
+
+/* GCC 2.95 and later have "__restrict"; C99 compilers have
+ "restrict", and "configure" may have defined "restrict".
+ Other compilers use __restrict, __restrict__, and _Restrict, and
+ 'configure' might #define 'restrict' to those words, so pick a
+ different name. */
+#ifndef _Restrict_
+# if 199901L <= __STDC_VERSION__
+# define _Restrict_ restrict
+# elif 2 < __GNUC__ || (2 == __GNUC__ && 95 <= __GNUC_MINOR__)
+# define _Restrict_ __restrict
+# else
+# define _Restrict_
+# endif
+#endif
+/* gcc 3.1 and up support the [restrict] syntax. Don't trust
+ sys/cdefs.h's definition of __restrict_arr, though, as it
+ mishandles gcc -ansi -pedantic. */
+#ifndef _Restrict_arr_
+# if ((199901L <= __STDC_VERSION__ \
+ || ((3 < __GNUC__ || (3 == __GNUC__ && 1 <= __GNUC_MINOR__)) \
+ && !defined __STRICT_ANSI__)) \
+ && !defined __GNUG__)
+# define _Restrict_arr_ _Restrict_
+# else
+# define _Restrict_arr_
+# endif
+#endif
+
+/* POSIX compatibility. */
+extern reg_errcode_t regcomp (regex_t *_Restrict_ __preg,
+ const char *_Restrict_ __pattern,
+ int __cflags);
+
+extern reg_errcode_t regexec (const regex_t *_Restrict_ __preg,
+ const char *_Restrict_ __string, size_t __nmatch,
+ regmatch_t __pmatch[_Restrict_arr_],
+ int __eflags);
+
+extern size_t regerror (int __errcode, const regex_t * __preg,
+ char *__errbuf, size_t __errbuf_size);
+
+extern void regfree (regex_t *__preg);
+
+
+#ifdef __cplusplus
+}
+#endif /* C++ */
+
+/* For platform which support the ISO C amendment 1 functionality we
+ support user defined character classes. */
+#if WIDE_CHAR_SUPPORT
+/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
+# include <wchar.h>
+# include <wctype.h>
+
+typedef wctype_t re_wctype_t;
+typedef wchar_t re_wchar_t;
+# define re_wctype wctype
+# define re_iswctype iswctype
+# define re_wctype_to_bit(cc) 0
+#else
+# ifndef emacs
+# define btowc(c) c
+# endif
+
+/* Character classes. */
+typedef enum { RECC_ERROR = 0,
+ RECC_ALNUM, RECC_ALPHA, RECC_WORD,
+ RECC_GRAPH, RECC_PRINT,
+ RECC_LOWER, RECC_UPPER,
+ RECC_PUNCT, RECC_CNTRL,
+ RECC_DIGIT, RECC_XDIGIT,
+ RECC_BLANK, RECC_SPACE,
+ RECC_MULTIBYTE, RECC_NONASCII,
+ RECC_ASCII, RECC_UNIBYTE
+} re_wctype_t;
+
+extern char re_iswctype (int ch, re_wctype_t cc);
+extern re_wctype_t re_wctype_parse (const unsigned char **strp, unsigned limit);
+
+typedef int re_wchar_t;
+
+#endif /* not WIDE_CHAR_SUPPORT */
+
+#endif /* regex-emacs.h */
+\f
+++ /dev/null
-/* Extended regular expression matching and search library, version
- 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
- internationalization features.)
-
- Copyright (C) 1993-2018 Free Software Foundation, Inc.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3, or (at your option)
- any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <https://www.gnu.org/licenses/>. */
-
-/* TODO:
- - structure the opcode space into opcode+flag.
- - merge with glibc's regex.[ch].
- - replace (succeed_n + jump_n + set_number_at) with something that doesn't
- need to modify the compiled regexp so that re_match can be reentrant.
- - get rid of on_failure_jump_smart by doing the optimization in re_comp
- rather than at run-time, so that re_match can be reentrant.
-*/
-
-/* AIX requires this to be the first thing in the file. */
-#if defined _AIX && !defined REGEX_MALLOC
- #pragma alloca
-#endif
-
-/* Ignore some GCC warnings for now. This section should go away
- once the Emacs and Gnulib regex code is merged. */
-#if 4 < __GNUC__ + (5 <= __GNUC_MINOR__) || defined __clang__
-# pragma GCC diagnostic ignored "-Wstrict-overflow"
-# ifndef emacs
-# pragma GCC diagnostic ignored "-Wunused-function"
-# pragma GCC diagnostic ignored "-Wunused-macros"
-# pragma GCC diagnostic ignored "-Wunused-result"
-# pragma GCC diagnostic ignored "-Wunused-variable"
-# endif
-#endif
-
-#if 4 < __GNUC__ + (6 <= __GNUC_MINOR__) && ! defined __clang__
-# pragma GCC diagnostic ignored "-Wunused-but-set-variable"
-#endif
-
-#include <config.h>
-
-#include <stddef.h>
-#include <stdlib.h>
-
-#ifdef emacs
-/* We need this for `regex.h', and perhaps for the Emacs include files. */
-# include <sys/types.h>
-#endif
-
-/* Whether to use ISO C Amendment 1 wide char functions.
- Those should not be used for Emacs since it uses its own. */
-#if defined _LIBC
-#define WIDE_CHAR_SUPPORT 1
-#else
-#define WIDE_CHAR_SUPPORT \
- (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
-#endif
-
-/* For platform which support the ISO C amendment 1 functionality we
- support user defined character classes. */
-#if WIDE_CHAR_SUPPORT
-/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
-# include <wchar.h>
-# include <wctype.h>
-#endif
-
-#ifdef _LIBC
-/* We have to keep the namespace clean. */
-# define regfree(preg) __regfree (preg)
-# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
-# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
-# define regerror(err_code, preg, errbuf, errbuf_size) \
- __regerror (err_code, preg, errbuf, errbuf_size)
-# define re_set_registers(bu, re, nu, st, en) \
- __re_set_registers (bu, re, nu, st, en)
-# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
- __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
-# define re_match(bufp, string, size, pos, regs) \
- __re_match (bufp, string, size, pos, regs)
-# define re_search(bufp, string, size, startpos, range, regs) \
- __re_search (bufp, string, size, startpos, range, regs)
-# define re_compile_pattern(pattern, length, bufp) \
- __re_compile_pattern (pattern, length, bufp)
-# define re_set_syntax(syntax) __re_set_syntax (syntax)
-# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
- __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
-# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
-
-/* Make sure we call libc's function even if the user overrides them. */
-# define btowc __btowc
-# define iswctype __iswctype
-# define wctype __wctype
-
-# define WEAK_ALIAS(a,b) weak_alias (a, b)
-
-/* We are also using some library internals. */
-# include <locale/localeinfo.h>
-# include <locale/elem-hash.h>
-# include <langinfo.h>
-#else
-# define WEAK_ALIAS(a,b)
-#endif
-
-/* This is for other GNU distributions with internationalized messages. */
-#if HAVE_LIBINTL_H || defined _LIBC
-# include <libintl.h>
-#else
-# define gettext(msgid) (msgid)
-#endif
-
-#ifndef gettext_noop
-/* This define is so xgettext can find the internationalizable
- strings. */
-# define gettext_noop(String) String
-#endif
-
-/* The `emacs' switch turns on certain matching commands
- that make sense only in Emacs. */
-#ifdef emacs
-
-# include "lisp.h"
-# include "character.h"
-# include "buffer.h"
-
-# include "syntax.h"
-# include "category.h"
-
-/* Make syntax table lookup grant data in gl_state. */
-# define SYNTAX(c) syntax_property (c, 1)
-
-# ifdef malloc
-# undef malloc
-# endif
-# define malloc xmalloc
-# ifdef realloc
-# undef realloc
-# endif
-# define realloc xrealloc
-# ifdef free
-# undef free
-# endif
-# define free xfree
-
-/* Converts the pointer to the char to BEG-based offset from the start. */
-# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
-/* Strings are 0-indexed, buffers are 1-indexed; we pun on the boolean
- result to get the right base index. */
-# define POS_AS_IN_BUFFER(p) \
- ((p) + (NILP (gl_state.object) || BUFFERP (gl_state.object)))
-
-# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
-# define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
-# define RE_STRING_CHAR(p, multibyte) \
- (multibyte ? (STRING_CHAR (p)) : (*(p)))
-# define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
- (multibyte ? (STRING_CHAR_AND_LENGTH (p, len)) : ((len) = 1, *(p)))
-
-# define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
-
-# define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
-
-/* Set C a (possibly converted to multibyte) character before P. P
- points into a string which is the virtual concatenation of STR1
- (which ends at END1) or STR2 (which ends at END2). */
-# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
- do { \
- if (target_multibyte) \
- { \
- re_char *dtemp = (p) == (str2) ? (end1) : (p); \
- re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
- while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
- c = STRING_CHAR (dtemp); \
- } \
- else \
- { \
- (c = ((p) == (str2) ? (end1) : (p))[-1]); \
- (c) = RE_CHAR_TO_MULTIBYTE (c); \
- } \
- } while (0)
-
-/* Set C a (possibly converted to multibyte) character at P, and set
- LEN to the byte length of that character. */
-# define GET_CHAR_AFTER(c, p, len) \
- do { \
- if (target_multibyte) \
- (c) = STRING_CHAR_AND_LENGTH (p, len); \
- else \
- { \
- (c) = *p; \
- len = 1; \
- (c) = RE_CHAR_TO_MULTIBYTE (c); \
- } \
- } while (0)
-
-#else /* not emacs */
-
-/* If we are not linking with Emacs proper,
- we can't use the relocating allocator
- even if config.h says that we can. */
-# undef REL_ALLOC
-
-# include <unistd.h>
-
-/* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
-
-static ATTRIBUTE_MALLOC void *
-xmalloc (size_t size)
-{
- void *val = malloc (size);
- if (!val && size)
- {
- write (STDERR_FILENO, "virtual memory exhausted\n", 25);
- exit (1);
- }
- return val;
-}
-
-static void *
-xrealloc (void *block, size_t size)
-{
- void *val;
- /* We must call malloc explicitly when BLOCK is 0, since some
- reallocs don't do this. */
- if (! block)
- val = malloc (size);
- else
- val = realloc (block, size);
- if (!val && size)
- {
- write (STDERR_FILENO, "virtual memory exhausted\n", 25);
- exit (1);
- }
- return val;
-}
-
-# ifdef malloc
-# undef malloc
-# endif
-# define malloc xmalloc
-# ifdef realloc
-# undef realloc
-# endif
-# define realloc xrealloc
-
-# include <stdbool.h>
-# include <string.h>
-
-/* Define the syntax stuff for \<, \>, etc. */
-
-/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
-enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
-
-/* Dummy macros for non-Emacs environments. */
-# define MAX_MULTIBYTE_LENGTH 1
-# define RE_MULTIBYTE_P(x) 0
-# define RE_TARGET_MULTIBYTE_P(x) 0
-# define WORD_BOUNDARY_P(c1, c2) (0)
-# define BYTES_BY_CHAR_HEAD(p) (1)
-# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
-# define STRING_CHAR(p) (*(p))
-# define RE_STRING_CHAR(p, multibyte) STRING_CHAR (p)
-# define CHAR_STRING(c, s) (*(s) = (c), 1)
-# define STRING_CHAR_AND_LENGTH(p, actual_len) ((actual_len) = 1, *(p))
-# define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) STRING_CHAR_AND_LENGTH (p, len)
-# define RE_CHAR_TO_MULTIBYTE(c) (c)
-# define RE_CHAR_TO_UNIBYTE(c) (c)
-# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
- (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
-# define GET_CHAR_AFTER(c, p, len) \
- (c = *p, len = 1)
-# define CHAR_BYTE8_P(c) (0)
-# define CHAR_LEADING_CODE(c) (c)
-
-#endif /* not emacs */
-
-#ifndef RE_TRANSLATE
-# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
-# define RE_TRANSLATE_P(TBL) (TBL)
-#endif
-\f
-/* Get the interface, including the syntax bits. */
-#include "regex.h"
-
-/* isalpha etc. are used for the character classes. */
-#include <ctype.h>
-
-#ifdef emacs
-
-/* 1 if C is an ASCII character. */
-# define IS_REAL_ASCII(c) ((c) < 0200)
-
-/* 1 if C is a unibyte character. */
-# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
-
-/* The Emacs definitions should not be directly affected by locales. */
-
-/* In Emacs, these are only used for single-byte characters. */
-# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
-# define ISCNTRL(c) ((c) < ' ')
-# define ISXDIGIT(c) (0 <= char_hexdigit (c))
-
-/* The rest must handle multibyte characters. */
-
-# define ISBLANK(c) (IS_REAL_ASCII (c) \
- ? ((c) == ' ' || (c) == '\t') \
- : blankp (c))
-
-# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
- ? (c) > ' ' && !((c) >= 0177 && (c) <= 0240) \
- : graphicp (c))
-
-# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
- ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
- : printablep (c))
-
-# define ISALNUM(c) (IS_REAL_ASCII (c) \
- ? (((c) >= 'a' && (c) <= 'z') \
- || ((c) >= 'A' && (c) <= 'Z') \
- || ((c) >= '0' && (c) <= '9')) \
- : alphanumericp (c))
-
-# define ISALPHA(c) (IS_REAL_ASCII (c) \
- ? (((c) >= 'a' && (c) <= 'z') \
- || ((c) >= 'A' && (c) <= 'Z')) \
- : alphabeticp (c))
-
-# define ISLOWER(c) lowercasep (c)
-
-# define ISPUNCT(c) (IS_REAL_ASCII (c) \
- ? ((c) > ' ' && (c) < 0177 \
- && !(((c) >= 'a' && (c) <= 'z') \
- || ((c) >= 'A' && (c) <= 'Z') \
- || ((c) >= '0' && (c) <= '9'))) \
- : SYNTAX (c) != Sword)
-
-# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
-
-# define ISUPPER(c) uppercasep (c)
-
-# define ISWORD(c) (SYNTAX (c) == Sword)
-
-#else /* not emacs */
-
-/* 1 if C is an ASCII character. */
-# define IS_REAL_ASCII(c) ((c) < 0200)
-
-/* This distinction is not meaningful, except in Emacs. */
-# define ISUNIBYTE(c) 1
-
-# ifdef isblank
-# define ISBLANK(c) isblank (c)
-# else
-# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
-# endif
-# ifdef isgraph
-# define ISGRAPH(c) isgraph (c)
-# else
-# define ISGRAPH(c) (isprint (c) && !isspace (c))
-# endif
-
-/* Solaris defines ISPRINT so we must undefine it first. */
-# undef ISPRINT
-# define ISPRINT(c) isprint (c)
-# define ISDIGIT(c) isdigit (c)
-# define ISALNUM(c) isalnum (c)
-# define ISALPHA(c) isalpha (c)
-# define ISCNTRL(c) iscntrl (c)
-# define ISLOWER(c) islower (c)
-# define ISPUNCT(c) ispunct (c)
-# define ISSPACE(c) isspace (c)
-# define ISUPPER(c) isupper (c)
-# define ISXDIGIT(c) isxdigit (c)
-
-# define ISWORD(c) ISALPHA (c)
-
-# ifdef _tolower
-# define TOLOWER(c) _tolower (c)
-# else
-# define TOLOWER(c) tolower (c)
-# endif
-
-/* How many characters in the character set. */
-# define CHAR_SET_SIZE 256
-
-# ifdef SYNTAX_TABLE
-
-extern char *re_syntax_table;
-
-# else /* not SYNTAX_TABLE */
-
-static char re_syntax_table[CHAR_SET_SIZE];
-
-static void
-init_syntax_once (void)
-{
- register int c;
- static int done = 0;
-
- if (done)
- return;
-
- memset (re_syntax_table, 0, sizeof re_syntax_table);
-
- for (c = 0; c < CHAR_SET_SIZE; ++c)
- if (ISALNUM (c))
- re_syntax_table[c] = Sword;
-
- re_syntax_table['_'] = Ssymbol;
-
- done = 1;
-}
-
-# endif /* not SYNTAX_TABLE */
-
-# define SYNTAX(c) re_syntax_table[(c)]
-
-#endif /* not emacs */
-\f
-#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
-\f
-/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
- use `alloca' instead of `malloc'. This is because using malloc in
- re_search* or re_match* could cause memory leaks when C-g is used
- in Emacs (note that SAFE_ALLOCA could also call malloc, but does so
- via `record_xmalloc' which uses `unwind_protect' to ensure the
- memory is freed even in case of non-local exits); also, malloc is
- slower and causes storage fragmentation. On the other hand, malloc
- is more portable, and easier to debug.
-
- Because we sometimes use alloca, some routines have to be macros,
- not functions -- `alloca'-allocated space disappears at the end of the
- function it is called in. */
-
-#ifdef REGEX_MALLOC
-
-# define REGEX_ALLOCATE malloc
-# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
-# define REGEX_FREE free
-
-#else /* not REGEX_MALLOC */
-
-# ifdef emacs
-/* This may be adjusted in main(), if the stack is successfully grown. */
-ptrdiff_t emacs_re_safe_alloca = MAX_ALLOCA;
-/* Like USE_SAFE_ALLOCA, but use emacs_re_safe_alloca. */
-# define REGEX_USE_SAFE_ALLOCA \
- ptrdiff_t sa_avail = emacs_re_safe_alloca; \
- ptrdiff_t sa_count = SPECPDL_INDEX ()
-
-# define REGEX_SAFE_FREE() SAFE_FREE ()
-# define REGEX_ALLOCATE SAFE_ALLOCA
-# else
-# include <alloca.h>
-# define REGEX_ALLOCATE alloca
-# endif
-
-/* Assumes a `char *destination' variable. */
-# define REGEX_REALLOCATE(source, osize, nsize) \
- (destination = REGEX_ALLOCATE (nsize), \
- memcpy (destination, source, osize))
-
-/* No need to do anything to free, after alloca. */
-# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
-
-#endif /* not REGEX_MALLOC */
-
-#ifndef REGEX_USE_SAFE_ALLOCA
-# define REGEX_USE_SAFE_ALLOCA ((void) 0)
-# define REGEX_SAFE_FREE() ((void) 0)
-#endif
-
-/* Define how to allocate the failure stack. */
-
-#if defined REL_ALLOC && defined REGEX_MALLOC
-
-# define REGEX_ALLOCATE_STACK(size) \
- r_alloc (&failure_stack_ptr, (size))
-# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
- r_re_alloc (&failure_stack_ptr, (nsize))
-# define REGEX_FREE_STACK(ptr) \
- r_alloc_free (&failure_stack_ptr)
-
-#else /* not using relocating allocator */
-
-# define REGEX_ALLOCATE_STACK(size) REGEX_ALLOCATE (size)
-# define REGEX_REALLOCATE_STACK(source, o, n) REGEX_REALLOCATE (source, o, n)
-# define REGEX_FREE_STACK(ptr) REGEX_FREE (ptr)
-
-#endif /* not using relocating allocator */
-
-
-/* True if `size1' is non-NULL and PTR is pointing anywhere inside
- `string1' or just past its end. This works if PTR is NULL, which is
- a good thing. */
-#define FIRST_STRING_P(ptr) \
- (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
-
-/* (Re)Allocate N items of type T using malloc, or fail. */
-#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
-#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
-#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
-
-#define BYTEWIDTH 8 /* In bits. */
-
-#ifndef emacs
-# undef max
-# undef min
-# define max(a, b) ((a) > (b) ? (a) : (b))
-# define min(a, b) ((a) < (b) ? (a) : (b))
-#endif
-
-/* Type of source-pattern and string chars. */
-typedef const unsigned char re_char;
-
-typedef char boolean;
-
-static regoff_t re_match_2_internal (struct re_pattern_buffer *bufp,
- re_char *string1, size_t size1,
- re_char *string2, size_t size2,
- ssize_t pos,
- struct re_registers *regs,
- ssize_t stop);
-\f
-/* These are the command codes that appear in compiled regular
- expressions. Some opcodes are followed by argument bytes. A
- command code can specify any interpretation whatsoever for its
- arguments. Zero bytes may appear in the compiled regular expression. */
-
-typedef enum
-{
- no_op = 0,
-
- /* Succeed right away--no more backtracking. */
- succeed,
-
- /* Followed by one byte giving n, then by n literal bytes. */
- exactn,
-
- /* Matches any (more or less) character. */
- anychar,
-
- /* Matches any one char belonging to specified set. First
- following byte is number of bitmap bytes. Then come bytes
- for a bitmap saying which chars are in. Bits in each byte
- are ordered low-bit-first. A character is in the set if its
- bit is 1. A character too large to have a bit in the map is
- automatically not in the set.
-
- If the length byte has the 0x80 bit set, then that stuff
- is followed by a range table:
- 2 bytes of flags for character sets (low 8 bits, high 8 bits)
- See RANGE_TABLE_WORK_BITS below.
- 2 bytes, the number of pairs that follow (upto 32767)
- pairs, each 2 multibyte characters,
- each multibyte character represented as 3 bytes. */
- charset,
-
- /* Same parameters as charset, but match any character that is
- not one of those specified. */
- charset_not,
-
- /* Start remembering the text that is matched, for storing in a
- register. Followed by one byte with the register number, in
- the range 0 to one less than the pattern buffer's re_nsub
- field. */
- start_memory,
-
- /* Stop remembering the text that is matched and store it in a
- memory register. Followed by one byte with the register
- number, in the range 0 to one less than `re_nsub' in the
- pattern buffer. */
- stop_memory,
-
- /* Match a duplicate of something remembered. Followed by one
- byte containing the register number. */
- duplicate,
-
- /* Fail unless at beginning of line. */
- begline,
-
- /* Fail unless at end of line. */
- endline,
-
- /* Succeeds if at beginning of buffer (if emacs) or at beginning
- of string to be matched (if not). */
- begbuf,
-
- /* Analogously, for end of buffer/string. */
- endbuf,
-
- /* Followed by two byte relative address to which to jump. */
- jump,
-
- /* Followed by two-byte relative address of place to resume at
- in case of failure. */
- on_failure_jump,
-
- /* Like on_failure_jump, but pushes a placeholder instead of the
- current string position when executed. */
- on_failure_keep_string_jump,
-
- /* Just like `on_failure_jump', except that it checks that we
- don't get stuck in an infinite loop (matching an empty string
- indefinitely). */
- on_failure_jump_loop,
-
- /* Just like `on_failure_jump_loop', except that it checks for
- a different kind of loop (the kind that shows up with non-greedy
- operators). This operation has to be immediately preceded
- by a `no_op'. */
- on_failure_jump_nastyloop,
-
- /* A smart `on_failure_jump' used for greedy * and + operators.
- It analyzes the loop before which it is put and if the
- loop does not require backtracking, it changes itself to
- `on_failure_keep_string_jump' and short-circuits the loop,
- else it just defaults to changing itself into `on_failure_jump'.
- It assumes that it is pointing to just past a `jump'. */
- on_failure_jump_smart,
-
- /* Followed by two-byte relative address and two-byte number n.
- After matching N times, jump to the address upon failure.
- Does not work if N starts at 0: use on_failure_jump_loop
- instead. */
- succeed_n,
-
- /* Followed by two-byte relative address, and two-byte number n.
- Jump to the address N times, then fail. */
- jump_n,
-
- /* Set the following two-byte relative address to the
- subsequent two-byte number. The address *includes* the two
- bytes of number. */
- set_number_at,
-
- wordbeg, /* Succeeds if at word beginning. */
- wordend, /* Succeeds if at word end. */
-
- wordbound, /* Succeeds if at a word boundary. */
- notwordbound, /* Succeeds if not at a word boundary. */
-
- symbeg, /* Succeeds if at symbol beginning. */
- symend, /* Succeeds if at symbol end. */
-
- /* Matches any character whose syntax is specified. Followed by
- a byte which contains a syntax code, e.g., Sword. */
- syntaxspec,
-
- /* Matches any character whose syntax is not that specified. */
- notsyntaxspec
-
-#ifdef emacs
- , at_dot, /* Succeeds if at point. */
-
- /* Matches any character whose category-set contains the specified
- category. The operator is followed by a byte which contains a
- category code (mnemonic ASCII character). */
- categoryspec,
-
- /* Matches any character whose category-set does not contain the
- specified category. The operator is followed by a byte which
- contains the category code (mnemonic ASCII character). */
- notcategoryspec
-#endif /* emacs */
-} re_opcode_t;
-\f
-/* Common operations on the compiled pattern. */
-
-/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
-
-#define STORE_NUMBER(destination, number) \
- do { \
- (destination)[0] = (number) & 0377; \
- (destination)[1] = (number) >> 8; \
- } while (0)
-
-/* Same as STORE_NUMBER, except increment DESTINATION to
- the byte after where the number is stored. Therefore, DESTINATION
- must be an lvalue. */
-
-#define STORE_NUMBER_AND_INCR(destination, number) \
- do { \
- STORE_NUMBER (destination, number); \
- (destination) += 2; \
- } while (0)
-
-/* Put into DESTINATION a number stored in two contiguous bytes starting
- at SOURCE. */
-
-#define EXTRACT_NUMBER(destination, source) \
- ((destination) = extract_number (source))
-
-static int
-extract_number (re_char *source)
-{
- unsigned leading_byte = SIGN_EXTEND_CHAR (source[1]);
- return (leading_byte << 8) + source[0];
-}
-
-/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
- SOURCE must be an lvalue. */
-
-#define EXTRACT_NUMBER_AND_INCR(destination, source) \
- ((destination) = extract_number_and_incr (&source))
-
-static int
-extract_number_and_incr (re_char **source)
-{
- int num = extract_number (*source);
- *source += 2;
- return num;
-}
-\f
-/* Store a multibyte character in three contiguous bytes starting
- DESTINATION, and increment DESTINATION to the byte after where the
- character is stored. Therefore, DESTINATION must be an lvalue. */
-
-#define STORE_CHARACTER_AND_INCR(destination, character) \
- do { \
- (destination)[0] = (character) & 0377; \
- (destination)[1] = ((character) >> 8) & 0377; \
- (destination)[2] = (character) >> 16; \
- (destination) += 3; \
- } while (0)
-
-/* Put into DESTINATION a character stored in three contiguous bytes
- starting at SOURCE. */
-
-#define EXTRACT_CHARACTER(destination, source) \
- do { \
- (destination) = ((source)[0] \
- | ((source)[1] << 8) \
- | ((source)[2] << 16)); \
- } while (0)
-
-
-/* Macros for charset. */
-
-/* Size of bitmap of charset P in bytes. P is a start of charset,
- i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
-#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
-
-/* Nonzero if charset P has range table. */
-#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
-
-/* Return the address of range table of charset P. But not the start
- of table itself, but the before where the number of ranges is
- stored. `2 +' means to skip re_opcode_t and size of bitmap,
- and the 2 bytes of flags at the start of the range table. */
-#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
-
-#ifdef emacs
-/* Extract the bit flags that start a range table. */
-#define CHARSET_RANGE_TABLE_BITS(p) \
- ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
- + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
-#endif
-
-/* Return the address of end of RANGE_TABLE. COUNT is number of
- ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
- is start of range and end of range. `* 3' is size of each start
- and end. */
-#define CHARSET_RANGE_TABLE_END(range_table, count) \
- ((range_table) + (count) * 2 * 3)
-\f
-/* If DEBUG is defined, Regex prints many voluminous messages about what
- it is doing (if the variable `debug' is nonzero). If linked with the
- main program in `iregex.c', you can enter patterns and strings
- interactively. And if linked with the main program in `main.c' and
- the other test files, you can run the already-written tests. */
-
-#ifdef DEBUG
-
-/* We use standard I/O for debugging. */
-# include <stdio.h>
-
-/* It is useful to test things that ``must'' be true when debugging. */
-# include <assert.h>
-
-static int debug = -100000;
-
-# define DEBUG_STATEMENT(e) e
-# define DEBUG_PRINT(...) if (debug > 0) printf (__VA_ARGS__)
-# define DEBUG_COMPILES_ARGUMENTS
-# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
- if (debug > 0) print_partial_compiled_pattern (s, e)
-# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
- if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
-
-
-/* Print the fastmap in human-readable form. */
-
-static void
-print_fastmap (char *fastmap)
-{
- unsigned was_a_range = 0;
- unsigned i = 0;
-
- while (i < (1 << BYTEWIDTH))
- {
- if (fastmap[i++])
- {
- was_a_range = 0;
- putchar (i - 1);
- while (i < (1 << BYTEWIDTH) && fastmap[i])
- {
- was_a_range = 1;
- i++;
- }
- if (was_a_range)
- {
- printf ("-");
- putchar (i - 1);
- }
- }
- }
- putchar ('\n');
-}
-
-
-/* Print a compiled pattern string in human-readable form, starting at
- the START pointer into it and ending just before the pointer END. */
-
-static void
-print_partial_compiled_pattern (re_char *start, re_char *end)
-{
- int mcnt, mcnt2;
- re_char *p = start;
- re_char *pend = end;
-
- if (start == NULL)
- {
- fprintf (stderr, "(null)\n");
- return;
- }
-
- /* Loop over pattern commands. */
- while (p < pend)
- {
- fprintf (stderr, "%td:\t", p - start);
-
- switch ((re_opcode_t) *p++)
- {
- case no_op:
- fprintf (stderr, "/no_op");
- break;
-
- case succeed:
- fprintf (stderr, "/succeed");
- break;
-
- case exactn:
- mcnt = *p++;
- fprintf (stderr, "/exactn/%d", mcnt);
- do
- {
- fprintf (stderr, "/%c", *p++);
- }
- while (--mcnt);
- break;
-
- case start_memory:
- fprintf (stderr, "/start_memory/%d", *p++);
- break;
-
- case stop_memory:
- fprintf (stderr, "/stop_memory/%d", *p++);
- break;
-
- case duplicate:
- fprintf (stderr, "/duplicate/%d", *p++);
- break;
-
- case anychar:
- fprintf (stderr, "/anychar");
- break;
-
- case charset:
- case charset_not:
- {
- register int c, last = -100;
- register int in_range = 0;
- int length = CHARSET_BITMAP_SIZE (p - 1);
- int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
-
- fprintf (stderr, "/charset [%s",
- (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
-
- if (p + *p >= pend)
- fprintf (stderr, " !extends past end of pattern! ");
-
- for (c = 0; c < 256; c++)
- if (c / 8 < length
- && (p[1 + (c/8)] & (1 << (c % 8))))
- {
- /* Are we starting a range? */
- if (last + 1 == c && ! in_range)
- {
- fprintf (stderr, "-");
- in_range = 1;
- }
- /* Have we broken a range? */
- else if (last + 1 != c && in_range)
- {
- fprintf (stderr, "%c", last);
- in_range = 0;
- }
-
- if (! in_range)
- fprintf (stderr, "%c", c);
-
- last = c;
- }
-
- if (in_range)
- fprintf (stderr, "%c", last);
-
- fprintf (stderr, "]");
-
- p += 1 + length;
-
- if (has_range_table)
- {
- int count;
- fprintf (stderr, "has-range-table");
-
- /* ??? Should print the range table; for now, just skip it. */
- p += 2; /* skip range table bits */
- EXTRACT_NUMBER_AND_INCR (count, p);
- p = CHARSET_RANGE_TABLE_END (p, count);
- }
- }
- break;
-
- case begline:
- fprintf (stderr, "/begline");
- break;
-
- case endline:
- fprintf (stderr, "/endline");
- break;
-
- case on_failure_jump:
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- fprintf (stderr, "/on_failure_jump to %td", p + mcnt - start);
- break;
-
- case on_failure_keep_string_jump:
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- fprintf (stderr, "/on_failure_keep_string_jump to %td",
- p + mcnt - start);
- break;
-
- case on_failure_jump_nastyloop:
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- fprintf (stderr, "/on_failure_jump_nastyloop to %td",
- p + mcnt - start);
- break;
-
- case on_failure_jump_loop:
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- fprintf (stderr, "/on_failure_jump_loop to %td",
- p + mcnt - start);
- break;
-
- case on_failure_jump_smart:
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- fprintf (stderr, "/on_failure_jump_smart to %td",
- p + mcnt - start);
- break;
-
- case jump:
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- fprintf (stderr, "/jump to %td", p + mcnt - start);
- break;
-
- case succeed_n:
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- EXTRACT_NUMBER_AND_INCR (mcnt2, p);
- fprintf (stderr, "/succeed_n to %td, %d times",
- p - 2 + mcnt - start, mcnt2);
- break;
-
- case jump_n:
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- EXTRACT_NUMBER_AND_INCR (mcnt2, p);
- fprintf (stderr, "/jump_n to %td, %d times",
- p - 2 + mcnt - start, mcnt2);
- break;
-
- case set_number_at:
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- EXTRACT_NUMBER_AND_INCR (mcnt2, p);
- fprintf (stderr, "/set_number_at location %td to %d",
- p - 2 + mcnt - start, mcnt2);
- break;
-
- case wordbound:
- fprintf (stderr, "/wordbound");
- break;
-
- case notwordbound:
- fprintf (stderr, "/notwordbound");
- break;
-
- case wordbeg:
- fprintf (stderr, "/wordbeg");
- break;
-
- case wordend:
- fprintf (stderr, "/wordend");
- break;
-
- case symbeg:
- fprintf (stderr, "/symbeg");
- break;
-
- case symend:
- fprintf (stderr, "/symend");
- break;
-
- case syntaxspec:
- fprintf (stderr, "/syntaxspec");
- mcnt = *p++;
- fprintf (stderr, "/%d", mcnt);
- break;
-
- case notsyntaxspec:
- fprintf (stderr, "/notsyntaxspec");
- mcnt = *p++;
- fprintf (stderr, "/%d", mcnt);
- break;
-
-# ifdef emacs
- case at_dot:
- fprintf (stderr, "/at_dot");
- break;
-
- case categoryspec:
- fprintf (stderr, "/categoryspec");
- mcnt = *p++;
- fprintf (stderr, "/%d", mcnt);
- break;
-
- case notcategoryspec:
- fprintf (stderr, "/notcategoryspec");
- mcnt = *p++;
- fprintf (stderr, "/%d", mcnt);
- break;
-# endif /* emacs */
-
- case begbuf:
- fprintf (stderr, "/begbuf");
- break;
-
- case endbuf:
- fprintf (stderr, "/endbuf");
- break;
-
- default:
- fprintf (stderr, "?%d", *(p-1));
- }
-
- fprintf (stderr, "\n");
- }
-
- fprintf (stderr, "%td:\tend of pattern.\n", p - start);
-}
-
-
-static void
-print_compiled_pattern (struct re_pattern_buffer *bufp)
-{
- re_char *buffer = bufp->buffer;
-
- print_partial_compiled_pattern (buffer, buffer + bufp->used);
- printf ("%ld bytes used/%ld bytes allocated.\n",
- bufp->used, bufp->allocated);
-
- if (bufp->fastmap_accurate && bufp->fastmap)
- {
- printf ("fastmap: ");
- print_fastmap (bufp->fastmap);
- }
-
- printf ("re_nsub: %zu\t", bufp->re_nsub);
- printf ("regs_alloc: %d\t", bufp->regs_allocated);
- printf ("can_be_null: %d\t", bufp->can_be_null);
- printf ("no_sub: %d\t", bufp->no_sub);
- printf ("not_bol: %d\t", bufp->not_bol);
- printf ("not_eol: %d\t", bufp->not_eol);
-#ifndef emacs
- printf ("syntax: %lx\n", bufp->syntax);
-#endif
- fflush (stdout);
- /* Perhaps we should print the translate table? */
-}
-
-
-static void
-print_double_string (re_char *where, re_char *string1, ssize_t size1,
- re_char *string2, ssize_t size2)
-{
- ssize_t this_char;
-
- if (where == NULL)
- printf ("(null)");
- else
- {
- if (FIRST_STRING_P (where))
- {
- for (this_char = where - string1; this_char < size1; this_char++)
- putchar (string1[this_char]);
-
- where = string2;
- }
-
- for (this_char = where - string2; this_char < size2; this_char++)
- putchar (string2[this_char]);
- }
-}
-
-#else /* not DEBUG */
-
-# undef assert
-# define assert(e)
-
-# define DEBUG_STATEMENT(e)
-# define DEBUG_PRINT(...)
-# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
-# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
-
-#endif /* not DEBUG */
-\f
-#ifndef emacs
-
-/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
- also be assigned to arbitrarily: each pattern buffer stores its own
- syntax, so it can be changed between regex compilations. */
-/* This has no initializer because initialized variables in Emacs
- become read-only after dumping. */
-reg_syntax_t re_syntax_options;
-
-
-/* Specify the precise syntax of regexps for compilation. This provides
- for compatibility for various utilities which historically have
- different, incompatible syntaxes.
-
- The argument SYNTAX is a bit mask comprised of the various bits
- defined in regex.h. We return the old syntax. */
-
-reg_syntax_t
-re_set_syntax (reg_syntax_t syntax)
-{
- reg_syntax_t ret = re_syntax_options;
-
- re_syntax_options = syntax;
- return ret;
-}
-WEAK_ALIAS (__re_set_syntax, re_set_syntax)
-
-#endif
-\f
-/* This table gives an error message for each of the error codes listed
- in regex.h. Obviously the order here has to be same as there.
- POSIX doesn't require that we do anything for REG_NOERROR,
- but why not be nice? */
-
-static const char *re_error_msgid[] =
- {
- gettext_noop ("Success"), /* REG_NOERROR */
- gettext_noop ("No match"), /* REG_NOMATCH */
- gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
- gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
- gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
- gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
- gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
- gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
- gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
- gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
- gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
- gettext_noop ("Invalid range end"), /* REG_ERANGE */
- gettext_noop ("Memory exhausted"), /* REG_ESPACE */
- gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
- gettext_noop ("Premature end of regular expression"), /* REG_EEND */
- gettext_noop ("Regular expression too big"), /* REG_ESIZE */
- gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
- gettext_noop ("Range striding over charsets"), /* REG_ERANGEX */
- gettext_noop ("Invalid content of \\{\\}, repetitions too big") /* REG_ESIZEBR */
- };
-\f
-/* Whether to allocate memory during matching. */
-
-/* Define MATCH_MAY_ALLOCATE to allow the searching and matching
- functions allocate memory for the failure stack and registers.
- Normally should be defined, because otherwise searching and
- matching routines will have much smaller memory resources at their
- disposal, and therefore might fail to handle complex regexps.
- Therefore undefine MATCH_MAY_ALLOCATE only in the following
- exceptional situations:
-
- . When running on a system where memory is at premium.
- . When alloca cannot be used at all, perhaps due to bugs in
- its implementation, or its being unavailable, or due to a
- very small stack size. This requires to define REGEX_MALLOC
- to use malloc instead, which in turn could lead to memory
- leaks if search is interrupted by a signal. (For these
- reasons, defining REGEX_MALLOC when building Emacs
- automatically undefines MATCH_MAY_ALLOCATE, but outside
- Emacs you may not care about memory leaks.) If you want to
- prevent the memory leaks, undefine MATCH_MAY_ALLOCATE.
- . When code that calls the searching and matching functions
- cannot allow memory allocation, for whatever reasons. */
-
-/* Normally, this is fine. */
-#define MATCH_MAY_ALLOCATE
-
-/* The match routines may not allocate if (1) they would do it with malloc
- and (2) it's not safe for them to use malloc.
- Note that if REL_ALLOC is defined, matching would not use malloc for the
- failure stack, but we would still use it for the register vectors;
- so REL_ALLOC should not affect this. */
-#if defined REGEX_MALLOC && defined emacs
-# undef MATCH_MAY_ALLOCATE
-#endif
-
-/* While regex matching of a single compiled pattern isn't reentrant
- (because we compile regexes to bytecode programs, and the bytecode
- programs are self-modifying), the regex machinery must nevertheless
- be reentrant with respect to _different_ patterns, and we do that
- by avoiding global variables and using MATCH_MAY_ALLOCATE. */
-#if !defined MATCH_MAY_ALLOCATE && defined emacs
-# error "Emacs requires MATCH_MAY_ALLOCATE"
-#endif
-
-\f
-/* Failure stack declarations and macros; both re_compile_fastmap and
- re_match_2 use a failure stack. These have to be macros because of
- REGEX_ALLOCATE_STACK. */
-
-
-/* Approximate number of failure points for which to initially allocate space
- when matching. If this number is exceeded, we allocate more
- space, so it is not a hard limit. */
-#ifndef INIT_FAILURE_ALLOC
-# define INIT_FAILURE_ALLOC 20
-#endif
-
-/* Roughly the maximum number of failure points on the stack. Would be
- exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
- This is a variable only so users of regex can assign to it; we never
- change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
- before using it, so it should probably be a byte-count instead. */
-# if defined MATCH_MAY_ALLOCATE
-/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
- whose default stack limit is 2mb. In order for a larger
- value to work reliably, you have to try to make it accord
- with the process stack limit. */
-size_t emacs_re_max_failures = 40000;
-# else
-size_t emacs_re_max_failures = 4000;
-# endif
-
-union fail_stack_elt
-{
- re_char *pointer;
- /* This should be the biggest `int' that's no bigger than a pointer. */
- long integer;
-};
-
-typedef union fail_stack_elt fail_stack_elt_t;
-
-typedef struct
-{
- fail_stack_elt_t *stack;
- size_t size;
- size_t avail; /* Offset of next open position. */
- size_t frame; /* Offset of the cur constructed frame. */
-} fail_stack_type;
-
-#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
-
-
-/* Define macros to initialize and free the failure stack.
- Do `return -2' if the alloc fails. */
-
-#ifdef MATCH_MAY_ALLOCATE
-# define INIT_FAIL_STACK() \
- do { \
- fail_stack.stack = \
- REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
- * sizeof (fail_stack_elt_t)); \
- \
- if (fail_stack.stack == NULL) \
- return -2; \
- \
- fail_stack.size = INIT_FAILURE_ALLOC; \
- fail_stack.avail = 0; \
- fail_stack.frame = 0; \
- } while (0)
-#else
-# define INIT_FAIL_STACK() \
- do { \
- fail_stack.avail = 0; \
- fail_stack.frame = 0; \
- } while (0)
-
-# define RETALLOC_IF(addr, n, t) \
- if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
-#endif
-
-
-/* Double the size of FAIL_STACK, up to a limit
- which allows approximately `emacs_re_max_failures' items.
-
- Return 1 if succeeds, and 0 if either ran out of memory
- allocating space for it or it was already too large.
-
- REGEX_REALLOCATE_STACK requires `destination' be declared. */
-
-/* Factor to increase the failure stack size by
- when we increase it.
- This used to be 2, but 2 was too wasteful
- because the old discarded stacks added up to as much space
- were as ultimate, maximum-size stack. */
-#define FAIL_STACK_GROWTH_FACTOR 4
-
-#define GROW_FAIL_STACK(fail_stack) \
- (((fail_stack).size >= emacs_re_max_failures * TYPICAL_FAILURE_SIZE) \
- ? 0 \
- : ((fail_stack).stack \
- = REGEX_REALLOCATE_STACK ((fail_stack).stack, \
- (fail_stack).size * sizeof (fail_stack_elt_t), \
- min (emacs_re_max_failures * TYPICAL_FAILURE_SIZE, \
- ((fail_stack).size * FAIL_STACK_GROWTH_FACTOR)) \
- * sizeof (fail_stack_elt_t)), \
- \
- (fail_stack).stack == NULL \
- ? 0 \
- : ((fail_stack).size \
- = (min (emacs_re_max_failures * TYPICAL_FAILURE_SIZE, \
- ((fail_stack).size * FAIL_STACK_GROWTH_FACTOR))), \
- 1)))
-
-
-/* Push a pointer value onto the failure stack.
- Assumes the variable `fail_stack'. Probably should only
- be called from within `PUSH_FAILURE_POINT'. */
-#define PUSH_FAILURE_POINTER(item) \
- fail_stack.stack[fail_stack.avail++].pointer = (item)
-
-/* This pushes an integer-valued item onto the failure stack.
- Assumes the variable `fail_stack'. Probably should only
- be called from within `PUSH_FAILURE_POINT'. */
-#define PUSH_FAILURE_INT(item) \
- fail_stack.stack[fail_stack.avail++].integer = (item)
-
-/* These POP... operations complement the PUSH... operations.
- All assume that `fail_stack' is nonempty. */
-#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
-#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
-
-/* Individual items aside from the registers. */
-#define NUM_NONREG_ITEMS 3
-
-/* Used to examine the stack (to detect infinite loops). */
-#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
-#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
-#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
-#define TOP_FAILURE_HANDLE() fail_stack.frame
-
-
-#define ENSURE_FAIL_STACK(space) \
-while (REMAINING_AVAIL_SLOTS <= space) { \
- if (!GROW_FAIL_STACK (fail_stack)) \
- return -2; \
- DEBUG_PRINT ("\n Doubled stack; size now: %zd\n", (fail_stack).size);\
- DEBUG_PRINT (" slots available: %zd\n", REMAINING_AVAIL_SLOTS);\
-}
-
-/* Push register NUM onto the stack. */
-#define PUSH_FAILURE_REG(num) \
-do { \
- char *destination; \
- long n = num; \
- ENSURE_FAIL_STACK(3); \
- DEBUG_PRINT (" Push reg %ld (spanning %p -> %p)\n", \
- n, regstart[n], regend[n]); \
- PUSH_FAILURE_POINTER (regstart[n]); \
- PUSH_FAILURE_POINTER (regend[n]); \
- PUSH_FAILURE_INT (n); \
-} while (0)
-
-/* Change the counter's value to VAL, but make sure that it will
- be reset when backtracking. */
-#define PUSH_NUMBER(ptr,val) \
-do { \
- char *destination; \
- int c; \
- ENSURE_FAIL_STACK(3); \
- EXTRACT_NUMBER (c, ptr); \
- DEBUG_PRINT (" Push number %p = %d -> %d\n", ptr, c, val); \
- PUSH_FAILURE_INT (c); \
- PUSH_FAILURE_POINTER (ptr); \
- PUSH_FAILURE_INT (-1); \
- STORE_NUMBER (ptr, val); \
-} while (0)
-
-/* Pop a saved register off the stack. */
-#define POP_FAILURE_REG_OR_COUNT() \
-do { \
- long pfreg = POP_FAILURE_INT (); \
- if (pfreg == -1) \
- { \
- /* It's a counter. */ \
- /* Here, we discard `const', making re_match non-reentrant. */ \
- unsigned char *ptr = (unsigned char *) POP_FAILURE_POINTER (); \
- pfreg = POP_FAILURE_INT (); \
- STORE_NUMBER (ptr, pfreg); \
- DEBUG_PRINT (" Pop counter %p = %ld\n", ptr, pfreg); \
- } \
- else \
- { \
- regend[pfreg] = POP_FAILURE_POINTER (); \
- regstart[pfreg] = POP_FAILURE_POINTER (); \
- DEBUG_PRINT (" Pop reg %ld (spanning %p -> %p)\n", \
- pfreg, regstart[pfreg], regend[pfreg]); \
- } \
-} while (0)
-
-/* Check that we are not stuck in an infinite loop. */
-#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
-do { \
- ssize_t failure = TOP_FAILURE_HANDLE (); \
- /* Check for infinite matching loops */ \
- while (failure > 0 \
- && (FAILURE_STR (failure) == string_place \
- || FAILURE_STR (failure) == NULL)) \
- { \
- assert (FAILURE_PAT (failure) >= bufp->buffer \
- && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
- if (FAILURE_PAT (failure) == pat_cur) \
- { \
- cycle = 1; \
- break; \
- } \
- DEBUG_PRINT (" Other pattern: %p\n", FAILURE_PAT (failure)); \
- failure = NEXT_FAILURE_HANDLE(failure); \
- } \
- DEBUG_PRINT (" Other string: %p\n", FAILURE_STR (failure)); \
-} while (0)
-
-/* Push the information about the state we will need
- if we ever fail back to it.
-
- Requires variables fail_stack, regstart, regend and
- num_regs be declared. GROW_FAIL_STACK requires `destination' be
- declared.
-
- Does `return FAILURE_CODE' if runs out of memory. */
-
-#define PUSH_FAILURE_POINT(pattern, string_place) \
-do { \
- char *destination; \
- /* Must be int, so when we don't save any registers, the arithmetic \
- of 0 + -1 isn't done as unsigned. */ \
- \
- DEBUG_STATEMENT (nfailure_points_pushed++); \
- DEBUG_PRINT ("\nPUSH_FAILURE_POINT:\n"); \
- DEBUG_PRINT (" Before push, next avail: %zd\n", (fail_stack).avail); \
- DEBUG_PRINT (" size: %zd\n", (fail_stack).size);\
- \
- ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
- \
- DEBUG_PRINT ("\n"); \
- \
- DEBUG_PRINT (" Push frame index: %zd\n", fail_stack.frame); \
- PUSH_FAILURE_INT (fail_stack.frame); \
- \
- DEBUG_PRINT (" Push string %p: \"", string_place); \
- DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
- DEBUG_PRINT ("\"\n"); \
- PUSH_FAILURE_POINTER (string_place); \
- \
- DEBUG_PRINT (" Push pattern %p: ", pattern); \
- DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
- PUSH_FAILURE_POINTER (pattern); \
- \
- /* Close the frame by moving the frame pointer past it. */ \
- fail_stack.frame = fail_stack.avail; \
-} while (0)
-
-/* Estimate the size of data pushed by a typical failure stack entry.
- An estimate is all we need, because all we use this for
- is to choose a limit for how big to make the failure stack. */
-/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
-#define TYPICAL_FAILURE_SIZE 20
-
-/* How many items can still be added to the stack without overflowing it. */
-#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
-
-
-/* Pops what PUSH_FAIL_STACK pushes.
-
- We restore into the parameters, all of which should be lvalues:
- STR -- the saved data position.
- PAT -- the saved pattern position.
- REGSTART, REGEND -- arrays of string positions.
-
- Also assumes the variables `fail_stack' and (if debugging), `bufp',
- `pend', `string1', `size1', `string2', and `size2'. */
-
-#define POP_FAILURE_POINT(str, pat) \
-do { \
- assert (!FAIL_STACK_EMPTY ()); \
- \
- /* Remove failure points and point to how many regs pushed. */ \
- DEBUG_PRINT ("POP_FAILURE_POINT:\n"); \
- DEBUG_PRINT (" Before pop, next avail: %zd\n", fail_stack.avail); \
- DEBUG_PRINT (" size: %zd\n", fail_stack.size); \
- \
- /* Pop the saved registers. */ \
- while (fail_stack.frame < fail_stack.avail) \
- POP_FAILURE_REG_OR_COUNT (); \
- \
- pat = POP_FAILURE_POINTER (); \
- DEBUG_PRINT (" Popping pattern %p: ", pat); \
- DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
- \
- /* If the saved string location is NULL, it came from an \
- on_failure_keep_string_jump opcode, and we want to throw away the \
- saved NULL, thus retaining our current position in the string. */ \
- str = POP_FAILURE_POINTER (); \
- DEBUG_PRINT (" Popping string %p: \"", str); \
- DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
- DEBUG_PRINT ("\"\n"); \
- \
- fail_stack.frame = POP_FAILURE_INT (); \
- DEBUG_PRINT (" Popping frame index: %zd\n", fail_stack.frame); \
- \
- assert (fail_stack.avail >= 0); \
- assert (fail_stack.frame <= fail_stack.avail); \
- \
- DEBUG_STATEMENT (nfailure_points_popped++); \
-} while (0) /* POP_FAILURE_POINT */
-
-
-\f
-/* Registers are set to a sentinel when they haven't yet matched. */
-#define REG_UNSET(e) ((e) == NULL)
-\f
-/* Subroutine declarations and macros for regex_compile. */
-
-static reg_errcode_t regex_compile (re_char *pattern, size_t size,
-#ifdef emacs
- bool posix_backtracking,
- const char *whitespace_regexp,
-#else
- reg_syntax_t syntax,
-#endif
- struct re_pattern_buffer *bufp);
-static void store_op1 (re_opcode_t op, unsigned char *loc, int arg);
-static void store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2);
-static void insert_op1 (re_opcode_t op, unsigned char *loc,
- int arg, unsigned char *end);
-static void insert_op2 (re_opcode_t op, unsigned char *loc,
- int arg1, int arg2, unsigned char *end);
-static boolean at_begline_loc_p (re_char *pattern, re_char *p,
- reg_syntax_t syntax);
-static boolean at_endline_loc_p (re_char *p, re_char *pend,
- reg_syntax_t syntax);
-static re_char *skip_one_char (re_char *p);
-static int analyze_first (re_char *p, re_char *pend,
- char *fastmap, const int multibyte);
-
-/* Fetch the next character in the uncompiled pattern, with no
- translation. */
-#define PATFETCH(c) \
- do { \
- int len; \
- if (p == pend) return REG_EEND; \
- c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
- p += len; \
- } while (0)
-
-
-/* If `translate' is non-null, return translate[D], else just D. We
- cast the subscript to translate because some data is declared as
- `char *', to avoid warnings when a string constant is passed. But
- when we use a character as a subscript we must make it unsigned. */
-#ifndef TRANSLATE
-# define TRANSLATE(d) \
- (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
-#endif
-
-
-/* Macros for outputting the compiled pattern into `buffer'. */
-
-/* If the buffer isn't allocated when it comes in, use this. */
-#define INIT_BUF_SIZE 32
-
-/* Make sure we have at least N more bytes of space in buffer. */
-#define GET_BUFFER_SPACE(n) \
- while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
- EXTEND_BUFFER ()
-
-/* Make sure we have one more byte of buffer space and then add C to it. */
-#define BUF_PUSH(c) \
- do { \
- GET_BUFFER_SPACE (1); \
- *b++ = (unsigned char) (c); \
- } while (0)
-
-
-/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
-#define BUF_PUSH_2(c1, c2) \
- do { \
- GET_BUFFER_SPACE (2); \
- *b++ = (unsigned char) (c1); \
- *b++ = (unsigned char) (c2); \
- } while (0)
-
-
-/* Store a jump with opcode OP at LOC to location TO. We store a
- relative address offset by the three bytes the jump itself occupies. */
-#define STORE_JUMP(op, loc, to) \
- store_op1 (op, loc, (to) - (loc) - 3)
-
-/* Likewise, for a two-argument jump. */
-#define STORE_JUMP2(op, loc, to, arg) \
- store_op2 (op, loc, (to) - (loc) - 3, arg)
-
-/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
-#define INSERT_JUMP(op, loc, to) \
- insert_op1 (op, loc, (to) - (loc) - 3, b)
-
-/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
-#define INSERT_JUMP2(op, loc, to, arg) \
- insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
-
-
-/* This is not an arbitrary limit: the arguments which represent offsets
- into the pattern are two bytes long. So if 2^15 bytes turns out to
- be too small, many things would have to change. */
-# define MAX_BUF_SIZE (1L << 15)
-
-/* Extend the buffer by twice its current size via realloc and
- reset the pointers that pointed into the old block to point to the
- correct places in the new one. If extending the buffer results in it
- being larger than MAX_BUF_SIZE, then flag memory exhausted. */
-#define EXTEND_BUFFER() \
- do { \
- unsigned char *old_buffer = bufp->buffer; \
- if (bufp->allocated == MAX_BUF_SIZE) \
- return REG_ESIZE; \
- bufp->allocated <<= 1; \
- if (bufp->allocated > MAX_BUF_SIZE) \
- bufp->allocated = MAX_BUF_SIZE; \
- ptrdiff_t b_off = b - old_buffer; \
- ptrdiff_t begalt_off = begalt - old_buffer; \
- bool fixup_alt_jump_set = !!fixup_alt_jump; \
- bool laststart_set = !!laststart; \
- bool pending_exact_set = !!pending_exact; \
- ptrdiff_t fixup_alt_jump_off, laststart_off, pending_exact_off; \
- if (fixup_alt_jump_set) fixup_alt_jump_off = fixup_alt_jump - old_buffer; \
- if (laststart_set) laststart_off = laststart - old_buffer; \
- if (pending_exact_set) pending_exact_off = pending_exact - old_buffer; \
- RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
- if (bufp->buffer == NULL) \
- return REG_ESPACE; \
- unsigned char *new_buffer = bufp->buffer; \
- b = new_buffer + b_off; \
- begalt = new_buffer + begalt_off; \
- if (fixup_alt_jump_set) fixup_alt_jump = new_buffer + fixup_alt_jump_off; \
- if (laststart_set) laststart = new_buffer + laststart_off; \
- if (pending_exact_set) pending_exact = new_buffer + pending_exact_off; \
- } while (0)
-
-
-/* Since we have one byte reserved for the register number argument to
- {start,stop}_memory, the maximum number of groups we can report
- things about is what fits in that byte. */
-#define MAX_REGNUM 255
-
-/* But patterns can have more than `MAX_REGNUM' registers. We just
- ignore the excess. */
-typedef int regnum_t;
-
-
-/* Macros for the compile stack. */
-
-/* Since offsets can go either forwards or backwards, this type needs to
- be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
-/* int may be not enough when sizeof(int) == 2. */
-typedef long pattern_offset_t;
-
-typedef struct
-{
- pattern_offset_t begalt_offset;
- pattern_offset_t fixup_alt_jump;
- pattern_offset_t laststart_offset;
- regnum_t regnum;
-} compile_stack_elt_t;
-
-
-typedef struct
-{
- compile_stack_elt_t *stack;
- size_t size;
- size_t avail; /* Offset of next open position. */
-} compile_stack_type;
-
-
-#define INIT_COMPILE_STACK_SIZE 32
-
-#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
-#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
-
-/* The next available element. */
-#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
-
-/* Explicit quit checking is needed for Emacs, which uses polling to
- process input events. */
-#ifndef emacs
-static void maybe_quit (void) {}
-#endif
-\f
-/* Structure to manage work area for range table. */
-struct range_table_work_area
-{
- int *table; /* actual work area. */
- int allocated; /* allocated size for work area in bytes. */
- int used; /* actually used size in words. */
- int bits; /* flag to record character classes */
-};
-
-#ifdef emacs
-
-/* Make sure that WORK_AREA can hold more N multibyte characters.
- This is used only in set_image_of_range and set_image_of_range_1.
- It expects WORK_AREA to be a pointer.
- If it can't get the space, it returns from the surrounding function. */
-
-#define EXTEND_RANGE_TABLE(work_area, n) \
- do { \
- if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
- { \
- extend_range_table_work_area (&work_area); \
- if ((work_area).table == 0) \
- return (REG_ESPACE); \
- } \
- } while (0)
-
-#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
- (work_area).bits |= (bit)
-
-/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
-#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
- do { \
- EXTEND_RANGE_TABLE ((work_area), 2); \
- (work_area).table[(work_area).used++] = (range_start); \
- (work_area).table[(work_area).used++] = (range_end); \
- } while (0)
-
-#endif /* emacs */
-
-/* Free allocated memory for WORK_AREA. */
-#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
- do { \
- if ((work_area).table) \
- free ((work_area).table); \
- } while (0)
-
-#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
-#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
-#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
-#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
-
-/* Bits used to implement the multibyte-part of the various character classes
- such as [:alnum:] in a charset's range table. The code currently assumes
- that only the low 16 bits are used. */
-#define BIT_WORD 0x1
-#define BIT_LOWER 0x2
-#define BIT_PUNCT 0x4
-#define BIT_SPACE 0x8
-#define BIT_UPPER 0x10
-#define BIT_MULTIBYTE 0x20
-#define BIT_ALPHA 0x40
-#define BIT_ALNUM 0x80
-#define BIT_GRAPH 0x100
-#define BIT_PRINT 0x200
-#define BIT_BLANK 0x400
-\f
-
-/* Set the bit for character C in a list. */
-#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
-
-
-#ifdef emacs
-
-/* Store characters in the range FROM to TO in the bitmap at B (for
- ASCII and unibyte characters) and WORK_AREA (for multibyte
- characters) while translating them and paying attention to the
- continuity of translated characters.
-
- Implementation note: It is better to implement these fairly big
- macros by a function, but it's not that easy because macros called
- in this macro assume various local variables already declared. */
-
-/* Both FROM and TO are ASCII characters. */
-
-#define SETUP_ASCII_RANGE(work_area, FROM, TO) \
- do { \
- int C0, C1; \
- \
- for (C0 = (FROM); C0 <= (TO); C0++) \
- { \
- C1 = TRANSLATE (C0); \
- if (! ASCII_CHAR_P (C1)) \
- { \
- SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
- if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
- C1 = C0; \
- } \
- SET_LIST_BIT (C1); \
- } \
- } while (0)
-
-
-/* Both FROM and TO are unibyte characters (0x80..0xFF). */
-
-#define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
- do { \
- int C0, C1, C2, I; \
- int USED = RANGE_TABLE_WORK_USED (work_area); \
- \
- for (C0 = (FROM); C0 <= (TO); C0++) \
- { \
- C1 = RE_CHAR_TO_MULTIBYTE (C0); \
- if (CHAR_BYTE8_P (C1)) \
- SET_LIST_BIT (C0); \
- else \
- { \
- C2 = TRANSLATE (C1); \
- if (C2 == C1 \
- || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
- C1 = C0; \
- SET_LIST_BIT (C1); \
- for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
- { \
- int from = RANGE_TABLE_WORK_ELT (work_area, I); \
- int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
- \
- if (C2 >= from - 1 && C2 <= to + 1) \
- { \
- if (C2 == from - 1) \
- RANGE_TABLE_WORK_ELT (work_area, I)--; \
- else if (C2 == to + 1) \
- RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
- break; \
- } \
- } \
- if (I < USED) \
- SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
- } \
- } \
- } while (0)
-
-
-/* Both FROM and TO are multibyte characters. */
-
-#define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
- do { \
- int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
- \
- SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
- for (C0 = (FROM); C0 <= (TO); C0++) \
- { \
- C1 = TRANSLATE (C0); \
- if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
- || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
- SET_LIST_BIT (C2); \
- if (C1 >= (FROM) && C1 <= (TO)) \
- continue; \
- for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
- { \
- int from = RANGE_TABLE_WORK_ELT (work_area, I); \
- int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
- \
- if (C1 >= from - 1 && C1 <= to + 1) \
- { \
- if (C1 == from - 1) \
- RANGE_TABLE_WORK_ELT (work_area, I)--; \
- else if (C1 == to + 1) \
- RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
- break; \
- } \
- } \
- if (I < USED) \
- SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
- } \
- } while (0)
-
-#endif /* emacs */
-
-/* Get the next unsigned number in the uncompiled pattern. */
-#define GET_INTERVAL_COUNT(num) \
- do { \
- if (p == pend) \
- FREE_STACK_RETURN (REG_EBRACE); \
- else \
- { \
- PATFETCH (c); \
- while ('0' <= c && c <= '9') \
- { \
- if (num < 0) \
- num = 0; \
- if (RE_DUP_MAX / 10 - (RE_DUP_MAX % 10 < c - '0') < num) \
- FREE_STACK_RETURN (REG_ESIZEBR); \
- num = num * 10 + c - '0'; \
- if (p == pend) \
- FREE_STACK_RETURN (REG_EBRACE); \
- PATFETCH (c); \
- } \
- } \
- } while (0)
-\f
-#if ! WIDE_CHAR_SUPPORT
-
-/* Parse a character class, i.e. string such as "[:name:]". *strp
- points to the string to be parsed and limit is length, in bytes, of
- that string.
-
- If *strp point to a string that begins with "[:name:]", where name is
- a non-empty sequence of lower case letters, *strp will be advanced past the
- closing square bracket and RECC_* constant which maps to the name will be
- returned. If name is not a valid character class name zero, or RECC_ERROR,
- is returned.
-
- Otherwise, if *strp doesn't begin with "[:name:]", -1 is returned.
-
- The function can be used on ASCII and multibyte (UTF-8-encoded) strings.
- */
-re_wctype_t
-re_wctype_parse (const unsigned char **strp, unsigned limit)
-{
- const char *beg = (const char *)*strp, *it;
-
- if (limit < 4 || beg[0] != '[' || beg[1] != ':')
- return -1;
-
- beg += 2; /* skip opening "[:" */
- limit -= 3; /* opening "[:" and half of closing ":]"; --limit handles rest */
- for (it = beg; it[0] != ':' || it[1] != ']'; ++it)
- if (!--limit)
- return -1;
-
- *strp = (const unsigned char *)(it + 2);
-
- /* Sort tests in the length=five case by frequency the classes to minimize
- number of times we fail the comparison. The frequencies of character class
- names used in Emacs sources as of 2016-07-27:
-
- $ find \( -name \*.c -o -name \*.el \) -exec grep -h '\[:[a-z]*:]' {} + |
- sed 's/]/]\n/g' |grep -o '\[:[a-z]*:]' |sort |uniq -c |sort -nr
- 213 [:alnum:]
- 104 [:alpha:]
- 62 [:space:]
- 39 [:digit:]
- 36 [:blank:]
- 26 [:word:]
- 26 [:upper:]
- 21 [:lower:]
- 10 [:xdigit:]
- 10 [:punct:]
- 10 [:ascii:]
- 4 [:nonascii:]
- 4 [:graph:]
- 2 [:print:]
- 2 [:cntrl:]
- 1 [:ff:]
-
- If you update this list, consider also updating chain of or'ed conditions
- in execute_charset function.
- */
-
- switch (it - beg) {
- case 4:
- if (!memcmp (beg, "word", 4)) return RECC_WORD;
- break;
- case 5:
- if (!memcmp (beg, "alnum", 5)) return RECC_ALNUM;
- if (!memcmp (beg, "alpha", 5)) return RECC_ALPHA;
- if (!memcmp (beg, "space", 5)) return RECC_SPACE;
- if (!memcmp (beg, "digit", 5)) return RECC_DIGIT;
- if (!memcmp (beg, "blank", 5)) return RECC_BLANK;
- if (!memcmp (beg, "upper", 5)) return RECC_UPPER;
- if (!memcmp (beg, "lower", 5)) return RECC_LOWER;
- if (!memcmp (beg, "punct", 5)) return RECC_PUNCT;
- if (!memcmp (beg, "ascii", 5)) return RECC_ASCII;
- if (!memcmp (beg, "graph", 5)) return RECC_GRAPH;
- if (!memcmp (beg, "print", 5)) return RECC_PRINT;
- if (!memcmp (beg, "cntrl", 5)) return RECC_CNTRL;
- break;
- case 6:
- if (!memcmp (beg, "xdigit", 6)) return RECC_XDIGIT;
- break;
- case 7:
- if (!memcmp (beg, "unibyte", 7)) return RECC_UNIBYTE;
- break;
- case 8:
- if (!memcmp (beg, "nonascii", 8)) return RECC_NONASCII;
- break;
- case 9:
- if (!memcmp (beg, "multibyte", 9)) return RECC_MULTIBYTE;
- break;
- }
-
- return RECC_ERROR;
-}
-
-/* True if CH is in the char class CC. */
-boolean
-re_iswctype (int ch, re_wctype_t cc)
-{
- switch (cc)
- {
- case RECC_ALNUM: return ISALNUM (ch) != 0;
- case RECC_ALPHA: return ISALPHA (ch) != 0;
- case RECC_BLANK: return ISBLANK (ch) != 0;
- case RECC_CNTRL: return ISCNTRL (ch) != 0;
- case RECC_DIGIT: return ISDIGIT (ch) != 0;
- case RECC_GRAPH: return ISGRAPH (ch) != 0;
- case RECC_LOWER: return ISLOWER (ch) != 0;
- case RECC_PRINT: return ISPRINT (ch) != 0;
- case RECC_PUNCT: return ISPUNCT (ch) != 0;
- case RECC_SPACE: return ISSPACE (ch) != 0;
- case RECC_UPPER: return ISUPPER (ch) != 0;
- case RECC_XDIGIT: return ISXDIGIT (ch) != 0;
- case RECC_ASCII: return IS_REAL_ASCII (ch) != 0;
- case RECC_NONASCII: return !IS_REAL_ASCII (ch);
- case RECC_UNIBYTE: return ISUNIBYTE (ch) != 0;
- case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
- case RECC_WORD: return ISWORD (ch) != 0;
- case RECC_ERROR: return false;
- default:
- abort ();
- }
-}
-
-/* Return a bit-pattern to use in the range-table bits to match multibyte
- chars of class CC. */
-static int
-re_wctype_to_bit (re_wctype_t cc)
-{
- switch (cc)
- {
- case RECC_NONASCII:
- case RECC_MULTIBYTE: return BIT_MULTIBYTE;
- case RECC_ALPHA: return BIT_ALPHA;
- case RECC_ALNUM: return BIT_ALNUM;
- case RECC_WORD: return BIT_WORD;
- case RECC_LOWER: return BIT_LOWER;
- case RECC_UPPER: return BIT_UPPER;
- case RECC_PUNCT: return BIT_PUNCT;
- case RECC_SPACE: return BIT_SPACE;
- case RECC_GRAPH: return BIT_GRAPH;
- case RECC_PRINT: return BIT_PRINT;
- case RECC_BLANK: return BIT_BLANK;
- case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
- case RECC_UNIBYTE: case RECC_ERROR: return 0;
- default:
- abort ();
- }
-}
-#endif
-\f
-/* Filling in the work area of a range. */
-
-/* Actually extend the space in WORK_AREA. */
-
-static void
-extend_range_table_work_area (struct range_table_work_area *work_area)
-{
- work_area->allocated += 16 * sizeof (int);
- work_area->table = realloc (work_area->table, work_area->allocated);
-}
-
-#if 0
-#ifdef emacs
-
-/* Carefully find the ranges of codes that are equivalent
- under case conversion to the range start..end when passed through
- TRANSLATE. Handle the case where non-letters can come in between
- two upper-case letters (which happens in Latin-1).
- Also handle the case of groups of more than 2 case-equivalent chars.
-
- The basic method is to look at consecutive characters and see
- if they can form a run that can be handled as one.
-
- Returns -1 if successful, REG_ESPACE if ran out of space. */
-
-static int
-set_image_of_range_1 (struct range_table_work_area *work_area,
- re_wchar_t start, re_wchar_t end,
- RE_TRANSLATE_TYPE translate)
-{
- /* `one_case' indicates a character, or a run of characters,
- each of which is an isolate (no case-equivalents).
- This includes all ASCII non-letters.
-
- `two_case' indicates a character, or a run of characters,
- each of which has two case-equivalent forms.
- This includes all ASCII letters.
-
- `strange' indicates a character that has more than one
- case-equivalent. */
-
- enum case_type {one_case, two_case, strange};
-
- /* Describe the run that is in progress,
- which the next character can try to extend.
- If run_type is strange, that means there really is no run.
- If run_type is one_case, then run_start...run_end is the run.
- If run_type is two_case, then the run is run_start...run_end,
- and the case-equivalents end at run_eqv_end. */
-
- enum case_type run_type = strange;
- int run_start, run_end, run_eqv_end;
-
- Lisp_Object eqv_table;
-
- if (!RE_TRANSLATE_P (translate))
- {
- EXTEND_RANGE_TABLE (work_area, 2);
- work_area->table[work_area->used++] = (start);
- work_area->table[work_area->used++] = (end);
- return -1;
- }
-
- eqv_table = XCHAR_TABLE (translate)->extras[2];
-
- for (; start <= end; start++)
- {
- enum case_type this_type;
- int eqv = RE_TRANSLATE (eqv_table, start);
- int minchar, maxchar;
-
- /* Classify this character */
- if (eqv == start)
- this_type = one_case;
- else if (RE_TRANSLATE (eqv_table, eqv) == start)
- this_type = two_case;
- else
- this_type = strange;
-
- if (start < eqv)
- minchar = start, maxchar = eqv;
- else
- minchar = eqv, maxchar = start;
-
- /* Can this character extend the run in progress? */
- if (this_type == strange || this_type != run_type
- || !(minchar == run_end + 1
- && (run_type == two_case
- ? maxchar == run_eqv_end + 1 : 1)))
- {
- /* No, end the run.
- Record each of its equivalent ranges. */
- if (run_type == one_case)
- {
- EXTEND_RANGE_TABLE (work_area, 2);
- work_area->table[work_area->used++] = run_start;
- work_area->table[work_area->used++] = run_end;
- }
- else if (run_type == two_case)
- {
- EXTEND_RANGE_TABLE (work_area, 4);
- work_area->table[work_area->used++] = run_start;
- work_area->table[work_area->used++] = run_end;
- work_area->table[work_area->used++]
- = RE_TRANSLATE (eqv_table, run_start);
- work_area->table[work_area->used++]
- = RE_TRANSLATE (eqv_table, run_end);
- }
- run_type = strange;
- }
-
- if (this_type == strange)
- {
- /* For a strange character, add each of its equivalents, one
- by one. Don't start a range. */
- do
- {
- EXTEND_RANGE_TABLE (work_area, 2);
- work_area->table[work_area->used++] = eqv;
- work_area->table[work_area->used++] = eqv;
- eqv = RE_TRANSLATE (eqv_table, eqv);
- }
- while (eqv != start);
- }
-
- /* Add this char to the run, or start a new run. */
- else if (run_type == strange)
- {
- /* Initialize a new range. */
- run_type = this_type;
- run_start = start;
- run_end = start;
- run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
- }
- else
- {
- /* Extend a running range. */
- run_end = minchar;
- run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
- }
- }
-
- /* If a run is still in progress at the end, finish it now
- by recording its equivalent ranges. */
- if (run_type == one_case)
- {
- EXTEND_RANGE_TABLE (work_area, 2);
- work_area->table[work_area->used++] = run_start;
- work_area->table[work_area->used++] = run_end;
- }
- else if (run_type == two_case)
- {
- EXTEND_RANGE_TABLE (work_area, 4);
- work_area->table[work_area->used++] = run_start;
- work_area->table[work_area->used++] = run_end;
- work_area->table[work_area->used++]
- = RE_TRANSLATE (eqv_table, run_start);
- work_area->table[work_area->used++]
- = RE_TRANSLATE (eqv_table, run_end);
- }
-
- return -1;
-}
-
-#endif /* emacs */
-
-/* Record the image of the range start..end when passed through
- TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
- and is not even necessarily contiguous.
- Normally we approximate it with the smallest contiguous range that contains
- all the chars we need. However, for Latin-1 we go to extra effort
- to do a better job.
-
- This function is not called for ASCII ranges.
-
- Returns -1 if successful, REG_ESPACE if ran out of space. */
-
-static int
-set_image_of_range (struct range_table_work_area *work_area,
- re_wchar_t start, re_wchar_t end,
- RE_TRANSLATE_TYPE translate)
-{
- re_wchar_t cmin, cmax;
-
-#ifdef emacs
- /* For Latin-1 ranges, use set_image_of_range_1
- to get proper handling of ranges that include letters and nonletters.
- For a range that includes the whole of Latin-1, this is not necessary.
- For other character sets, we don't bother to get this right. */
- if (RE_TRANSLATE_P (translate) && start < 04400
- && !(start < 04200 && end >= 04377))
- {
- int newend;
- int tem;
- newend = end;
- if (newend > 04377)
- newend = 04377;
- tem = set_image_of_range_1 (work_area, start, newend, translate);
- if (tem > 0)
- return tem;
-
- start = 04400;
- if (end < 04400)
- return -1;
- }
-#endif
-
- EXTEND_RANGE_TABLE (work_area, 2);
- work_area->table[work_area->used++] = (start);
- work_area->table[work_area->used++] = (end);
-
- cmin = -1, cmax = -1;
-
- if (RE_TRANSLATE_P (translate))
- {
- int ch;
-
- for (ch = start; ch <= end; ch++)
- {
- re_wchar_t c = TRANSLATE (ch);
- if (! (start <= c && c <= end))
- {
- if (cmin == -1)
- cmin = c, cmax = c;
- else
- {
- cmin = min (cmin, c);
- cmax = max (cmax, c);
- }
- }
- }
-
- if (cmin != -1)
- {
- EXTEND_RANGE_TABLE (work_area, 2);
- work_area->table[work_area->used++] = (cmin);
- work_area->table[work_area->used++] = (cmax);
- }
- }
-
- return -1;
-}
-#endif /* 0 */
-\f
-#ifndef MATCH_MAY_ALLOCATE
-
-/* If we cannot allocate large objects within re_match_2_internal,
- we make the fail stack and register vectors global.
- The fail stack, we grow to the maximum size when a regexp
- is compiled.
- The register vectors, we adjust in size each time we
- compile a regexp, according to the number of registers it needs. */
-
-static fail_stack_type fail_stack;
-
-/* Size with which the following vectors are currently allocated.
- That is so we can make them bigger as needed,
- but never make them smaller. */
-static int regs_allocated_size;
-
-static re_char ** regstart, ** regend;
-static re_char **best_regstart, **best_regend;
-
-/* Make the register vectors big enough for NUM_REGS registers,
- but don't make them smaller. */
-
-static
-regex_grow_registers (int num_regs)
-{
- if (num_regs > regs_allocated_size)
- {
- RETALLOC_IF (regstart, num_regs, re_char *);
- RETALLOC_IF (regend, num_regs, re_char *);
- RETALLOC_IF (best_regstart, num_regs, re_char *);
- RETALLOC_IF (best_regend, num_regs, re_char *);
-
- regs_allocated_size = num_regs;
- }
-}
-
-#endif /* not MATCH_MAY_ALLOCATE */
-\f
-static boolean group_in_compile_stack (compile_stack_type compile_stack,
- regnum_t regnum);
-
-/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
- Returns one of error codes defined in `regex.h', or zero for success.
-
- If WHITESPACE_REGEXP is given (only #ifdef emacs), it is used instead of
- a space character in PATTERN.
-
- Assumes the `allocated' (and perhaps `buffer') and `translate'
- fields are set in BUFP on entry.
-
- If it succeeds, results are put in BUFP (if it returns an error, the
- contents of BUFP are undefined):
- `buffer' is the compiled pattern;
- `syntax' is set to SYNTAX;
- `used' is set to the length of the compiled pattern;
- `fastmap_accurate' is zero;
- `re_nsub' is the number of subexpressions in PATTERN;
- `not_bol' and `not_eol' are zero;
-
- The `fastmap' field is neither examined nor set. */
-
-/* Insert the `jump' from the end of last alternative to "here".
- The space for the jump has already been allocated. */
-#define FIXUP_ALT_JUMP() \
-do { \
- if (fixup_alt_jump) \
- STORE_JUMP (jump, fixup_alt_jump, b); \
-} while (0)
-
-
-/* Return, freeing storage we allocated. */
-#define FREE_STACK_RETURN(value) \
- do { \
- FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
- free (compile_stack.stack); \
- return value; \
- } while (0)
-
-static reg_errcode_t
-regex_compile (re_char *pattern, size_t size,
-#ifdef emacs
-# define syntax RE_SYNTAX_EMACS
- bool posix_backtracking,
- const char *whitespace_regexp,
-#else
- reg_syntax_t syntax,
-# define posix_backtracking (!(syntax & RE_NO_POSIX_BACKTRACKING))
-#endif
- struct re_pattern_buffer *bufp)
-{
- /* We fetch characters from PATTERN here. */
- register re_wchar_t c, c1;
-
- /* Points to the end of the buffer, where we should append. */
- register unsigned char *b;
-
- /* Keeps track of unclosed groups. */
- compile_stack_type compile_stack;
-
- /* Points to the current (ending) position in the pattern. */
-#ifdef AIX
- /* `const' makes AIX compiler fail. */
- unsigned char *p = pattern;
-#else
- re_char *p = pattern;
-#endif
- re_char *pend = pattern + size;
-
- /* How to translate the characters in the pattern. */
- RE_TRANSLATE_TYPE translate = bufp->translate;
-
- /* Address of the count-byte of the most recently inserted `exactn'
- command. This makes it possible to tell if a new exact-match
- character can be added to that command or if the character requires
- a new `exactn' command. */
- unsigned char *pending_exact = 0;
-
- /* Address of start of the most recently finished expression.
- This tells, e.g., postfix * where to find the start of its
- operand. Reset at the beginning of groups and alternatives. */
- unsigned char *laststart = 0;
-
- /* Address of beginning of regexp, or inside of last group. */
- unsigned char *begalt;
-
- /* Place in the uncompiled pattern (i.e., the {) to
- which to go back if the interval is invalid. */
- re_char *beg_interval;
-
- /* Address of the place where a forward jump should go to the end of
- the containing expression. Each alternative of an `or' -- except the
- last -- ends with a forward jump of this sort. */
- unsigned char *fixup_alt_jump = 0;
-
- /* Work area for range table of charset. */
- struct range_table_work_area range_table_work;
-
- /* If the object matched can contain multibyte characters. */
- const boolean multibyte = RE_MULTIBYTE_P (bufp);
-
-#ifdef emacs
- /* Nonzero if we have pushed down into a subpattern. */
- int in_subpattern = 0;
-
- /* These hold the values of p, pattern, and pend from the main
- pattern when we have pushed into a subpattern. */
- re_char *main_p;
- re_char *main_pattern;
- re_char *main_pend;
-#endif
-
-#ifdef DEBUG
- debug++;
- DEBUG_PRINT ("\nCompiling pattern: ");
- if (debug > 0)
- {
- unsigned debug_count;
-
- for (debug_count = 0; debug_count < size; debug_count++)
- putchar (pattern[debug_count]);
- putchar ('\n');
- }
-#endif /* DEBUG */
-
- /* Initialize the compile stack. */
- compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
- if (compile_stack.stack == NULL)
- return REG_ESPACE;
-
- compile_stack.size = INIT_COMPILE_STACK_SIZE;
- compile_stack.avail = 0;
-
- range_table_work.table = 0;
- range_table_work.allocated = 0;
-
- /* Initialize the pattern buffer. */
-#ifndef emacs
- bufp->syntax = syntax;
-#endif
- bufp->fastmap_accurate = 0;
- bufp->not_bol = bufp->not_eol = 0;
- bufp->used_syntax = 0;
-
- /* Set `used' to zero, so that if we return an error, the pattern
- printer (for debugging) will think there's no pattern. We reset it
- at the end. */
- bufp->used = 0;
-
- /* Always count groups, whether or not bufp->no_sub is set. */
- bufp->re_nsub = 0;
-
-#if !defined emacs && !defined SYNTAX_TABLE
- /* Initialize the syntax table. */
- init_syntax_once ();
-#endif
-
- if (bufp->allocated == 0)
- {
- if (bufp->buffer)
- { /* If zero allocated, but buffer is non-null, try to realloc
- enough space. This loses if buffer's address is bogus, but
- that is the user's responsibility. */
- RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
- }
- else
- { /* Caller did not allocate a buffer. Do it for them. */
- bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
- }
- if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
-
- bufp->allocated = INIT_BUF_SIZE;
- }
-
- begalt = b = bufp->buffer;
-
- /* Loop through the uncompiled pattern until we're at the end. */
- while (1)
- {
- if (p == pend)
- {
-#ifdef emacs
- /* If this is the end of an included regexp,
- pop back to the main regexp and try again. */
- if (in_subpattern)
- {
- in_subpattern = 0;
- pattern = main_pattern;
- p = main_p;
- pend = main_pend;
- continue;
- }
-#endif
- /* If this is the end of the main regexp, we are done. */
- break;
- }
-
- PATFETCH (c);
-
- switch (c)
- {
-#ifdef emacs
- case ' ':
- {
- re_char *p1 = p;
-
- /* If there's no special whitespace regexp, treat
- spaces normally. And don't try to do this recursively. */
- if (!whitespace_regexp || in_subpattern)
- goto normal_char;
-
- /* Peek past following spaces. */
- while (p1 != pend)
- {
- if (*p1 != ' ')
- break;
- p1++;
- }
- /* If the spaces are followed by a repetition op,
- treat them normally. */
- if (p1 != pend
- && (*p1 == '*' || *p1 == '+' || *p1 == '?'
- || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
- goto normal_char;
-
- /* Replace the spaces with the whitespace regexp. */
- in_subpattern = 1;
- main_p = p1;
- main_pend = pend;
- main_pattern = pattern;
- p = pattern = (re_char *) whitespace_regexp;
- pend = p + strlen (whitespace_regexp);
- break;
- }
-#endif
-
- case '^':
- {
- if ( /* If at start of pattern, it's an operator. */
- p == pattern + 1
- /* If context independent, it's an operator. */
- || syntax & RE_CONTEXT_INDEP_ANCHORS
- /* Otherwise, depends on what's come before. */
- || at_begline_loc_p (pattern, p, syntax))
- BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
- else
- goto normal_char;
- }
- break;
-
-
- case '$':
- {
- if ( /* If at end of pattern, it's an operator. */
- p == pend
- /* If context independent, it's an operator. */
- || syntax & RE_CONTEXT_INDEP_ANCHORS
- /* Otherwise, depends on what's next. */
- || at_endline_loc_p (p, pend, syntax))
- BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
- else
- goto normal_char;
- }
- break;
-
-
- case '+':
- case '?':
- if ((syntax & RE_BK_PLUS_QM)
- || (syntax & RE_LIMITED_OPS))
- goto normal_char;
- FALLTHROUGH;
- case '*':
- handle_plus:
- /* If there is no previous pattern... */
- if (!laststart)
- {
- if (syntax & RE_CONTEXT_INVALID_OPS)
- FREE_STACK_RETURN (REG_BADRPT);
- else if (!(syntax & RE_CONTEXT_INDEP_OPS))
- goto normal_char;
- }
-
- {
- /* 1 means zero (many) matches is allowed. */
- boolean zero_times_ok = 0, many_times_ok = 0;
- boolean greedy = 1;
-
- /* If there is a sequence of repetition chars, collapse it
- down to just one (the right one). We can't combine
- interval operators with these because of, e.g., `a{2}*',
- which should only match an even number of `a's. */
-
- for (;;)
- {
- if ((syntax & RE_FRUGAL)
- && c == '?' && (zero_times_ok || many_times_ok))
- greedy = 0;
- else
- {
- zero_times_ok |= c != '+';
- many_times_ok |= c != '?';
- }
-
- if (p == pend)
- break;
- else if (*p == '*'
- || (!(syntax & RE_BK_PLUS_QM)
- && (*p == '+' || *p == '?')))
- ;
- else if (syntax & RE_BK_PLUS_QM && *p == '\\')
- {
- if (p+1 == pend)
- FREE_STACK_RETURN (REG_EESCAPE);
- if (p[1] == '+' || p[1] == '?')
- PATFETCH (c); /* Gobble up the backslash. */
- else
- break;
- }
- else
- break;
- /* If we get here, we found another repeat character. */
- PATFETCH (c);
- }
-
- /* Star, etc. applied to an empty pattern is equivalent
- to an empty pattern. */
- if (!laststart || laststart == b)
- break;
-
- /* Now we know whether or not zero matches is allowed
- and also whether or not two or more matches is allowed. */
- if (greedy)
- {
- if (many_times_ok)
- {
- boolean simple = skip_one_char (laststart) == b;
- size_t startoffset = 0;
- re_opcode_t ofj =
- /* Check if the loop can match the empty string. */
- (simple || !analyze_first (laststart, b, NULL, 0))
- ? on_failure_jump : on_failure_jump_loop;
- assert (skip_one_char (laststart) <= b);
-
- if (!zero_times_ok && simple)
- { /* Since simple * loops can be made faster by using
- on_failure_keep_string_jump, we turn simple P+
- into PP* if P is simple. */
- unsigned char *p1, *p2;
- startoffset = b - laststart;
- GET_BUFFER_SPACE (startoffset);
- p1 = b; p2 = laststart;
- while (p2 < p1)
- *b++ = *p2++;
- zero_times_ok = 1;
- }
-
- GET_BUFFER_SPACE (6);
- if (!zero_times_ok)
- /* A + loop. */
- STORE_JUMP (ofj, b, b + 6);
- else
- /* Simple * loops can use on_failure_keep_string_jump
- depending on what follows. But since we don't know
- that yet, we leave the decision up to
- on_failure_jump_smart. */
- INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
- laststart + startoffset, b + 6);
- b += 3;
- STORE_JUMP (jump, b, laststart + startoffset);
- b += 3;
- }
- else
- {
- /* A simple ? pattern. */
- assert (zero_times_ok);
- GET_BUFFER_SPACE (3);
- INSERT_JUMP (on_failure_jump, laststart, b + 3);
- b += 3;
- }
- }
- else /* not greedy */
- { /* I wish the greedy and non-greedy cases could be merged. */
-
- GET_BUFFER_SPACE (7); /* We might use less. */
- if (many_times_ok)
- {
- boolean emptyp = analyze_first (laststart, b, NULL, 0);
-
- /* The non-greedy multiple match looks like
- a repeat..until: we only need a conditional jump
- at the end of the loop. */
- if (emptyp) BUF_PUSH (no_op);
- STORE_JUMP (emptyp ? on_failure_jump_nastyloop
- : on_failure_jump, b, laststart);
- b += 3;
- if (zero_times_ok)
- {
- /* The repeat...until naturally matches one or more.
- To also match zero times, we need to first jump to
- the end of the loop (its conditional jump). */
- INSERT_JUMP (jump, laststart, b);
- b += 3;
- }
- }
- else
- {
- /* non-greedy a?? */
- INSERT_JUMP (jump, laststart, b + 3);
- b += 3;
- INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
- b += 3;
- }
- }
- }
- pending_exact = 0;
- break;
-
-
- case '.':
- laststart = b;
- BUF_PUSH (anychar);
- break;
-
-
- case '[':
- {
- re_char *p1;
-
- CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
-
- if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
-
- /* Ensure that we have enough space to push a charset: the
- opcode, the length count, and the bitset; 34 bytes in all. */
- GET_BUFFER_SPACE (34);
-
- laststart = b;
-
- /* We test `*p == '^' twice, instead of using an if
- statement, so we only need one BUF_PUSH. */
- BUF_PUSH (*p == '^' ? charset_not : charset);
- if (*p == '^')
- p++;
-
- /* Remember the first position in the bracket expression. */
- p1 = p;
-
- /* Push the number of bytes in the bitmap. */
- BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
-
- /* Clear the whole map. */
- memset (b, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
-
- /* charset_not matches newline according to a syntax bit. */
- if ((re_opcode_t) b[-2] == charset_not
- && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
- SET_LIST_BIT ('\n');
-
- /* Read in characters and ranges, setting map bits. */
- for (;;)
- {
- boolean escaped_char = false;
- const unsigned char *p2 = p;
- re_wctype_t cc;
- re_wchar_t ch;
-
- if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
-
- /* See if we're at the beginning of a possible character
- class. */
- if (syntax & RE_CHAR_CLASSES &&
- (cc = re_wctype_parse(&p, pend - p)) != -1)
- {
- if (cc == 0)
- FREE_STACK_RETURN (REG_ECTYPE);
-
- if (p == pend)
- FREE_STACK_RETURN (REG_EBRACK);
-
-#ifndef emacs
- for (ch = 0; ch < (1 << BYTEWIDTH); ++ch)
- if (re_iswctype (btowc (ch), cc))
- {
- c = TRANSLATE (ch);
- if (c < (1 << BYTEWIDTH))
- SET_LIST_BIT (c);
- }
-#else /* emacs */
- /* Most character classes in a multibyte match just set
- a flag. Exceptions are is_blank, is_digit, is_cntrl, and
- is_xdigit, since they can only match ASCII characters.
- We don't need to handle them for multibyte. */
-
- /* Setup the gl_state object to its buffer-defined value.
- This hardcodes the buffer-global syntax-table for ASCII
- chars, while the other chars will obey syntax-table
- properties. It's not ideal, but it's the way it's been
- done until now. */
- SETUP_BUFFER_SYNTAX_TABLE ();
-
- for (c = 0; c < 0x80; ++c)
- if (re_iswctype (c, cc))
- {
- SET_LIST_BIT (c);
- c1 = TRANSLATE (c);
- if (c1 == c)
- continue;
- if (ASCII_CHAR_P (c1))
- SET_LIST_BIT (c1);
- else if ((c1 = RE_CHAR_TO_UNIBYTE (c1)) >= 0)
- SET_LIST_BIT (c1);
- }
- SET_RANGE_TABLE_WORK_AREA_BIT
- (range_table_work, re_wctype_to_bit (cc));
-#endif /* emacs */
- /* In most cases the matching rule for char classes only
- uses the syntax table for multibyte chars, so that the
- content of the syntax-table is not hardcoded in the
- range_table. SPACE and WORD are the two exceptions. */
- if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
- bufp->used_syntax = 1;
-
- /* Repeat the loop. */
- continue;
- }
-
- /* Don't translate yet. The range TRANSLATE(X..Y) cannot
- always be determined from TRANSLATE(X) and TRANSLATE(Y)
- So the translation is done later in a loop. Example:
- (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
- PATFETCH (c);
-
- /* \ might escape characters inside [...] and [^...]. */
- if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
- {
- if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
-
- PATFETCH (c);
- escaped_char = true;
- }
- else
- {
- /* Could be the end of the bracket expression. If it's
- not (i.e., when the bracket expression is `[]' so
- far), the ']' character bit gets set way below. */
- if (c == ']' && p2 != p1)
- break;
- }
-
- if (p < pend && p[0] == '-' && p[1] != ']')
- {
-
- /* Discard the `-'. */
- PATFETCH (c1);
-
- /* Fetch the character which ends the range. */
- PATFETCH (c1);
-#ifdef emacs
- if (CHAR_BYTE8_P (c1)
- && ! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
- /* Treat the range from a multibyte character to
- raw-byte character as empty. */
- c = c1 + 1;
-#endif /* emacs */
- }
- else
- /* Range from C to C. */
- c1 = c;
-
- if (c > c1)
- {
- if (syntax & RE_NO_EMPTY_RANGES)
- FREE_STACK_RETURN (REG_ERANGEX);
- /* Else, repeat the loop. */
- }
- else
- {
-#ifndef emacs
- /* Set the range into bitmap */
- for (; c <= c1; c++)
- {
- ch = TRANSLATE (c);
- if (ch < (1 << BYTEWIDTH))
- SET_LIST_BIT (ch);
- }
-#else /* emacs */
- if (c < 128)
- {
- ch = min (127, c1);
- SETUP_ASCII_RANGE (range_table_work, c, ch);
- c = ch + 1;
- if (CHAR_BYTE8_P (c1))
- c = BYTE8_TO_CHAR (128);
- }
- if (c <= c1)
- {
- if (CHAR_BYTE8_P (c))
- {
- c = CHAR_TO_BYTE8 (c);
- c1 = CHAR_TO_BYTE8 (c1);
- for (; c <= c1; c++)
- SET_LIST_BIT (c);
- }
- else if (multibyte)
- {
- SETUP_MULTIBYTE_RANGE (range_table_work, c, c1);
- }
- else
- {
- SETUP_UNIBYTE_RANGE (range_table_work, c, c1);
- }
- }
-#endif /* emacs */
- }
- }
-
- /* Discard any (non)matching list bytes that are all 0 at the
- end of the map. Decrease the map-length byte too. */
- while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
- b[-1]--;
- b += b[-1];
-
- /* Build real range table from work area. */
- if (RANGE_TABLE_WORK_USED (range_table_work)
- || RANGE_TABLE_WORK_BITS (range_table_work))
- {
- int i;
- int used = RANGE_TABLE_WORK_USED (range_table_work);
-
- /* Allocate space for COUNT + RANGE_TABLE. Needs two
- bytes for flags, two for COUNT, and three bytes for
- each character. */
- GET_BUFFER_SPACE (4 + used * 3);
-
- /* Indicate the existence of range table. */
- laststart[1] |= 0x80;
-
- /* Store the character class flag bits into the range table.
- If not in emacs, these flag bits are always 0. */
- *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
- *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
-
- STORE_NUMBER_AND_INCR (b, used / 2);
- for (i = 0; i < used; i++)
- STORE_CHARACTER_AND_INCR
- (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
- }
- }
- break;
-
-
- case '(':
- if (syntax & RE_NO_BK_PARENS)
- goto handle_open;
- else
- goto normal_char;
-
-
- case ')':
- if (syntax & RE_NO_BK_PARENS)
- goto handle_close;
- else
- goto normal_char;
-
-
- case '\n':
- if (syntax & RE_NEWLINE_ALT)
- goto handle_alt;
- else
- goto normal_char;
-
-
- case '|':
- if (syntax & RE_NO_BK_VBAR)
- goto handle_alt;
- else
- goto normal_char;
-
-
- case '{':
- if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
- goto handle_interval;
- else
- goto normal_char;
-
-
- case '\\':
- if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
-
- /* Do not translate the character after the \, so that we can
- distinguish, e.g., \B from \b, even if we normally would
- translate, e.g., B to b. */
- PATFETCH (c);
-
- switch (c)
- {
- case '(':
- if (syntax & RE_NO_BK_PARENS)
- goto normal_backslash;
-
- handle_open:
- {
- int shy = 0;
- regnum_t regnum = 0;
- if (p+1 < pend)
- {
- /* Look for a special (?...) construct */
- if ((syntax & RE_SHY_GROUPS) && *p == '?')
- {
- PATFETCH (c); /* Gobble up the '?'. */
- while (!shy)
- {
- PATFETCH (c);
- switch (c)
- {
- case ':': shy = 1; break;
- case '0':
- /* An explicitly specified regnum must start
- with non-0. */
- if (regnum == 0)
- FREE_STACK_RETURN (REG_BADPAT);
- FALLTHROUGH;
- case '1': case '2': case '3': case '4':
- case '5': case '6': case '7': case '8': case '9':
- regnum = 10*regnum + (c - '0'); break;
- default:
- /* Only (?:...) is supported right now. */
- FREE_STACK_RETURN (REG_BADPAT);
- }
- }
- }
- }
-
- if (!shy)
- regnum = ++bufp->re_nsub;
- else if (regnum)
- { /* It's actually not shy, but explicitly numbered. */
- shy = 0;
- if (regnum > bufp->re_nsub)
- bufp->re_nsub = regnum;
- else if (regnum > bufp->re_nsub
- /* Ideally, we'd want to check that the specified
- group can't have matched (i.e. all subgroups
- using the same regnum are in other branches of
- OR patterns), but we don't currently keep track
- of enough info to do that easily. */
- || group_in_compile_stack (compile_stack, regnum))
- FREE_STACK_RETURN (REG_BADPAT);
- }
- else
- /* It's really shy. */
- regnum = - bufp->re_nsub;
-
- if (COMPILE_STACK_FULL)
- {
- RETALLOC (compile_stack.stack, compile_stack.size << 1,
- compile_stack_elt_t);
- if (compile_stack.stack == NULL) return REG_ESPACE;
-
- compile_stack.size <<= 1;
- }
-
- /* These are the values to restore when we hit end of this
- group. They are all relative offsets, so that if the
- whole pattern moves because of realloc, they will still
- be valid. */
- COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
- COMPILE_STACK_TOP.fixup_alt_jump
- = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
- COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
- COMPILE_STACK_TOP.regnum = regnum;
-
- /* Do not push a start_memory for groups beyond the last one
- we can represent in the compiled pattern. */
- if (regnum <= MAX_REGNUM && regnum > 0)
- BUF_PUSH_2 (start_memory, regnum);
-
- compile_stack.avail++;
-
- fixup_alt_jump = 0;
- laststart = 0;
- begalt = b;
- /* If we've reached MAX_REGNUM groups, then this open
- won't actually generate any code, so we'll have to
- clear pending_exact explicitly. */
- pending_exact = 0;
- break;
- }
-
- case ')':
- if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
-
- if (COMPILE_STACK_EMPTY)
- {
- if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
- goto normal_backslash;
- else
- FREE_STACK_RETURN (REG_ERPAREN);
- }
-
- handle_close:
- FIXUP_ALT_JUMP ();
-
- /* See similar code for backslashed left paren above. */
- if (COMPILE_STACK_EMPTY)
- {
- if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
- goto normal_char;
- else
- FREE_STACK_RETURN (REG_ERPAREN);
- }
-
- /* Since we just checked for an empty stack above, this
- ``can't happen''. */
- assert (compile_stack.avail != 0);
- {
- /* We don't just want to restore into `regnum', because
- later groups should continue to be numbered higher,
- as in `(ab)c(de)' -- the second group is #2. */
- regnum_t regnum;
-
- compile_stack.avail--;
- begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
- fixup_alt_jump
- = COMPILE_STACK_TOP.fixup_alt_jump
- ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
- : 0;
- laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
- regnum = COMPILE_STACK_TOP.regnum;
- /* If we've reached MAX_REGNUM groups, then this open
- won't actually generate any code, so we'll have to
- clear pending_exact explicitly. */
- pending_exact = 0;
-
- /* We're at the end of the group, so now we know how many
- groups were inside this one. */
- if (regnum <= MAX_REGNUM && regnum > 0)
- BUF_PUSH_2 (stop_memory, regnum);
- }
- break;
-
-
- case '|': /* `\|'. */
- if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
- goto normal_backslash;
- handle_alt:
- if (syntax & RE_LIMITED_OPS)
- goto normal_char;
-
- /* Insert before the previous alternative a jump which
- jumps to this alternative if the former fails. */
- GET_BUFFER_SPACE (3);
- INSERT_JUMP (on_failure_jump, begalt, b + 6);
- pending_exact = 0;
- b += 3;
-
- /* The alternative before this one has a jump after it
- which gets executed if it gets matched. Adjust that
- jump so it will jump to this alternative's analogous
- jump (put in below, which in turn will jump to the next
- (if any) alternative's such jump, etc.). The last such
- jump jumps to the correct final destination. A picture:
- _____ _____
- | | | |
- | v | v
- a | b | c
-
- If we are at `b', then fixup_alt_jump right now points to a
- three-byte space after `a'. We'll put in the jump, set
- fixup_alt_jump to right after `b', and leave behind three
- bytes which we'll fill in when we get to after `c'. */
-
- FIXUP_ALT_JUMP ();
-
- /* Mark and leave space for a jump after this alternative,
- to be filled in later either by next alternative or
- when know we're at the end of a series of alternatives. */
- fixup_alt_jump = b;
- GET_BUFFER_SPACE (3);
- b += 3;
-
- laststart = 0;
- begalt = b;
- break;
-
-
- case '{':
- /* If \{ is a literal. */
- if (!(syntax & RE_INTERVALS)
- /* If we're at `\{' and it's not the open-interval
- operator. */
- || (syntax & RE_NO_BK_BRACES))
- goto normal_backslash;
-
- handle_interval:
- {
- /* If got here, then the syntax allows intervals. */
-
- /* At least (most) this many matches must be made. */
- int lower_bound = 0, upper_bound = -1;
-
- beg_interval = p;
-
- GET_INTERVAL_COUNT (lower_bound);
-
- if (c == ',')
- GET_INTERVAL_COUNT (upper_bound);
- else
- /* Interval such as `{1}' => match exactly once. */
- upper_bound = lower_bound;
-
- if (lower_bound < 0
- || (0 <= upper_bound && upper_bound < lower_bound))
- FREE_STACK_RETURN (REG_BADBR);
-
- if (!(syntax & RE_NO_BK_BRACES))
- {
- if (c != '\\')
- FREE_STACK_RETURN (REG_BADBR);
- if (p == pend)
- FREE_STACK_RETURN (REG_EESCAPE);
- PATFETCH (c);
- }
-
- if (c != '}')
- FREE_STACK_RETURN (REG_BADBR);
-
- /* We just parsed a valid interval. */
-
- /* If it's invalid to have no preceding re. */
- if (!laststart)
- {
- if (syntax & RE_CONTEXT_INVALID_OPS)
- FREE_STACK_RETURN (REG_BADRPT);
- else if (syntax & RE_CONTEXT_INDEP_OPS)
- laststart = b;
- else
- goto unfetch_interval;
- }
-
- if (upper_bound == 0)
- /* If the upper bound is zero, just drop the sub pattern
- altogether. */
- b = laststart;
- else if (lower_bound == 1 && upper_bound == 1)
- /* Just match it once: nothing to do here. */
- ;
-
- /* Otherwise, we have a nontrivial interval. When
- we're all done, the pattern will look like:
- set_number_at <jump count> <upper bound>
- set_number_at <succeed_n count> <lower bound>
- succeed_n <after jump addr> <succeed_n count>
- <body of loop>
- jump_n <succeed_n addr> <jump count>
- (The upper bound and `jump_n' are omitted if
- `upper_bound' is 1, though.) */
- else
- { /* If the upper bound is > 1, we need to insert
- more at the end of the loop. */
- unsigned int nbytes = (upper_bound < 0 ? 3
- : upper_bound > 1 ? 5 : 0);
- unsigned int startoffset = 0;
-
- GET_BUFFER_SPACE (20); /* We might use less. */
-
- if (lower_bound == 0)
- {
- /* A succeed_n that starts with 0 is really a
- a simple on_failure_jump_loop. */
- INSERT_JUMP (on_failure_jump_loop, laststart,
- b + 3 + nbytes);
- b += 3;
- }
- else
- {
- /* Initialize lower bound of the `succeed_n', even
- though it will be set during matching by its
- attendant `set_number_at' (inserted next),
- because `re_compile_fastmap' needs to know.
- Jump to the `jump_n' we might insert below. */
- INSERT_JUMP2 (succeed_n, laststart,
- b + 5 + nbytes,
- lower_bound);
- b += 5;
-
- /* Code to initialize the lower bound. Insert
- before the `succeed_n'. The `5' is the last two
- bytes of this `set_number_at', plus 3 bytes of
- the following `succeed_n'. */
- insert_op2 (set_number_at, laststart, 5, lower_bound, b);
- b += 5;
- startoffset += 5;
- }
-
- if (upper_bound < 0)
- {
- /* A negative upper bound stands for infinity,
- in which case it degenerates to a plain jump. */
- STORE_JUMP (jump, b, laststart + startoffset);
- b += 3;
- }
- else if (upper_bound > 1)
- { /* More than one repetition is allowed, so
- append a backward jump to the `succeed_n'
- that starts this interval.
-
- When we've reached this during matching,
- we'll have matched the interval once, so
- jump back only `upper_bound - 1' times. */
- STORE_JUMP2 (jump_n, b, laststart + startoffset,
- upper_bound - 1);
- b += 5;
-
- /* The location we want to set is the second
- parameter of the `jump_n'; that is `b-2' as
- an absolute address. `laststart' will be
- the `set_number_at' we're about to insert;
- `laststart+3' the number to set, the source
- for the relative address. But we are
- inserting into the middle of the pattern --
- so everything is getting moved up by 5.
- Conclusion: (b - 2) - (laststart + 3) + 5,
- i.e., b - laststart.
-
- We insert this at the beginning of the loop
- so that if we fail during matching, we'll
- reinitialize the bounds. */
- insert_op2 (set_number_at, laststart, b - laststart,
- upper_bound - 1, b);
- b += 5;
- }
- }
- pending_exact = 0;
- beg_interval = NULL;
- }
- break;
-
- unfetch_interval:
- /* If an invalid interval, match the characters as literals. */
- assert (beg_interval);
- p = beg_interval;
- beg_interval = NULL;
-
- /* normal_char and normal_backslash need `c'. */
- c = '{';
-
- if (!(syntax & RE_NO_BK_BRACES))
- {
- assert (p > pattern && p[-1] == '\\');
- goto normal_backslash;
- }
- else
- goto normal_char;
-
-#ifdef emacs
- case '=':
- laststart = b;
- BUF_PUSH (at_dot);
- break;
-
- case 's':
- laststart = b;
- PATFETCH (c);
- BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
- break;
-
- case 'S':
- laststart = b;
- PATFETCH (c);
- BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
- break;
-
- case 'c':
- laststart = b;
- PATFETCH (c);
- BUF_PUSH_2 (categoryspec, c);
- break;
-
- case 'C':
- laststart = b;
- PATFETCH (c);
- BUF_PUSH_2 (notcategoryspec, c);
- break;
-#endif /* emacs */
-
-
- case 'w':
- if (syntax & RE_NO_GNU_OPS)
- goto normal_char;
- laststart = b;
- BUF_PUSH_2 (syntaxspec, Sword);
- break;
-
-
- case 'W':
- if (syntax & RE_NO_GNU_OPS)
- goto normal_char;
- laststart = b;
- BUF_PUSH_2 (notsyntaxspec, Sword);
- break;
-
-
- case '<':
- if (syntax & RE_NO_GNU_OPS)
- goto normal_char;
- laststart = b;
- BUF_PUSH (wordbeg);
- break;
-
- case '>':
- if (syntax & RE_NO_GNU_OPS)
- goto normal_char;
- laststart = b;
- BUF_PUSH (wordend);
- break;
-
- case '_':
- if (syntax & RE_NO_GNU_OPS)
- goto normal_char;
- laststart = b;
- PATFETCH (c);
- if (c == '<')
- BUF_PUSH (symbeg);
- else if (c == '>')
- BUF_PUSH (symend);
- else
- FREE_STACK_RETURN (REG_BADPAT);
- break;
-
- case 'b':
- if (syntax & RE_NO_GNU_OPS)
- goto normal_char;
- BUF_PUSH (wordbound);
- break;
-
- case 'B':
- if (syntax & RE_NO_GNU_OPS)
- goto normal_char;
- BUF_PUSH (notwordbound);
- break;
-
- case '`':
- if (syntax & RE_NO_GNU_OPS)
- goto normal_char;
- BUF_PUSH (begbuf);
- break;
-
- case '\'':
- if (syntax & RE_NO_GNU_OPS)
- goto normal_char;
- BUF_PUSH (endbuf);
- break;
-
- case '1': case '2': case '3': case '4': case '5':
- case '6': case '7': case '8': case '9':
- {
- regnum_t reg;
-
- if (syntax & RE_NO_BK_REFS)
- goto normal_backslash;
-
- reg = c - '0';
-
- if (reg > bufp->re_nsub || reg < 1
- /* Can't back reference to a subexp before its end. */
- || group_in_compile_stack (compile_stack, reg))
- FREE_STACK_RETURN (REG_ESUBREG);
-
- laststart = b;
- BUF_PUSH_2 (duplicate, reg);
- }
- break;
-
-
- case '+':
- case '?':
- if (syntax & RE_BK_PLUS_QM)
- goto handle_plus;
- else
- goto normal_backslash;
-
- default:
- normal_backslash:
- /* You might think it would be useful for \ to mean
- not to translate; but if we don't translate it
- it will never match anything. */
- goto normal_char;
- }
- break;
-
-
- default:
- /* Expects the character in `c'. */
- normal_char:
- /* If no exactn currently being built. */
- if (!pending_exact
-
- /* If last exactn not at current position. */
- || pending_exact + *pending_exact + 1 != b
-
- /* We have only one byte following the exactn for the count. */
- || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
-
- /* If followed by a repetition operator. */
- || (p != pend && (*p == '*' || *p == '^'))
- || ((syntax & RE_BK_PLUS_QM)
- ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
- : p != pend && (*p == '+' || *p == '?'))
- || ((syntax & RE_INTERVALS)
- && ((syntax & RE_NO_BK_BRACES)
- ? p != pend && *p == '{'
- : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
- {
- /* Start building a new exactn. */
-
- laststart = b;
-
- BUF_PUSH_2 (exactn, 0);
- pending_exact = b - 1;
- }
-
- GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
- {
- int len;
-
- if (multibyte)
- {
- c = TRANSLATE (c);
- len = CHAR_STRING (c, b);
- b += len;
- }
- else
- {
- c1 = RE_CHAR_TO_MULTIBYTE (c);
- if (! CHAR_BYTE8_P (c1))
- {
- re_wchar_t c2 = TRANSLATE (c1);
-
- if (c1 != c2 && (c1 = RE_CHAR_TO_UNIBYTE (c2)) >= 0)
- c = c1;
- }
- *b++ = c;
- len = 1;
- }
- (*pending_exact) += len;
- }
-
- break;
- } /* switch (c) */
- } /* while p != pend */
-
-
- /* Through the pattern now. */
-
- FIXUP_ALT_JUMP ();
-
- if (!COMPILE_STACK_EMPTY)
- FREE_STACK_RETURN (REG_EPAREN);
-
- /* If we don't want backtracking, force success
- the first time we reach the end of the compiled pattern. */
- if (!posix_backtracking)
- BUF_PUSH (succeed);
-
- /* We have succeeded; set the length of the buffer. */
- bufp->used = b - bufp->buffer;
-
-#ifdef DEBUG
- if (debug > 0)
- {
- re_compile_fastmap (bufp);
- DEBUG_PRINT ("\nCompiled pattern: \n");
- print_compiled_pattern (bufp);
- }
- debug--;
-#endif /* DEBUG */
-
-#ifndef MATCH_MAY_ALLOCATE
- /* Initialize the failure stack to the largest possible stack. This
- isn't necessary unless we're trying to avoid calling alloca in
- the search and match routines. */
- {
- int num_regs = bufp->re_nsub + 1;
-
- if (fail_stack.size < emacs_re_max_failures * TYPICAL_FAILURE_SIZE)
- {
- fail_stack.size = emacs_re_max_failures * TYPICAL_FAILURE_SIZE;
- falk_stack.stack = realloc (fail_stack.stack,
- fail_stack.size * sizeof *falk_stack.stack);
- }
-
- regex_grow_registers (num_regs);
- }
-#endif /* not MATCH_MAY_ALLOCATE */
-
- FREE_STACK_RETURN (REG_NOERROR);
-
-#ifdef emacs
-# undef syntax
-#else
-# undef posix_backtracking
-#endif
-} /* regex_compile */
-\f
-/* Subroutines for `regex_compile'. */
-
-/* Store OP at LOC followed by two-byte integer parameter ARG. */
-
-static void
-store_op1 (re_opcode_t op, unsigned char *loc, int arg)
-{
- *loc = (unsigned char) op;
- STORE_NUMBER (loc + 1, arg);
-}
-
-
-/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
-
-static void
-store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2)
-{
- *loc = (unsigned char) op;
- STORE_NUMBER (loc + 1, arg1);
- STORE_NUMBER (loc + 3, arg2);
-}
-
-
-/* Copy the bytes from LOC to END to open up three bytes of space at LOC
- for OP followed by two-byte integer parameter ARG. */
-
-static void
-insert_op1 (re_opcode_t op, unsigned char *loc, int arg, unsigned char *end)
-{
- register unsigned char *pfrom = end;
- register unsigned char *pto = end + 3;
-
- while (pfrom != loc)
- *--pto = *--pfrom;
-
- store_op1 (op, loc, arg);
-}
-
-
-/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
-
-static void
-insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end)
-{
- register unsigned char *pfrom = end;
- register unsigned char *pto = end + 5;
-
- while (pfrom != loc)
- *--pto = *--pfrom;
-
- store_op2 (op, loc, arg1, arg2);
-}
-
-
-/* P points to just after a ^ in PATTERN. Return true if that ^ comes
- after an alternative or a begin-subexpression. We assume there is at
- least one character before the ^. */
-
-static boolean
-at_begline_loc_p (re_char *pattern, re_char *p, reg_syntax_t syntax)
-{
- re_char *prev = p - 2;
- boolean odd_backslashes;
-
- /* After a subexpression? */
- if (*prev == '(')
- odd_backslashes = (syntax & RE_NO_BK_PARENS) == 0;
-
- /* After an alternative? */
- else if (*prev == '|')
- odd_backslashes = (syntax & RE_NO_BK_VBAR) == 0;
-
- /* After a shy subexpression? */
- else if (*prev == ':' && (syntax & RE_SHY_GROUPS))
- {
- /* Skip over optional regnum. */
- while (prev - 1 >= pattern && prev[-1] >= '0' && prev[-1] <= '9')
- --prev;
-
- if (!(prev - 2 >= pattern
- && prev[-1] == '?' && prev[-2] == '('))
- return false;
- prev -= 2;
- odd_backslashes = (syntax & RE_NO_BK_PARENS) == 0;
- }
- else
- return false;
-
- /* Count the number of preceding backslashes. */
- p = prev;
- while (prev - 1 >= pattern && prev[-1] == '\\')
- --prev;
- return (p - prev) & odd_backslashes;
-}
-
-
-/* The dual of at_begline_loc_p. This one is for $. We assume there is
- at least one character after the $, i.e., `P < PEND'. */
-
-static boolean
-at_endline_loc_p (re_char *p, re_char *pend, reg_syntax_t syntax)
-{
- re_char *next = p;
- boolean next_backslash = *next == '\\';
- re_char *next_next = p + 1 < pend ? p + 1 : 0;
-
- return
- /* Before a subexpression? */
- (syntax & RE_NO_BK_PARENS ? *next == ')'
- : next_backslash && next_next && *next_next == ')')
- /* Before an alternative? */
- || (syntax & RE_NO_BK_VBAR ? *next == '|'
- : next_backslash && next_next && *next_next == '|');
-}
-
-
-/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
- false if it's not. */
-
-static boolean
-group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
-{
- ssize_t this_element;
-
- for (this_element = compile_stack.avail - 1;
- this_element >= 0;
- this_element--)
- if (compile_stack.stack[this_element].regnum == regnum)
- return true;
-
- return false;
-}
-\f
-/* analyze_first.
- If fastmap is non-NULL, go through the pattern and fill fastmap
- with all the possible leading chars. If fastmap is NULL, don't
- bother filling it up (obviously) and only return whether the
- pattern could potentially match the empty string.
-
- Return 1 if p..pend might match the empty string.
- Return 0 if p..pend matches at least one char.
- Return -1 if fastmap was not updated accurately. */
-
-static int
-analyze_first (re_char *p, re_char *pend, char *fastmap,
- const int multibyte)
-{
- int j, k;
- boolean not;
-
- /* If all elements for base leading-codes in fastmap is set, this
- flag is set true. */
- boolean match_any_multibyte_characters = false;
-
- assert (p);
-
- /* The loop below works as follows:
- - It has a working-list kept in the PATTERN_STACK and which basically
- starts by only containing a pointer to the first operation.
- - If the opcode we're looking at is a match against some set of
- chars, then we add those chars to the fastmap and go on to the
- next work element from the worklist (done via `break').
- - If the opcode is a control operator on the other hand, we either
- ignore it (if it's meaningless at this point, such as `start_memory')
- or execute it (if it's a jump). If the jump has several destinations
- (i.e. `on_failure_jump'), then we push the other destination onto the
- worklist.
- We guarantee termination by ignoring backward jumps (more or less),
- so that `p' is monotonically increasing. More to the point, we
- never set `p' (or push) anything `<= p1'. */
-
- while (p < pend)
- {
- /* `p1' is used as a marker of how far back a `on_failure_jump'
- can go without being ignored. It is normally equal to `p'
- (which prevents any backward `on_failure_jump') except right
- after a plain `jump', to allow patterns such as:
- 0: jump 10
- 3..9: <body>
- 10: on_failure_jump 3
- as used for the *? operator. */
- re_char *p1 = p;
-
- switch (*p++)
- {
- case succeed:
- return 1;
-
- case duplicate:
- /* If the first character has to match a backreference, that means
- that the group was empty (since it already matched). Since this
- is the only case that interests us here, we can assume that the
- backreference must match the empty string. */
- p++;
- continue;
-
-
- /* Following are the cases which match a character. These end
- with `break'. */
-
- case exactn:
- if (fastmap)
- {
- /* If multibyte is nonzero, the first byte of each
- character is an ASCII or a leading code. Otherwise,
- each byte is a character. Thus, this works in both
- cases. */
- fastmap[p[1]] = 1;
- if (! multibyte)
- {
- /* For the case of matching this unibyte regex
- against multibyte, we must set a leading code of
- the corresponding multibyte character. */
- int c = RE_CHAR_TO_MULTIBYTE (p[1]);
-
- fastmap[CHAR_LEADING_CODE (c)] = 1;
- }
- }
- break;
-
-
- case anychar:
- /* We could put all the chars except for \n (and maybe \0)
- but we don't bother since it is generally not worth it. */
- if (!fastmap) break;
- return -1;
-
-
- case charset_not:
- if (!fastmap) break;
- {
- /* Chars beyond end of bitmap are possible matches. */
- for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
- j < (1 << BYTEWIDTH); j++)
- fastmap[j] = 1;
- }
- FALLTHROUGH;
- case charset:
- if (!fastmap) break;
- not = (re_opcode_t) *(p - 1) == charset_not;
- for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
- j >= 0; j--)
- if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
- fastmap[j] = 1;
-
-#ifdef emacs
- if (/* Any leading code can possibly start a character
- which doesn't match the specified set of characters. */
- not
- ||
- /* If we can match a character class, we can match any
- multibyte characters. */
- (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
- && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
-
- {
- if (match_any_multibyte_characters == false)
- {
- for (j = MIN_MULTIBYTE_LEADING_CODE;
- j <= MAX_MULTIBYTE_LEADING_CODE; j++)
- fastmap[j] = 1;
- match_any_multibyte_characters = true;
- }
- }
-
- else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
- && match_any_multibyte_characters == false)
- {
- /* Set fastmap[I] to 1 where I is a leading code of each
- multibyte character in the range table. */
- int c, count;
- unsigned char lc1, lc2;
-
- /* Make P points the range table. `+ 2' is to skip flag
- bits for a character class. */
- p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
-
- /* Extract the number of ranges in range table into COUNT. */
- EXTRACT_NUMBER_AND_INCR (count, p);
- for (; count > 0; count--, p += 3)
- {
- /* Extract the start and end of each range. */
- EXTRACT_CHARACTER (c, p);
- lc1 = CHAR_LEADING_CODE (c);
- p += 3;
- EXTRACT_CHARACTER (c, p);
- lc2 = CHAR_LEADING_CODE (c);
- for (j = lc1; j <= lc2; j++)
- fastmap[j] = 1;
- }
- }
-#endif
- break;
-
- case syntaxspec:
- case notsyntaxspec:
- if (!fastmap) break;
-#ifndef emacs
- not = (re_opcode_t)p[-1] == notsyntaxspec;
- k = *p++;
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
- fastmap[j] = 1;
- break;
-#else /* emacs */
- /* This match depends on text properties. These end with
- aborting optimizations. */
- return -1;
-
- case categoryspec:
- case notcategoryspec:
- if (!fastmap) break;
- not = (re_opcode_t)p[-1] == notcategoryspec;
- k = *p++;
- for (j = (1 << BYTEWIDTH); j >= 0; j--)
- if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
- fastmap[j] = 1;
-
- /* Any leading code can possibly start a character which
- has or doesn't has the specified category. */
- if (match_any_multibyte_characters == false)
- {
- for (j = MIN_MULTIBYTE_LEADING_CODE;
- j <= MAX_MULTIBYTE_LEADING_CODE; j++)
- fastmap[j] = 1;
- match_any_multibyte_characters = true;
- }
- break;
-
- /* All cases after this match the empty string. These end with
- `continue'. */
-
- case at_dot:
-#endif /* !emacs */
- case no_op:
- case begline:
- case endline:
- case begbuf:
- case endbuf:
- case wordbound:
- case notwordbound:
- case wordbeg:
- case wordend:
- case symbeg:
- case symend:
- continue;
-
-
- case jump:
- EXTRACT_NUMBER_AND_INCR (j, p);
- if (j < 0)
- /* Backward jumps can only go back to code that we've already
- visited. `re_compile' should make sure this is true. */
- break;
- p += j;
- switch (*p)
- {
- case on_failure_jump:
- case on_failure_keep_string_jump:
- case on_failure_jump_loop:
- case on_failure_jump_nastyloop:
- case on_failure_jump_smart:
- p++;
- break;
- default:
- continue;
- };
- /* Keep `p1' to allow the `on_failure_jump' we are jumping to
- to jump back to "just after here". */
- FALLTHROUGH;
- case on_failure_jump:
- case on_failure_keep_string_jump:
- case on_failure_jump_nastyloop:
- case on_failure_jump_loop:
- case on_failure_jump_smart:
- EXTRACT_NUMBER_AND_INCR (j, p);
- if (p + j <= p1)
- ; /* Backward jump to be ignored. */
- else
- { /* We have to look down both arms.
- We first go down the "straight" path so as to minimize
- stack usage when going through alternatives. */
- int r = analyze_first (p, pend, fastmap, multibyte);
- if (r) return r;
- p += j;
- }
- continue;
-
-
- case jump_n:
- /* This code simply does not properly handle forward jump_n. */
- DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
- p += 4;
- /* jump_n can either jump or fall through. The (backward) jump
- case has already been handled, so we only need to look at the
- fallthrough case. */
- continue;
-
- case succeed_n:
- /* If N == 0, it should be an on_failure_jump_loop instead. */
- DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
- p += 4;
- /* We only care about one iteration of the loop, so we don't
- need to consider the case where this behaves like an
- on_failure_jump. */
- continue;
-
-
- case set_number_at:
- p += 4;
- continue;
-
-
- case start_memory:
- case stop_memory:
- p += 1;
- continue;
-
-
- default:
- abort (); /* We have listed all the cases. */
- } /* switch *p++ */
-
- /* Getting here means we have found the possible starting
- characters for one path of the pattern -- and that the empty
- string does not match. We need not follow this path further. */
- return 0;
- } /* while p */
-
- /* We reached the end without matching anything. */
- return 1;
-
-} /* analyze_first */
-\f
-/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
- BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
- characters can start a string that matches the pattern. This fastmap
- is used by re_search to skip quickly over impossible starting points.
-
- Character codes above (1 << BYTEWIDTH) are not represented in the
- fastmap, but the leading codes are represented. Thus, the fastmap
- indicates which character sets could start a match.
-
- The caller must supply the address of a (1 << BYTEWIDTH)-byte data
- area as BUFP->fastmap.
-
- We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
- the pattern buffer.
-
- Returns 0 if we succeed, -2 if an internal error. */
-
-int
-re_compile_fastmap (struct re_pattern_buffer *bufp)
-{
- char *fastmap = bufp->fastmap;
- int analysis;
-
- assert (fastmap && bufp->buffer);
-
- memset (fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */
- bufp->fastmap_accurate = 1; /* It will be when we're done. */
-
- analysis = analyze_first (bufp->buffer, bufp->buffer + bufp->used,
- fastmap, RE_MULTIBYTE_P (bufp));
- bufp->can_be_null = (analysis != 0);
- return 0;
-} /* re_compile_fastmap */
-\f
-/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
- ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
- this memory for recording register information. STARTS and ENDS
- must be allocated using the malloc library routine, and must each
- be at least NUM_REGS * sizeof (regoff_t) bytes long.
-
- If NUM_REGS == 0, then subsequent matches should allocate their own
- register data.
-
- Unless this function is called, the first search or match using
- PATTERN_BUFFER will allocate its own register data, without
- freeing the old data. */
-
-void
-re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, unsigned int num_regs, regoff_t *starts, regoff_t *ends)
-{
- if (num_regs)
- {
- bufp->regs_allocated = REGS_REALLOCATE;
- regs->num_regs = num_regs;
- regs->start = starts;
- regs->end = ends;
- }
- else
- {
- bufp->regs_allocated = REGS_UNALLOCATED;
- regs->num_regs = 0;
- regs->start = regs->end = 0;
- }
-}
-WEAK_ALIAS (__re_set_registers, re_set_registers)
-\f
-/* Searching routines. */
-
-/* Like re_search_2, below, but only one string is specified, and
- doesn't let you say where to stop matching. */
-
-regoff_t
-re_search (struct re_pattern_buffer *bufp, const char *string, size_t size,
- ssize_t startpos, ssize_t range, struct re_registers *regs)
-{
- return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
- regs, size);
-}
-WEAK_ALIAS (__re_search, re_search)
-
-/* Head address of virtual concatenation of string. */
-#define HEAD_ADDR_VSTRING(P) \
- (((P) >= size1 ? string2 : string1))
-
-/* Address of POS in the concatenation of virtual string. */
-#define POS_ADDR_VSTRING(POS) \
- (((POS) >= size1 ? string2 - size1 : string1) + (POS))
-
-/* Using the compiled pattern in BUFP->buffer, first tries to match the
- virtual concatenation of STRING1 and STRING2, starting first at index
- STARTPOS, then at STARTPOS + 1, and so on.
-
- STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
-
- RANGE is how far to scan while trying to match. RANGE = 0 means try
- only at STARTPOS; in general, the last start tried is STARTPOS +
- RANGE.
-
- In REGS, return the indices of the virtual concatenation of STRING1
- and STRING2 that matched the entire BUFP->buffer and its contained
- subexpressions.
-
- Do not consider matching one past the index STOP in the virtual
- concatenation of STRING1 and STRING2.
-
- We return either the position in the strings at which the match was
- found, -1 if no match, or -2 if error (such as failure
- stack overflow). */
-
-regoff_t
-re_search_2 (struct re_pattern_buffer *bufp, const char *str1, size_t size1,
- const char *str2, size_t size2, ssize_t startpos, ssize_t range,
- struct re_registers *regs, ssize_t stop)
-{
- regoff_t val;
- re_char *string1 = (re_char *) str1;
- re_char *string2 = (re_char *) str2;
- register char *fastmap = bufp->fastmap;
- register RE_TRANSLATE_TYPE translate = bufp->translate;
- size_t total_size = size1 + size2;
- ssize_t endpos = startpos + range;
- boolean anchored_start;
- /* Nonzero if we are searching multibyte string. */
- const boolean multibyte = RE_TARGET_MULTIBYTE_P (bufp);
-
- /* Check for out-of-range STARTPOS. */
- if (startpos < 0 || startpos > total_size)
- return -1;
-
- /* Fix up RANGE if it might eventually take us outside
- the virtual concatenation of STRING1 and STRING2.
- Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
- if (endpos < 0)
- range = 0 - startpos;
- else if (endpos > total_size)
- range = total_size - startpos;
-
- /* If the search isn't to be a backwards one, don't waste time in a
- search for a pattern anchored at beginning of buffer. */
- if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
- {
- if (startpos > 0)
- return -1;
- else
- range = 0;
- }
-
-#ifdef emacs
- /* In a forward search for something that starts with \=.
- don't keep searching past point. */
- if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
- {
- range = PT_BYTE - BEGV_BYTE - startpos;
- if (range < 0)
- return -1;
- }
-#endif /* emacs */
-
- /* Update the fastmap now if not correct already. */
- if (fastmap && !bufp->fastmap_accurate)
- re_compile_fastmap (bufp);
-
- /* See whether the pattern is anchored. */
- anchored_start = (bufp->buffer[0] == begline);
-
-#ifdef emacs
- gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
- {
- ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
-
- SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
- }
-#endif
-
- /* Loop through the string, looking for a place to start matching. */
- for (;;)
- {
- /* If the pattern is anchored,
- skip quickly past places we cannot match.
- We don't bother to treat startpos == 0 specially
- because that case doesn't repeat. */
- if (anchored_start && startpos > 0)
- {
- if (! ((startpos <= size1 ? string1[startpos - 1]
- : string2[startpos - size1 - 1])
- == '\n'))
- goto advance;
- }
-
- /* If a fastmap is supplied, skip quickly over characters that
- cannot be the start of a match. If the pattern can match the
- null string, however, we don't need to skip characters; we want
- the first null string. */
- if (fastmap && startpos < total_size && !bufp->can_be_null)
- {
- register re_char *d;
- register re_wchar_t buf_ch;
-
- d = POS_ADDR_VSTRING (startpos);
-
- if (range > 0) /* Searching forwards. */
- {
- ssize_t irange = range, lim = 0;
-
- if (startpos < size1 && startpos + range >= size1)
- lim = range - (size1 - startpos);
-
- /* Written out as an if-else to avoid testing `translate'
- inside the loop. */
- if (RE_TRANSLATE_P (translate))
- {
- if (multibyte)
- while (range > lim)
- {
- int buf_charlen;
-
- buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
- buf_ch = RE_TRANSLATE (translate, buf_ch);
- if (fastmap[CHAR_LEADING_CODE (buf_ch)])
- break;
-
- range -= buf_charlen;
- d += buf_charlen;
- }
- else
- while (range > lim)
- {
- register re_wchar_t ch, translated;
-
- buf_ch = *d;
- ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
- translated = RE_TRANSLATE (translate, ch);
- if (translated != ch
- && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
- buf_ch = ch;
- if (fastmap[buf_ch])
- break;
- d++;
- range--;
- }
- }
- else
- {
- if (multibyte)
- while (range > lim)
- {
- int buf_charlen;
-
- buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
- if (fastmap[CHAR_LEADING_CODE (buf_ch)])
- break;
- range -= buf_charlen;
- d += buf_charlen;
- }
- else
- while (range > lim && !fastmap[*d])
- {
- d++;
- range--;
- }
- }
- startpos += irange - range;
- }
- else /* Searching backwards. */
- {
- if (multibyte)
- {
- buf_ch = STRING_CHAR (d);
- buf_ch = TRANSLATE (buf_ch);
- if (! fastmap[CHAR_LEADING_CODE (buf_ch)])
- goto advance;
- }
- else
- {
- register re_wchar_t ch, translated;
-
- buf_ch = *d;
- ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
- translated = TRANSLATE (ch);
- if (translated != ch
- && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
- buf_ch = ch;
- if (! fastmap[TRANSLATE (buf_ch)])
- goto advance;
- }
- }
- }
-
- /* If can't match the null string, and that's all we have left, fail. */
- if (range >= 0 && startpos == total_size && fastmap
- && !bufp->can_be_null)
- return -1;
-
- val = re_match_2_internal (bufp, string1, size1, string2, size2,
- startpos, regs, stop);
-
- if (val >= 0)
- return startpos;
-
- if (val == -2)
- return -2;
-
- advance:
- if (!range)
- break;
- else if (range > 0)
- {
- /* Update STARTPOS to the next character boundary. */
- if (multibyte)
- {
- re_char *p = POS_ADDR_VSTRING (startpos);
- int len = BYTES_BY_CHAR_HEAD (*p);
-
- range -= len;
- if (range < 0)
- break;
- startpos += len;
- }
- else
- {
- range--;
- startpos++;
- }
- }
- else
- {
- range++;
- startpos--;
-
- /* Update STARTPOS to the previous character boundary. */
- if (multibyte)
- {
- re_char *p = POS_ADDR_VSTRING (startpos) + 1;
- re_char *p0 = p;
- re_char *phead = HEAD_ADDR_VSTRING (startpos);
-
- /* Find the head of multibyte form. */
- PREV_CHAR_BOUNDARY (p, phead);
- range += p0 - 1 - p;
- if (range > 0)
- break;
-
- startpos -= p0 - 1 - p;
- }
- }
- }
- return -1;
-} /* re_search_2 */
-WEAK_ALIAS (__re_search_2, re_search_2)
-\f
-/* Declarations and macros for re_match_2. */
-
-static int bcmp_translate (re_char *s1, re_char *s2,
- register ssize_t len,
- RE_TRANSLATE_TYPE translate,
- const int multibyte);
-
-/* This converts PTR, a pointer into one of the search strings `string1'
- and `string2' into an offset from the beginning of that string. */
-#define POINTER_TO_OFFSET(ptr) \
- (FIRST_STRING_P (ptr) \
- ? (ptr) - string1 \
- : (ptr) - string2 + (ptrdiff_t) size1)
-
-/* Call before fetching a character with *d. This switches over to
- string2 if necessary.
- Check re_match_2_internal for a discussion of why end_match_2 might
- not be within string2 (but be equal to end_match_1 instead). */
-#define PREFETCH() \
- while (d == dend) \
- { \
- /* End of string2 => fail. */ \
- if (dend == end_match_2) \
- goto fail; \
- /* End of string1 => advance to string2. */ \
- d = string2; \
- dend = end_match_2; \
- }
-
-/* Call before fetching a char with *d if you already checked other limits.
- This is meant for use in lookahead operations like wordend, etc..
- where we might need to look at parts of the string that might be
- outside of the LIMITs (i.e past `stop'). */
-#define PREFETCH_NOLIMIT() \
- if (d == end1) \
- { \
- d = string2; \
- dend = end_match_2; \
- } \
-
-/* Test if at very beginning or at very end of the virtual concatenation
- of `string1' and `string2'. If only one string, it's `string2'. */
-#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
-#define AT_STRINGS_END(d) ((d) == end2)
-
-/* Disabled due to a compiler bug -- see comment at case wordbound */
-
-/* The comment at case wordbound is following one, but we don't use
- AT_WORD_BOUNDARY anymore to support multibyte form.
-
- The DEC Alpha C compiler 3.x generates incorrect code for the
- test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
- AT_WORD_BOUNDARY, so this code is disabled. Expanding the
- macro and introducing temporary variables works around the bug. */
-
-#if 0
-/* Test if D points to a character which is word-constituent. We have
- two special cases to check for: if past the end of string1, look at
- the first character in string2; and if before the beginning of
- string2, look at the last character in string1. */
-#define WORDCHAR_P(d) \
- (SYNTAX ((d) == end1 ? *string2 \
- : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
- == Sword)
-
-/* Test if the character before D and the one at D differ with respect
- to being word-constituent. */
-#define AT_WORD_BOUNDARY(d) \
- (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
- || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
-#endif
-
-/* Free everything we malloc. */
-#ifdef MATCH_MAY_ALLOCATE
-# define FREE_VAR(var) \
- do { \
- if (var) \
- { \
- REGEX_FREE (var); \
- var = NULL; \
- } \
- } while (0)
-# define FREE_VARIABLES() \
- do { \
- REGEX_FREE_STACK (fail_stack.stack); \
- FREE_VAR (regstart); \
- FREE_VAR (regend); \
- FREE_VAR (best_regstart); \
- FREE_VAR (best_regend); \
- REGEX_SAFE_FREE (); \
- } while (0)
-#else
-# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
-#endif /* not MATCH_MAY_ALLOCATE */
-
-\f
-/* Optimization routines. */
-
-/* If the operation is a match against one or more chars,
- return a pointer to the next operation, else return NULL. */
-static re_char *
-skip_one_char (re_char *p)
-{
- switch (*p++)
- {
- case anychar:
- break;
-
- case exactn:
- p += *p + 1;
- break;
-
- case charset_not:
- case charset:
- if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
- {
- int mcnt;
- p = CHARSET_RANGE_TABLE (p - 1);
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- p = CHARSET_RANGE_TABLE_END (p, mcnt);
- }
- else
- p += 1 + CHARSET_BITMAP_SIZE (p - 1);
- break;
-
- case syntaxspec:
- case notsyntaxspec:
-#ifdef emacs
- case categoryspec:
- case notcategoryspec:
-#endif /* emacs */
- p++;
- break;
-
- default:
- p = NULL;
- }
- return p;
-}
-
-
-/* Jump over non-matching operations. */
-static re_char *
-skip_noops (re_char *p, re_char *pend)
-{
- int mcnt;
- while (p < pend)
- {
- switch (*p)
- {
- case start_memory:
- case stop_memory:
- p += 2; break;
- case no_op:
- p += 1; break;
- case jump:
- p += 1;
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- p += mcnt;
- break;
- default:
- return p;
- }
- }
- assert (p == pend);
- return p;
-}
-
-/* Test if C matches charset op. *PP points to the charset or charset_not
- opcode. When the function finishes, *PP will be advanced past that opcode.
- C is character to test (possibly after translations) and CORIG is original
- character (i.e. without any translations). UNIBYTE denotes whether c is
- unibyte or multibyte character. */
-static bool
-execute_charset (re_char **pp, unsigned c, unsigned corig, bool unibyte)
-{
- re_char *p = *pp, *rtp = NULL;
- bool not = (re_opcode_t) *p == charset_not;
-
- if (CHARSET_RANGE_TABLE_EXISTS_P (p))
- {
- int count;
- rtp = CHARSET_RANGE_TABLE (p);
- EXTRACT_NUMBER_AND_INCR (count, rtp);
- *pp = CHARSET_RANGE_TABLE_END ((rtp), (count));
- }
- else
- *pp += 2 + CHARSET_BITMAP_SIZE (p);
-
- if (unibyte && c < (1 << BYTEWIDTH))
- { /* Lookup bitmap. */
- /* Cast to `unsigned' instead of `unsigned char' in
- case the bit list is a full 32 bytes long. */
- if (c < (unsigned) (CHARSET_BITMAP_SIZE (p) * BYTEWIDTH)
- && p[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
- return !not;
- }
-#ifdef emacs
- else if (rtp)
- {
- int class_bits = CHARSET_RANGE_TABLE_BITS (p);
- re_wchar_t range_start, range_end;
-
- /* Sort tests by the most commonly used classes with some adjustment to which
- tests are easiest to perform. Take a look at comment in re_wctype_parse
- for table with frequencies of character class names. */
-
- if ((class_bits & BIT_MULTIBYTE) ||
- (class_bits & BIT_ALNUM && ISALNUM (c)) ||
- (class_bits & BIT_ALPHA && ISALPHA (c)) ||
- (class_bits & BIT_SPACE && ISSPACE (c)) ||
- (class_bits & BIT_BLANK && ISBLANK (c)) ||
- (class_bits & BIT_WORD && ISWORD (c)) ||
- ((class_bits & BIT_UPPER) &&
- (ISUPPER (c) || (corig != c &&
- c == downcase (corig) && ISLOWER (c)))) ||
- ((class_bits & BIT_LOWER) &&
- (ISLOWER (c) || (corig != c &&
- c == upcase (corig) && ISUPPER(c)))) ||
- (class_bits & BIT_PUNCT && ISPUNCT (c)) ||
- (class_bits & BIT_GRAPH && ISGRAPH (c)) ||
- (class_bits & BIT_PRINT && ISPRINT (c)))
- return !not;
-
- for (p = *pp; rtp < p; rtp += 2 * 3)
- {
- EXTRACT_CHARACTER (range_start, rtp);
- EXTRACT_CHARACTER (range_end, rtp + 3);
- if (range_start <= c && c <= range_end)
- return !not;
- }
- }
-#endif /* emacs */
- return not;
-}
-
-/* Non-zero if "p1 matches something" implies "p2 fails". */
-static int
-mutually_exclusive_p (struct re_pattern_buffer *bufp, re_char *p1,
- re_char *p2)
-{
- re_opcode_t op2;
- const boolean multibyte = RE_MULTIBYTE_P (bufp);
- unsigned char *pend = bufp->buffer + bufp->used;
-
- assert (p1 >= bufp->buffer && p1 < pend
- && p2 >= bufp->buffer && p2 <= pend);
-
- /* Skip over open/close-group commands.
- If what follows this loop is a ...+ construct,
- look at what begins its body, since we will have to
- match at least one of that. */
- p2 = skip_noops (p2, pend);
- /* The same skip can be done for p1, except that this function
- is only used in the case where p1 is a simple match operator. */
- /* p1 = skip_noops (p1, pend); */
-
- assert (p1 >= bufp->buffer && p1 < pend
- && p2 >= bufp->buffer && p2 <= pend);
-
- op2 = p2 == pend ? succeed : *p2;
-
- switch (op2)
- {
- case succeed:
- case endbuf:
- /* If we're at the end of the pattern, we can change. */
- if (skip_one_char (p1))
- {
- DEBUG_PRINT (" End of pattern: fast loop.\n");
- return 1;
- }
- break;
-
- case endline:
- case exactn:
- {
- register re_wchar_t c
- = (re_opcode_t) *p2 == endline ? '\n'
- : RE_STRING_CHAR (p2 + 2, multibyte);
-
- if ((re_opcode_t) *p1 == exactn)
- {
- if (c != RE_STRING_CHAR (p1 + 2, multibyte))
- {
- DEBUG_PRINT (" '%c' != '%c' => fast loop.\n", c, p1[2]);
- return 1;
- }
- }
-
- else if ((re_opcode_t) *p1 == charset
- || (re_opcode_t) *p1 == charset_not)
- {
- if (!execute_charset (&p1, c, c, !multibyte || IS_REAL_ASCII (c)))
- {
- DEBUG_PRINT (" No match => fast loop.\n");
- return 1;
- }
- }
- else if ((re_opcode_t) *p1 == anychar
- && c == '\n')
- {
- DEBUG_PRINT (" . != \\n => fast loop.\n");
- return 1;
- }
- }
- break;
-
- case charset:
- {
- if ((re_opcode_t) *p1 == exactn)
- /* Reuse the code above. */
- return mutually_exclusive_p (bufp, p2, p1);
-
- /* It is hard to list up all the character in charset
- P2 if it includes multibyte character. Give up in
- such case. */
- else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
- {
- /* Now, we are sure that P2 has no range table.
- So, for the size of bitmap in P2, `p2[1]' is
- enough. But P1 may have range table, so the
- size of bitmap table of P1 is extracted by
- using macro `CHARSET_BITMAP_SIZE'.
-
- In a multibyte case, we know that all the character
- listed in P2 is ASCII. In a unibyte case, P1 has only a
- bitmap table. So, in both cases, it is enough to test
- only the bitmap table of P1. */
-
- if ((re_opcode_t) *p1 == charset)
- {
- int idx;
- /* We win if the charset inside the loop
- has no overlap with the one after the loop. */
- for (idx = 0;
- (idx < (int) p2[1]
- && idx < CHARSET_BITMAP_SIZE (p1));
- idx++)
- if ((p2[2 + idx] & p1[2 + idx]) != 0)
- break;
-
- if (idx == p2[1]
- || idx == CHARSET_BITMAP_SIZE (p1))
- {
- DEBUG_PRINT (" No match => fast loop.\n");
- return 1;
- }
- }
- else if ((re_opcode_t) *p1 == charset_not)
- {
- int idx;
- /* We win if the charset_not inside the loop lists
- every character listed in the charset after. */
- for (idx = 0; idx < (int) p2[1]; idx++)
- if (! (p2[2 + idx] == 0
- || (idx < CHARSET_BITMAP_SIZE (p1)
- && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
- break;
-
- if (idx == p2[1])
- {
- DEBUG_PRINT (" No match => fast loop.\n");
- return 1;
- }
- }
- }
- }
- break;
-
- case charset_not:
- switch (*p1)
- {
- case exactn:
- case charset:
- /* Reuse the code above. */
- return mutually_exclusive_p (bufp, p2, p1);
- case charset_not:
- /* When we have two charset_not, it's very unlikely that
- they don't overlap. The union of the two sets of excluded
- chars should cover all possible chars, which, as a matter of
- fact, is virtually impossible in multibyte buffers. */
- break;
- }
- break;
-
- case wordend:
- return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
- case symend:
- return ((re_opcode_t) *p1 == syntaxspec
- && (p1[1] == Ssymbol || p1[1] == Sword));
- case notsyntaxspec:
- return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
-
- case wordbeg:
- return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
- case symbeg:
- return ((re_opcode_t) *p1 == notsyntaxspec
- && (p1[1] == Ssymbol || p1[1] == Sword));
- case syntaxspec:
- return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
-
- case wordbound:
- return (((re_opcode_t) *p1 == notsyntaxspec
- || (re_opcode_t) *p1 == syntaxspec)
- && p1[1] == Sword);
-
-#ifdef emacs
- case categoryspec:
- return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
- case notcategoryspec:
- return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
-#endif /* emacs */
-
- default:
- ;
- }
-
- /* Safe default. */
- return 0;
-}
-
-\f
-/* Matching routines. */
-
-#ifndef emacs /* Emacs never uses this. */
-/* re_match is like re_match_2 except it takes only a single string. */
-
-regoff_t
-re_match (struct re_pattern_buffer *bufp, const char *string,
- size_t size, ssize_t pos, struct re_registers *regs)
-{
- regoff_t result = re_match_2_internal (bufp, NULL, 0, (re_char *) string,
- size, pos, regs, size);
- return result;
-}
-WEAK_ALIAS (__re_match, re_match)
-#endif /* not emacs */
-
-/* re_match_2 matches the compiled pattern in BUFP against the
- the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
- and SIZE2, respectively). We start matching at POS, and stop
- matching at STOP.
-
- If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
- store offsets for the substring each group matched in REGS. See the
- documentation for exactly how many groups we fill.
-
- We return -1 if no match, -2 if an internal error (such as the
- failure stack overflowing). Otherwise, we return the length of the
- matched substring. */
-
-regoff_t
-re_match_2 (struct re_pattern_buffer *bufp, const char *string1,
- size_t size1, const char *string2, size_t size2, ssize_t pos,
- struct re_registers *regs, ssize_t stop)
-{
- regoff_t result;
-
-#ifdef emacs
- ssize_t charpos;
- gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
- charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
- SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
-#endif
-
- result = re_match_2_internal (bufp, (re_char *) string1, size1,
- (re_char *) string2, size2,
- pos, regs, stop);
- return result;
-}
-WEAK_ALIAS (__re_match_2, re_match_2)
-
-
-/* This is a separate function so that we can force an alloca cleanup
- afterwards. */
-static regoff_t
-re_match_2_internal (struct re_pattern_buffer *bufp, re_char *string1,
- size_t size1, re_char *string2, size_t size2,
- ssize_t pos, struct re_registers *regs, ssize_t stop)
-{
- /* General temporaries. */
- int mcnt;
- size_t reg;
-
- /* Just past the end of the corresponding string. */
- re_char *end1, *end2;
-
- /* Pointers into string1 and string2, just past the last characters in
- each to consider matching. */
- re_char *end_match_1, *end_match_2;
-
- /* Where we are in the data, and the end of the current string. */
- re_char *d, *dend;
-
- /* Used sometimes to remember where we were before starting matching
- an operator so that we can go back in case of failure. This "atomic"
- behavior of matching opcodes is indispensable to the correctness
- of the on_failure_keep_string_jump optimization. */
- re_char *dfail;
-
- /* Where we are in the pattern, and the end of the pattern. */
- re_char *p = bufp->buffer;
- re_char *pend = p + bufp->used;
-
- /* We use this to map every character in the string. */
- RE_TRANSLATE_TYPE translate = bufp->translate;
-
- /* Nonzero if BUFP is setup from a multibyte regex. */
- const boolean multibyte = RE_MULTIBYTE_P (bufp);
-
- /* Nonzero if STRING1/STRING2 are multibyte. */
- const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
-
- /* Failure point stack. Each place that can handle a failure further
- down the line pushes a failure point on this stack. It consists of
- regstart, and regend for all registers corresponding to
- the subexpressions we're currently inside, plus the number of such
- registers, and, finally, two char *'s. The first char * is where
- to resume scanning the pattern; the second one is where to resume
- scanning the strings. */
-#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
- fail_stack_type fail_stack;
-#endif
-#ifdef DEBUG_COMPILES_ARGUMENTS
- unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
-#endif
-
-#if defined REL_ALLOC && defined REGEX_MALLOC
- /* This holds the pointer to the failure stack, when
- it is allocated relocatably. */
- fail_stack_elt_t *failure_stack_ptr;
-#endif
-
- /* We fill all the registers internally, independent of what we
- return, for use in backreferences. The number here includes
- an element for register zero. */
- size_t num_regs = bufp->re_nsub + 1;
-
- /* Information on the contents of registers. These are pointers into
- the input strings; they record just what was matched (on this
- attempt) by a subexpression part of the pattern, that is, the
- regnum-th regstart pointer points to where in the pattern we began
- matching and the regnum-th regend points to right after where we
- stopped matching the regnum-th subexpression. (The zeroth register
- keeps track of what the whole pattern matches.) */
-#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
- re_char **regstart, **regend;
-#endif
-
- /* The following record the register info as found in the above
- variables when we find a match better than any we've seen before.
- This happens as we backtrack through the failure points, which in
- turn happens only if we have not yet matched the entire string. */
- unsigned best_regs_set = false;
-#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
- re_char **best_regstart, **best_regend;
-#endif
-
- /* Logically, this is `best_regend[0]'. But we don't want to have to
- allocate space for that if we're not allocating space for anything
- else (see below). Also, we never need info about register 0 for
- any of the other register vectors, and it seems rather a kludge to
- treat `best_regend' differently than the rest. So we keep track of
- the end of the best match so far in a separate variable. We
- initialize this to NULL so that when we backtrack the first time
- and need to test it, it's not garbage. */
- re_char *match_end = NULL;
-
-#ifdef DEBUG_COMPILES_ARGUMENTS
- /* Counts the total number of registers pushed. */
- unsigned num_regs_pushed = 0;
-#endif
-
- DEBUG_PRINT ("\n\nEntering re_match_2.\n");
-
- REGEX_USE_SAFE_ALLOCA;
-
- INIT_FAIL_STACK ();
-
-#ifdef MATCH_MAY_ALLOCATE
- /* Do not bother to initialize all the register variables if there are
- no groups in the pattern, as it takes a fair amount of time. If
- there are groups, we include space for register 0 (the whole
- pattern), even though we never use it, since it simplifies the
- array indexing. We should fix this. */
- if (bufp->re_nsub)
- {
- regstart = REGEX_TALLOC (num_regs, re_char *);
- regend = REGEX_TALLOC (num_regs, re_char *);
- best_regstart = REGEX_TALLOC (num_regs, re_char *);
- best_regend = REGEX_TALLOC (num_regs, re_char *);
-
- if (!(regstart && regend && best_regstart && best_regend))
- {
- FREE_VARIABLES ();
- return -2;
- }
- }
- else
- {
- /* We must initialize all our variables to NULL, so that
- `FREE_VARIABLES' doesn't try to free them. */
- regstart = regend = best_regstart = best_regend = NULL;
- }
-#endif /* MATCH_MAY_ALLOCATE */
-
- /* The starting position is bogus. */
- if (pos < 0 || pos > size1 + size2)
- {
- FREE_VARIABLES ();
- return -1;
- }
-
- /* Initialize subexpression text positions to -1 to mark ones that no
- start_memory/stop_memory has been seen for. Also initialize the
- register information struct. */
- for (reg = 1; reg < num_regs; reg++)
- regstart[reg] = regend[reg] = NULL;
-
- /* We move `string1' into `string2' if the latter's empty -- but not if
- `string1' is null. */
- if (size2 == 0 && string1 != NULL)
- {
- string2 = string1;
- size2 = size1;
- string1 = 0;
- size1 = 0;
- }
- end1 = string1 + size1;
- end2 = string2 + size2;
-
- /* `p' scans through the pattern as `d' scans through the data.
- `dend' is the end of the input string that `d' points within. `d'
- is advanced into the following input string whenever necessary, but
- this happens before fetching; therefore, at the beginning of the
- loop, `d' can be pointing at the end of a string, but it cannot
- equal `string2'. */
- if (pos >= size1)
- {
- /* Only match within string2. */
- d = string2 + pos - size1;
- dend = end_match_2 = string2 + stop - size1;
- end_match_1 = end1; /* Just to give it a value. */
- }
- else
- {
- if (stop < size1)
- {
- /* Only match within string1. */
- end_match_1 = string1 + stop;
- /* BEWARE!
- When we reach end_match_1, PREFETCH normally switches to string2.
- But in the present case, this means that just doing a PREFETCH
- makes us jump from `stop' to `gap' within the string.
- What we really want here is for the search to stop as
- soon as we hit end_match_1. That's why we set end_match_2
- to end_match_1 (since PREFETCH fails as soon as we hit
- end_match_2). */
- end_match_2 = end_match_1;
- }
- else
- { /* It's important to use this code when stop == size so that
- moving `d' from end1 to string2 will not prevent the d == dend
- check from catching the end of string. */
- end_match_1 = end1;
- end_match_2 = string2 + stop - size1;
- }
- d = string1 + pos;
- dend = end_match_1;
- }
-
- DEBUG_PRINT ("The compiled pattern is: ");
- DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
- DEBUG_PRINT ("The string to match is: \"");
- DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
- DEBUG_PRINT ("\"\n");
-
- /* This loops over pattern commands. It exits by returning from the
- function if the match is complete, or it drops through if the match
- fails at this starting point in the input data. */
- for (;;)
- {
- DEBUG_PRINT ("\n%p: ", p);
-
- if (p == pend)
- {
- /* End of pattern means we might have succeeded. */
- DEBUG_PRINT ("end of pattern ... ");
-
- /* If we haven't matched the entire string, and we want the
- longest match, try backtracking. */
- if (d != end_match_2)
- {
- /* True if this match is the best seen so far. */
- bool best_match_p;
-
- {
- /* True if this match ends in the same string (string1
- or string2) as the best previous match. */
- bool same_str_p = (FIRST_STRING_P (match_end)
- == FIRST_STRING_P (d));
-
- /* AIX compiler got confused when this was combined
- with the previous declaration. */
- if (same_str_p)
- best_match_p = d > match_end;
- else
- best_match_p = !FIRST_STRING_P (d);
- }
-
- DEBUG_PRINT ("backtracking.\n");
-
- if (!FAIL_STACK_EMPTY ())
- { /* More failure points to try. */
-
- /* If exceeds best match so far, save it. */
- if (!best_regs_set || best_match_p)
- {
- best_regs_set = true;
- match_end = d;
-
- DEBUG_PRINT ("\nSAVING match as best so far.\n");
-
- for (reg = 1; reg < num_regs; reg++)
- {
- best_regstart[reg] = regstart[reg];
- best_regend[reg] = regend[reg];
- }
- }
- goto fail;
- }
-
- /* If no failure points, don't restore garbage. And if
- last match is real best match, don't restore second
- best one. */
- else if (best_regs_set && !best_match_p)
- {
- restore_best_regs:
- /* Restore best match. It may happen that `dend ==
- end_match_1' while the restored d is in string2.
- For example, the pattern `x.*y.*z' against the
- strings `x-' and `y-z-', if the two strings are
- not consecutive in memory. */
- DEBUG_PRINT ("Restoring best registers.\n");
-
- d = match_end;
- dend = ((d >= string1 && d <= end1)
- ? end_match_1 : end_match_2);
-
- for (reg = 1; reg < num_regs; reg++)
- {
- regstart[reg] = best_regstart[reg];
- regend[reg] = best_regend[reg];
- }
- }
- } /* d != end_match_2 */
-
- succeed_label:
- DEBUG_PRINT ("Accepting match.\n");
-
- /* If caller wants register contents data back, do it. */
- if (regs && !bufp->no_sub)
- {
- /* Have the register data arrays been allocated? */
- if (bufp->regs_allocated == REGS_UNALLOCATED)
- { /* No. So allocate them with malloc. We need one
- extra element beyond `num_regs' for the `-1' marker
- GNU code uses. */
- regs->num_regs = max (RE_NREGS, num_regs + 1);
- regs->start = TALLOC (regs->num_regs, regoff_t);
- regs->end = TALLOC (regs->num_regs, regoff_t);
- if (regs->start == NULL || regs->end == NULL)
- {
- FREE_VARIABLES ();
- return -2;
- }
- bufp->regs_allocated = REGS_REALLOCATE;
- }
- else if (bufp->regs_allocated == REGS_REALLOCATE)
- { /* Yes. If we need more elements than were already
- allocated, reallocate them. If we need fewer, just
- leave it alone. */
- if (regs->num_regs < num_regs + 1)
- {
- regs->num_regs = num_regs + 1;
- RETALLOC (regs->start, regs->num_regs, regoff_t);
- RETALLOC (regs->end, regs->num_regs, regoff_t);
- if (regs->start == NULL || regs->end == NULL)
- {
- FREE_VARIABLES ();
- return -2;
- }
- }
- }
- else
- {
- /* These braces fend off a "empty body in an else-statement"
- warning under GCC when assert expands to nothing. */
- assert (bufp->regs_allocated == REGS_FIXED);
- }
-
- /* Convert the pointer data in `regstart' and `regend' to
- indices. Register zero has to be set differently,
- since we haven't kept track of any info for it. */
- if (regs->num_regs > 0)
- {
- regs->start[0] = pos;
- regs->end[0] = POINTER_TO_OFFSET (d);
- }
-
- /* Go through the first `min (num_regs, regs->num_regs)'
- registers, since that is all we initialized. */
- for (reg = 1; reg < min (num_regs, regs->num_regs); reg++)
- {
- if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
- regs->start[reg] = regs->end[reg] = -1;
- else
- {
- regs->start[reg] = POINTER_TO_OFFSET (regstart[reg]);
- regs->end[reg] = POINTER_TO_OFFSET (regend[reg]);
- }
- }
-
- /* If the regs structure we return has more elements than
- were in the pattern, set the extra elements to -1. If
- we (re)allocated the registers, this is the case,
- because we always allocate enough to have at least one
- -1 at the end. */
- for (reg = num_regs; reg < regs->num_regs; reg++)
- regs->start[reg] = regs->end[reg] = -1;
- } /* regs && !bufp->no_sub */
-
- DEBUG_PRINT ("%u failure points pushed, %u popped (%u remain).\n",
- nfailure_points_pushed, nfailure_points_popped,
- nfailure_points_pushed - nfailure_points_popped);
- DEBUG_PRINT ("%u registers pushed.\n", num_regs_pushed);
-
- ptrdiff_t dcnt = POINTER_TO_OFFSET (d) - pos;
-
- DEBUG_PRINT ("Returning %td from re_match_2.\n", dcnt);
-
- FREE_VARIABLES ();
- return dcnt;
- }
-
- /* Otherwise match next pattern command. */
- switch (*p++)
- {
- /* Ignore these. Used to ignore the n of succeed_n's which
- currently have n == 0. */
- case no_op:
- DEBUG_PRINT ("EXECUTING no_op.\n");
- break;
-
- case succeed:
- DEBUG_PRINT ("EXECUTING succeed.\n");
- goto succeed_label;
-
- /* Match the next n pattern characters exactly. The following
- byte in the pattern defines n, and the n bytes after that
- are the characters to match. */
- case exactn:
- mcnt = *p++;
- DEBUG_PRINT ("EXECUTING exactn %d.\n", mcnt);
-
- /* Remember the start point to rollback upon failure. */
- dfail = d;
-
-#ifndef emacs
- /* This is written out as an if-else so we don't waste time
- testing `translate' inside the loop. */
- if (RE_TRANSLATE_P (translate))
- do
- {
- PREFETCH ();
- if (RE_TRANSLATE (translate, *d) != *p++)
- {
- d = dfail;
- goto fail;
- }
- d++;
- }
- while (--mcnt);
- else
- do
- {
- PREFETCH ();
- if (*d++ != *p++)
- {
- d = dfail;
- goto fail;
- }
- }
- while (--mcnt);
-#else /* emacs */
- /* The cost of testing `translate' is comparatively small. */
- if (target_multibyte)
- do
- {
- int pat_charlen, buf_charlen;
- int pat_ch, buf_ch;
-
- PREFETCH ();
- if (multibyte)
- pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
- else
- {
- pat_ch = RE_CHAR_TO_MULTIBYTE (*p);
- pat_charlen = 1;
- }
- buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
-
- if (TRANSLATE (buf_ch) != pat_ch)
- {
- d = dfail;
- goto fail;
- }
-
- p += pat_charlen;
- d += buf_charlen;
- mcnt -= pat_charlen;
- }
- while (mcnt > 0);
- else
- do
- {
- int pat_charlen;
- int pat_ch, buf_ch;
-
- PREFETCH ();
- if (multibyte)
- {
- pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
- pat_ch = RE_CHAR_TO_UNIBYTE (pat_ch);
- }
- else
- {
- pat_ch = *p;
- pat_charlen = 1;
- }
- buf_ch = RE_CHAR_TO_MULTIBYTE (*d);
- if (! CHAR_BYTE8_P (buf_ch))
- {
- buf_ch = TRANSLATE (buf_ch);
- buf_ch = RE_CHAR_TO_UNIBYTE (buf_ch);
- if (buf_ch < 0)
- buf_ch = *d;
- }
- else
- buf_ch = *d;
- if (buf_ch != pat_ch)
- {
- d = dfail;
- goto fail;
- }
- p += pat_charlen;
- d++;
- }
- while (--mcnt);
-#endif
- break;
-
-
- /* Match any character except possibly a newline or a null. */
- case anychar:
- {
- int buf_charlen;
- re_wchar_t buf_ch;
- reg_syntax_t syntax;
-
- DEBUG_PRINT ("EXECUTING anychar.\n");
-
- PREFETCH ();
- buf_ch = RE_STRING_CHAR_AND_LENGTH (d, buf_charlen,
- target_multibyte);
- buf_ch = TRANSLATE (buf_ch);
-
-#ifdef emacs
- syntax = RE_SYNTAX_EMACS;
-#else
- syntax = bufp->syntax;
-#endif
-
- if ((!(syntax & RE_DOT_NEWLINE) && buf_ch == '\n')
- || ((syntax & RE_DOT_NOT_NULL) && buf_ch == '\000'))
- goto fail;
-
- DEBUG_PRINT (" Matched \"%d\".\n", *d);
- d += buf_charlen;
- }
- break;
-
-
- case charset:
- case charset_not:
- {
- register unsigned int c, corig;
- int len;
-
- /* Whether matching against a unibyte character. */
- boolean unibyte_char = false;
-
- DEBUG_PRINT ("EXECUTING charset%s.\n",
- (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
-
- PREFETCH ();
- corig = c = RE_STRING_CHAR_AND_LENGTH (d, len, target_multibyte);
- if (target_multibyte)
- {
- int c1;
-
- c = TRANSLATE (c);
- c1 = RE_CHAR_TO_UNIBYTE (c);
- if (c1 >= 0)
- {
- unibyte_char = true;
- c = c1;
- }
- }
- else
- {
- int c1 = RE_CHAR_TO_MULTIBYTE (c);
-
- if (! CHAR_BYTE8_P (c1))
- {
- c1 = TRANSLATE (c1);
- c1 = RE_CHAR_TO_UNIBYTE (c1);
- if (c1 >= 0)
- {
- unibyte_char = true;
- c = c1;
- }
- }
- else
- unibyte_char = true;
- }
-
- p -= 1;
- if (!execute_charset (&p, c, corig, unibyte_char))
- goto fail;
-
- d += len;
- }
- break;
-
-
- /* The beginning of a group is represented by start_memory.
- The argument is the register number. The text
- matched within the group is recorded (in the internal
- registers data structure) under the register number. */
- case start_memory:
- DEBUG_PRINT ("EXECUTING start_memory %d:\n", *p);
-
- /* In case we need to undo this operation (via backtracking). */
- PUSH_FAILURE_REG (*p);
-
- regstart[*p] = d;
- regend[*p] = NULL; /* probably unnecessary. -sm */
- DEBUG_PRINT (" regstart: %td\n", POINTER_TO_OFFSET (regstart[*p]));
-
- /* Move past the register number and inner group count. */
- p += 1;
- break;
-
-
- /* The stop_memory opcode represents the end of a group. Its
- argument is the same as start_memory's: the register number. */
- case stop_memory:
- DEBUG_PRINT ("EXECUTING stop_memory %d:\n", *p);
-
- assert (!REG_UNSET (regstart[*p]));
- /* Strictly speaking, there should be code such as:
-
- assert (REG_UNSET (regend[*p]));
- PUSH_FAILURE_REGSTOP ((unsigned int)*p);
-
- But the only info to be pushed is regend[*p] and it is known to
- be UNSET, so there really isn't anything to push.
- Not pushing anything, on the other hand deprives us from the
- guarantee that regend[*p] is UNSET since undoing this operation
- will not reset its value properly. This is not important since
- the value will only be read on the next start_memory or at
- the very end and both events can only happen if this stop_memory
- is *not* undone. */
-
- regend[*p] = d;
- DEBUG_PRINT (" regend: %td\n", POINTER_TO_OFFSET (regend[*p]));
-
- /* Move past the register number and the inner group count. */
- p += 1;
- break;
-
-
- /* \<digit> has been turned into a `duplicate' command which is
- followed by the numeric value of <digit> as the register number. */
- case duplicate:
- {
- register re_char *d2, *dend2;
- int regno = *p++; /* Get which register to match against. */
- DEBUG_PRINT ("EXECUTING duplicate %d.\n", regno);
-
- /* Can't back reference a group which we've never matched. */
- if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
- goto fail;
-
- /* Where in input to try to start matching. */
- d2 = regstart[regno];
-
- /* Remember the start point to rollback upon failure. */
- dfail = d;
-
- /* Where to stop matching; if both the place to start and
- the place to stop matching are in the same string, then
- set to the place to stop, otherwise, for now have to use
- the end of the first string. */
-
- dend2 = ((FIRST_STRING_P (regstart[regno])
- == FIRST_STRING_P (regend[regno]))
- ? regend[regno] : end_match_1);
- for (;;)
- {
- ptrdiff_t dcnt;
-
- /* If necessary, advance to next segment in register
- contents. */
- while (d2 == dend2)
- {
- if (dend2 == end_match_2) break;
- if (dend2 == regend[regno]) break;
-
- /* End of string1 => advance to string2. */
- d2 = string2;
- dend2 = regend[regno];
- }
- /* At end of register contents => success */
- if (d2 == dend2) break;
-
- /* If necessary, advance to next segment in data. */
- PREFETCH ();
-
- /* How many characters left in this segment to match. */
- dcnt = dend - d;
-
- /* Want how many consecutive characters we can match in
- one shot, so, if necessary, adjust the count. */
- if (dcnt > dend2 - d2)
- dcnt = dend2 - d2;
-
- /* Compare that many; failure if mismatch, else move
- past them. */
- if (RE_TRANSLATE_P (translate)
- ? bcmp_translate (d, d2, dcnt, translate, target_multibyte)
- : memcmp (d, d2, dcnt))
- {
- d = dfail;
- goto fail;
- }
- d += dcnt, d2 += dcnt;
- }
- }
- break;
-
-
- /* begline matches the empty string at the beginning of the string
- (unless `not_bol' is set in `bufp'), and after newlines. */
- case begline:
- DEBUG_PRINT ("EXECUTING begline.\n");
-
- if (AT_STRINGS_BEG (d))
- {
- if (!bufp->not_bol) break;
- }
- else
- {
- unsigned c;
- GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
- if (c == '\n')
- break;
- }
- /* In all other cases, we fail. */
- goto fail;
-
-
- /* endline is the dual of begline. */
- case endline:
- DEBUG_PRINT ("EXECUTING endline.\n");
-
- if (AT_STRINGS_END (d))
- {
- if (!bufp->not_eol) break;
- }
- else
- {
- PREFETCH_NOLIMIT ();
- if (*d == '\n')
- break;
- }
- goto fail;
-
-
- /* Match at the very beginning of the data. */
- case begbuf:
- DEBUG_PRINT ("EXECUTING begbuf.\n");
- if (AT_STRINGS_BEG (d))
- break;
- goto fail;
-
-
- /* Match at the very end of the data. */
- case endbuf:
- DEBUG_PRINT ("EXECUTING endbuf.\n");
- if (AT_STRINGS_END (d))
- break;
- goto fail;
-
-
- /* on_failure_keep_string_jump is used to optimize `.*\n'. It
- pushes NULL as the value for the string on the stack. Then
- `POP_FAILURE_POINT' will keep the current value for the
- string, instead of restoring it. To see why, consider
- matching `foo\nbar' against `.*\n'. The .* matches the foo;
- then the . fails against the \n. But the next thing we want
- to do is match the \n against the \n; if we restored the
- string value, we would be back at the foo.
-
- Because this is used only in specific cases, we don't need to
- check all the things that `on_failure_jump' does, to make
- sure the right things get saved on the stack. Hence we don't
- share its code. The only reason to push anything on the
- stack at all is that otherwise we would have to change
- `anychar's code to do something besides goto fail in this
- case; that seems worse than this. */
- case on_failure_keep_string_jump:
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- DEBUG_PRINT ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
- mcnt, p + mcnt);
-
- PUSH_FAILURE_POINT (p - 3, NULL);
- break;
-
- /* A nasty loop is introduced by the non-greedy *? and +?.
- With such loops, the stack only ever contains one failure point
- at a time, so that a plain on_failure_jump_loop kind of
- cycle detection cannot work. Worse yet, such a detection
- can not only fail to detect a cycle, but it can also wrongly
- detect a cycle (between different instantiations of the same
- loop).
- So the method used for those nasty loops is a little different:
- We use a special cycle-detection-stack-frame which is pushed
- when the on_failure_jump_nastyloop failure-point is *popped*.
- This special frame thus marks the beginning of one iteration
- through the loop and we can hence easily check right here
- whether something matched between the beginning and the end of
- the loop. */
- case on_failure_jump_nastyloop:
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- DEBUG_PRINT ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
- mcnt, p + mcnt);
-
- assert ((re_opcode_t)p[-4] == no_op);
- {
- int cycle = 0;
- CHECK_INFINITE_LOOP (p - 4, d);
- if (!cycle)
- /* If there's a cycle, just continue without pushing
- this failure point. The failure point is the "try again"
- option, which shouldn't be tried.
- We want (x?)*?y\1z to match both xxyz and xxyxz. */
- PUSH_FAILURE_POINT (p - 3, d);
- }
- break;
-
- /* Simple loop detecting on_failure_jump: just check on the
- failure stack if the same spot was already hit earlier. */
- case on_failure_jump_loop:
- on_failure:
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- DEBUG_PRINT ("EXECUTING on_failure_jump_loop %d (to %p):\n",
- mcnt, p + mcnt);
- {
- int cycle = 0;
- CHECK_INFINITE_LOOP (p - 3, d);
- if (cycle)
- /* If there's a cycle, get out of the loop, as if the matching
- had failed. We used to just `goto fail' here, but that was
- aborting the search a bit too early: we want to keep the
- empty-loop-match and keep matching after the loop.
- We want (x?)*y\1z to match both xxyz and xxyxz. */
- p += mcnt;
- else
- PUSH_FAILURE_POINT (p - 3, d);
- }
- break;
-
-
- /* Uses of on_failure_jump:
-
- Each alternative starts with an on_failure_jump that points
- to the beginning of the next alternative. Each alternative
- except the last ends with a jump that in effect jumps past
- the rest of the alternatives. (They really jump to the
- ending jump of the following alternative, because tensioning
- these jumps is a hassle.)
-
- Repeats start with an on_failure_jump that points past both
- the repetition text and either the following jump or
- pop_failure_jump back to this on_failure_jump. */
- case on_failure_jump:
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- DEBUG_PRINT ("EXECUTING on_failure_jump %d (to %p):\n",
- mcnt, p + mcnt);
-
- PUSH_FAILURE_POINT (p -3, d);
- break;
-
- /* This operation is used for greedy *.
- Compare the beginning of the repeat with what in the
- pattern follows its end. If we can establish that there
- is nothing that they would both match, i.e., that we
- would have to backtrack because of (as in, e.g., `a*a')
- then we can use a non-backtracking loop based on
- on_failure_keep_string_jump instead of on_failure_jump. */
- case on_failure_jump_smart:
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- DEBUG_PRINT ("EXECUTING on_failure_jump_smart %d (to %p).\n",
- mcnt, p + mcnt);
- {
- re_char *p1 = p; /* Next operation. */
- /* Here, we discard `const', making re_match non-reentrant. */
- unsigned char *p2 = (unsigned char *) p + mcnt; /* Jump dest. */
- unsigned char *p3 = (unsigned char *) p - 3; /* opcode location. */
-
- p -= 3; /* Reset so that we will re-execute the
- instruction once it's been changed. */
-
- EXTRACT_NUMBER (mcnt, p2 - 2);
-
- /* Ensure this is indeed the trivial kind of loop
- we are expecting. */
- assert (skip_one_char (p1) == p2 - 3);
- assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
- DEBUG_STATEMENT (debug += 2);
- if (mutually_exclusive_p (bufp, p1, p2))
- {
- /* Use a fast `on_failure_keep_string_jump' loop. */
- DEBUG_PRINT (" smart exclusive => fast loop.\n");
- *p3 = (unsigned char) on_failure_keep_string_jump;
- STORE_NUMBER (p2 - 2, mcnt + 3);
- }
- else
- {
- /* Default to a safe `on_failure_jump' loop. */
- DEBUG_PRINT (" smart default => slow loop.\n");
- *p3 = (unsigned char) on_failure_jump;
- }
- DEBUG_STATEMENT (debug -= 2);
- }
- break;
-
- /* Unconditionally jump (without popping any failure points). */
- case jump:
- unconditional_jump:
- maybe_quit ();
- EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
- DEBUG_PRINT ("EXECUTING jump %d ", mcnt);
- p += mcnt; /* Do the jump. */
- DEBUG_PRINT ("(to %p).\n", p);
- break;
-
-
- /* Have to succeed matching what follows at least n times.
- After that, handle like `on_failure_jump'. */
- case succeed_n:
- /* Signedness doesn't matter since we only compare MCNT to 0. */
- EXTRACT_NUMBER (mcnt, p + 2);
- DEBUG_PRINT ("EXECUTING succeed_n %d.\n", mcnt);
-
- /* Originally, mcnt is how many times we HAVE to succeed. */
- if (mcnt != 0)
- {
- /* Here, we discard `const', making re_match non-reentrant. */
- unsigned char *p2 = (unsigned char *) p + 2; /* counter loc. */
- mcnt--;
- p += 4;
- PUSH_NUMBER (p2, mcnt);
- }
- else
- /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
- goto on_failure;
- break;
-
- case jump_n:
- /* Signedness doesn't matter since we only compare MCNT to 0. */
- EXTRACT_NUMBER (mcnt, p + 2);
- DEBUG_PRINT ("EXECUTING jump_n %d.\n", mcnt);
-
- /* Originally, this is how many times we CAN jump. */
- if (mcnt != 0)
- {
- /* Here, we discard `const', making re_match non-reentrant. */
- unsigned char *p2 = (unsigned char *) p + 2; /* counter loc. */
- mcnt--;
- PUSH_NUMBER (p2, mcnt);
- goto unconditional_jump;
- }
- /* If don't have to jump any more, skip over the rest of command. */
- else
- p += 4;
- break;
-
- case set_number_at:
- {
- unsigned char *p2; /* Location of the counter. */
- DEBUG_PRINT ("EXECUTING set_number_at.\n");
-
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- /* Here, we discard `const', making re_match non-reentrant. */
- p2 = (unsigned char *) p + mcnt;
- /* Signedness doesn't matter since we only copy MCNT's bits. */
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- DEBUG_PRINT (" Setting %p to %d.\n", p2, mcnt);
- PUSH_NUMBER (p2, mcnt);
- break;
- }
-
- case wordbound:
- case notwordbound:
- {
- boolean not = (re_opcode_t) *(p - 1) == notwordbound;
- DEBUG_PRINT ("EXECUTING %swordbound.\n", not ? "not" : "");
-
- /* We SUCCEED (or FAIL) in one of the following cases: */
-
- /* Case 1: D is at the beginning or the end of string. */
- if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
- not = !not;
- else
- {
- /* C1 is the character before D, S1 is the syntax of C1, C2
- is the character at D, and S2 is the syntax of C2. */
- re_wchar_t c1, c2;
- int s1, s2;
- int dummy;
-#ifdef emacs
- ssize_t offset = PTR_TO_OFFSET (d - 1);
- ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
- UPDATE_SYNTAX_TABLE (charpos);
-#endif
- GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
- s1 = SYNTAX (c1);
-#ifdef emacs
- UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
-#endif
- PREFETCH_NOLIMIT ();
- GET_CHAR_AFTER (c2, d, dummy);
- s2 = SYNTAX (c2);
-
- if (/* Case 2: Only one of S1 and S2 is Sword. */
- ((s1 == Sword) != (s2 == Sword))
- /* Case 3: Both of S1 and S2 are Sword, and macro
- WORD_BOUNDARY_P (C1, C2) returns nonzero. */
- || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
- not = !not;
- }
- if (not)
- break;
- else
- goto fail;
- }
-
- case wordbeg:
- DEBUG_PRINT ("EXECUTING wordbeg.\n");
-
- /* We FAIL in one of the following cases: */
-
- /* Case 1: D is at the end of string. */
- if (AT_STRINGS_END (d))
- goto fail;
- else
- {
- /* C1 is the character before D, S1 is the syntax of C1, C2
- is the character at D, and S2 is the syntax of C2. */
- re_wchar_t c1, c2;
- int s1, s2;
- int dummy;
-#ifdef emacs
- ssize_t offset = PTR_TO_OFFSET (d);
- ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
- UPDATE_SYNTAX_TABLE (charpos);
-#endif
- PREFETCH ();
- GET_CHAR_AFTER (c2, d, dummy);
- s2 = SYNTAX (c2);
-
- /* Case 2: S2 is not Sword. */
- if (s2 != Sword)
- goto fail;
-
- /* Case 3: D is not at the beginning of string ... */
- if (!AT_STRINGS_BEG (d))
- {
- GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
-#ifdef emacs
- UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
-#endif
- s1 = SYNTAX (c1);
-
- /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
- returns 0. */
- if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
- goto fail;
- }
- }
- break;
-
- case wordend:
- DEBUG_PRINT ("EXECUTING wordend.\n");
-
- /* We FAIL in one of the following cases: */
-
- /* Case 1: D is at the beginning of string. */
- if (AT_STRINGS_BEG (d))
- goto fail;
- else
- {
- /* C1 is the character before D, S1 is the syntax of C1, C2
- is the character at D, and S2 is the syntax of C2. */
- re_wchar_t c1, c2;
- int s1, s2;
- int dummy;
-#ifdef emacs
- ssize_t offset = PTR_TO_OFFSET (d) - 1;
- ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
- UPDATE_SYNTAX_TABLE (charpos);
-#endif
- GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
- s1 = SYNTAX (c1);
-
- /* Case 2: S1 is not Sword. */
- if (s1 != Sword)
- goto fail;
-
- /* Case 3: D is not at the end of string ... */
- if (!AT_STRINGS_END (d))
- {
- PREFETCH_NOLIMIT ();
- GET_CHAR_AFTER (c2, d, dummy);
-#ifdef emacs
- UPDATE_SYNTAX_TABLE_FORWARD (charpos);
-#endif
- s2 = SYNTAX (c2);
-
- /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
- returns 0. */
- if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
- goto fail;
- }
- }
- break;
-
- case symbeg:
- DEBUG_PRINT ("EXECUTING symbeg.\n");
-
- /* We FAIL in one of the following cases: */
-
- /* Case 1: D is at the end of string. */
- if (AT_STRINGS_END (d))
- goto fail;
- else
- {
- /* C1 is the character before D, S1 is the syntax of C1, C2
- is the character at D, and S2 is the syntax of C2. */
- re_wchar_t c1, c2;
- int s1, s2;
-#ifdef emacs
- ssize_t offset = PTR_TO_OFFSET (d);
- ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
- UPDATE_SYNTAX_TABLE (charpos);
-#endif
- PREFETCH ();
- c2 = RE_STRING_CHAR (d, target_multibyte);
- s2 = SYNTAX (c2);
-
- /* Case 2: S2 is neither Sword nor Ssymbol. */
- if (s2 != Sword && s2 != Ssymbol)
- goto fail;
-
- /* Case 3: D is not at the beginning of string ... */
- if (!AT_STRINGS_BEG (d))
- {
- GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
-#ifdef emacs
- UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
-#endif
- s1 = SYNTAX (c1);
-
- /* ... and S1 is Sword or Ssymbol. */
- if (s1 == Sword || s1 == Ssymbol)
- goto fail;
- }
- }
- break;
-
- case symend:
- DEBUG_PRINT ("EXECUTING symend.\n");
-
- /* We FAIL in one of the following cases: */
-
- /* Case 1: D is at the beginning of string. */
- if (AT_STRINGS_BEG (d))
- goto fail;
- else
- {
- /* C1 is the character before D, S1 is the syntax of C1, C2
- is the character at D, and S2 is the syntax of C2. */
- re_wchar_t c1, c2;
- int s1, s2;
-#ifdef emacs
- ssize_t offset = PTR_TO_OFFSET (d) - 1;
- ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
- UPDATE_SYNTAX_TABLE (charpos);
-#endif
- GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
- s1 = SYNTAX (c1);
-
- /* Case 2: S1 is neither Ssymbol nor Sword. */
- if (s1 != Sword && s1 != Ssymbol)
- goto fail;
-
- /* Case 3: D is not at the end of string ... */
- if (!AT_STRINGS_END (d))
- {
- PREFETCH_NOLIMIT ();
- c2 = RE_STRING_CHAR (d, target_multibyte);
-#ifdef emacs
- UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
-#endif
- s2 = SYNTAX (c2);
-
- /* ... and S2 is Sword or Ssymbol. */
- if (s2 == Sword || s2 == Ssymbol)
- goto fail;
- }
- }
- break;
-
- case syntaxspec:
- case notsyntaxspec:
- {
- boolean not = (re_opcode_t) *(p - 1) == notsyntaxspec;
- mcnt = *p++;
- DEBUG_PRINT ("EXECUTING %ssyntaxspec %d.\n", not ? "not" : "",
- mcnt);
- PREFETCH ();
-#ifdef emacs
- {
- ssize_t offset = PTR_TO_OFFSET (d);
- ssize_t pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
- UPDATE_SYNTAX_TABLE (pos1);
- }
-#endif
- {
- int len;
- re_wchar_t c;
-
- GET_CHAR_AFTER (c, d, len);
- if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
- goto fail;
- d += len;
- }
- }
- break;
-
-#ifdef emacs
- case at_dot:
- DEBUG_PRINT ("EXECUTING at_dot.\n");
- if (PTR_BYTE_POS (d) != PT_BYTE)
- goto fail;
- break;
-
- case categoryspec:
- case notcategoryspec:
- {
- boolean not = (re_opcode_t) *(p - 1) == notcategoryspec;
- mcnt = *p++;
- DEBUG_PRINT ("EXECUTING %scategoryspec %d.\n",
- not ? "not" : "", mcnt);
- PREFETCH ();
-
- {
- int len;
- re_wchar_t c;
- GET_CHAR_AFTER (c, d, len);
- if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
- goto fail;
- d += len;
- }
- }
- break;
-
-#endif /* emacs */
-
- default:
- abort ();
- }
- continue; /* Successfully executed one pattern command; keep going. */
-
-
- /* We goto here if a matching operation fails. */
- fail:
- maybe_quit ();
- if (!FAIL_STACK_EMPTY ())
- {
- re_char *str, *pat;
- /* A restart point is known. Restore to that state. */
- DEBUG_PRINT ("\nFAIL:\n");
- POP_FAILURE_POINT (str, pat);
- switch (*pat++)
- {
- case on_failure_keep_string_jump:
- assert (str == NULL);
- goto continue_failure_jump;
-
- case on_failure_jump_nastyloop:
- assert ((re_opcode_t)pat[-2] == no_op);
- PUSH_FAILURE_POINT (pat - 2, str);
- FALLTHROUGH;
- case on_failure_jump_loop:
- case on_failure_jump:
- case succeed_n:
- d = str;
- continue_failure_jump:
- EXTRACT_NUMBER_AND_INCR (mcnt, pat);
- p = pat + mcnt;
- break;
-
- case no_op:
- /* A special frame used for nastyloops. */
- goto fail;
-
- default:
- abort ();
- }
-
- assert (p >= bufp->buffer && p <= pend);
-
- if (d >= string1 && d <= end1)
- dend = end_match_1;
- }
- else
- break; /* Matching at this starting point really fails. */
- } /* for (;;) */
-
- if (best_regs_set)
- goto restore_best_regs;
-
- FREE_VARIABLES ();
-
- return -1; /* Failure to match. */
-}
-\f
-/* Subroutine definitions for re_match_2. */
-
-/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
- bytes; nonzero otherwise. */
-
-static int
-bcmp_translate (re_char *s1, re_char *s2, ssize_t len,
- RE_TRANSLATE_TYPE translate, const int target_multibyte)
-{
- re_char *p1 = s1, *p2 = s2;
- re_char *p1_end = s1 + len;
- re_char *p2_end = s2 + len;
-
- /* FIXME: Checking both p1 and p2 presumes that the two strings might have
- different lengths, but relying on a single `len' would break this. -sm */
- while (p1 < p1_end && p2 < p2_end)
- {
- int p1_charlen, p2_charlen;
- re_wchar_t p1_ch, p2_ch;
-
- GET_CHAR_AFTER (p1_ch, p1, p1_charlen);
- GET_CHAR_AFTER (p2_ch, p2, p2_charlen);
-
- if (RE_TRANSLATE (translate, p1_ch)
- != RE_TRANSLATE (translate, p2_ch))
- return 1;
-
- p1 += p1_charlen, p2 += p2_charlen;
- }
-
- if (p1 != p1_end || p2 != p2_end)
- return 1;
-
- return 0;
-}
-\f
-/* Entry points for GNU code. */
-
-/* re_compile_pattern is the GNU regular expression compiler: it
- compiles PATTERN (of length SIZE) and puts the result in BUFP.
- Returns 0 if the pattern was valid, otherwise an error string.
-
- Assumes the `allocated' (and perhaps `buffer') and `translate' fields
- are set in BUFP on entry.
-
- We call regex_compile to do the actual compilation. */
-
-const char *
-re_compile_pattern (const char *pattern, size_t length,
-#ifdef emacs
- bool posix_backtracking, const char *whitespace_regexp,
-#endif
- struct re_pattern_buffer *bufp)
-{
- reg_errcode_t ret;
-
- /* GNU code is written to assume at least RE_NREGS registers will be set
- (and at least one extra will be -1). */
- bufp->regs_allocated = REGS_UNALLOCATED;
-
- /* And GNU code determines whether or not to get register information
- by passing null for the REGS argument to re_match, etc., not by
- setting no_sub. */
- bufp->no_sub = 0;
-
- ret = regex_compile ((re_char *) pattern, length,
-#ifdef emacs
- posix_backtracking,
- whitespace_regexp,
-#else
- re_syntax_options,
-#endif
- bufp);
-
- if (!ret)
- return NULL;
- return gettext (re_error_msgid[(int) ret]);
-}
-WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
-\f
-/* Entry points compatible with 4.2 BSD regex library. We don't define
- them unless specifically requested. */
-
-#if defined _REGEX_RE_COMP || defined _LIBC
-
-/* BSD has one and only one pattern buffer. */
-static struct re_pattern_buffer re_comp_buf;
-
-char *
-# ifdef _LIBC
-/* Make these definitions weak in libc, so POSIX programs can redefine
- these names if they don't use our functions, and still use
- regcomp/regexec below without link errors. */
-weak_function
-# endif
-re_comp (const char *s)
-{
- reg_errcode_t ret;
-
- if (!s)
- {
- if (!re_comp_buf.buffer)
- /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
- return (char *) gettext ("No previous regular expression");
- return 0;
- }
-
- if (!re_comp_buf.buffer)
- {
- re_comp_buf.buffer = malloc (200);
- if (re_comp_buf.buffer == NULL)
- /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
- return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
- re_comp_buf.allocated = 200;
-
- re_comp_buf.fastmap = malloc (1 << BYTEWIDTH);
- if (re_comp_buf.fastmap == NULL)
- /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
- return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
- }
-
- /* Since `re_exec' always passes NULL for the `regs' argument, we
- don't need to initialize the pattern buffer fields which affect it. */
-
- ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
-
- if (!ret)
- return NULL;
-
- /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
- return (char *) gettext (re_error_msgid[(int) ret]);
-}
-
-
-int
-# ifdef _LIBC
-weak_function
-# endif
-re_exec (const char *s)
-{
- const size_t len = strlen (s);
- return re_search (&re_comp_buf, s, len, 0, len, 0) >= 0;
-}
-#endif /* _REGEX_RE_COMP */
-\f
-/* POSIX.2 functions. Don't define these for Emacs. */
-
-#ifndef emacs
-
-/* regcomp takes a regular expression as a string and compiles it.
-
- PREG is a regex_t *. We do not expect any fields to be initialized,
- since POSIX says we shouldn't. Thus, we set
-
- `buffer' to the compiled pattern;
- `used' to the length of the compiled pattern;
- `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
- REG_EXTENDED bit in CFLAGS is set; otherwise, to
- RE_SYNTAX_POSIX_BASIC;
- `fastmap' to an allocated space for the fastmap;
- `fastmap_accurate' to zero;
- `re_nsub' to the number of subexpressions in PATTERN.
-
- PATTERN is the address of the pattern string.
-
- CFLAGS is a series of bits which affect compilation.
-
- If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
- use POSIX basic syntax.
-
- If REG_NEWLINE is set, then . and [^...] don't match newline.
- Also, regexec will try a match beginning after every newline.
-
- If REG_ICASE is set, then we considers upper- and lowercase
- versions of letters to be equivalent when matching.
-
- If REG_NOSUB is set, then when PREG is passed to regexec, that
- routine will report only success or failure, and nothing about the
- registers.
-
- It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
- the return codes and their meanings.) */
-
-reg_errcode_t
-regcomp (regex_t *_Restrict_ preg, const char *_Restrict_ pattern,
- int cflags)
-{
- reg_errcode_t ret;
- reg_syntax_t syntax
- = (cflags & REG_EXTENDED) ?
- RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
-
- /* regex_compile will allocate the space for the compiled pattern. */
- preg->buffer = 0;
- preg->allocated = 0;
- preg->used = 0;
-
- /* Try to allocate space for the fastmap. */
- preg->fastmap = malloc (1 << BYTEWIDTH);
-
- if (cflags & REG_ICASE)
- {
- unsigned i;
-
- preg->translate = malloc (CHAR_SET_SIZE * sizeof *preg->translate);
- if (preg->translate == NULL)
- return (int) REG_ESPACE;
-
- /* Map uppercase characters to corresponding lowercase ones. */
- for (i = 0; i < CHAR_SET_SIZE; i++)
- preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
- }
- else
- preg->translate = NULL;
-
- /* If REG_NEWLINE is set, newlines are treated differently. */
- if (cflags & REG_NEWLINE)
- { /* REG_NEWLINE implies neither . nor [^...] match newline. */
- syntax &= ~RE_DOT_NEWLINE;
- syntax |= RE_HAT_LISTS_NOT_NEWLINE;
- }
- else
- syntax |= RE_NO_NEWLINE_ANCHOR;
-
- preg->no_sub = !!(cflags & REG_NOSUB);
-
- /* POSIX says a null character in the pattern terminates it, so we
- can use strlen here in compiling the pattern. */
- ret = regex_compile ((re_char *) pattern, strlen (pattern), syntax, preg);
-
- /* POSIX doesn't distinguish between an unmatched open-group and an
- unmatched close-group: both are REG_EPAREN. */
- if (ret == REG_ERPAREN)
- ret = REG_EPAREN;
-
- if (ret == REG_NOERROR && preg->fastmap)
- { /* Compute the fastmap now, since regexec cannot modify the pattern
- buffer. */
- re_compile_fastmap (preg);
- if (preg->can_be_null)
- { /* The fastmap can't be used anyway. */
- free (preg->fastmap);
- preg->fastmap = NULL;
- }
- }
- return ret;
-}
-WEAK_ALIAS (__regcomp, regcomp)
-
-
-/* regexec searches for a given pattern, specified by PREG, in the
- string STRING.
-
- If NMATCH is zero or REG_NOSUB was set in the cflags argument to
- `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
- least NMATCH elements, and we set them to the offsets of the
- corresponding matched substrings.
-
- EFLAGS specifies `execution flags' which affect matching: if
- REG_NOTBOL is set, then ^ does not match at the beginning of the
- string; if REG_NOTEOL is set, then $ does not match at the end.
-
- We return 0 if we find a match and REG_NOMATCH if not. */
-
-reg_errcode_t
-regexec (const regex_t *_Restrict_ preg, const char *_Restrict_ string,
- size_t nmatch, regmatch_t pmatch[_Restrict_arr_], int eflags)
-{
- regoff_t ret;
- struct re_registers regs;
- regex_t private_preg;
- size_t len = strlen (string);
- boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
-
- private_preg = *preg;
-
- private_preg.not_bol = !!(eflags & REG_NOTBOL);
- private_preg.not_eol = !!(eflags & REG_NOTEOL);
-
- /* The user has told us exactly how many registers to return
- information about, via `nmatch'. We have to pass that on to the
- matching routines. */
- private_preg.regs_allocated = REGS_FIXED;
-
- if (want_reg_info)
- {
- regs.num_regs = nmatch;
- regs.start = TALLOC (nmatch * 2, regoff_t);
- if (regs.start == NULL)
- return REG_NOMATCH;
- regs.end = regs.start + nmatch;
- }
-
- /* Instead of using not_eol to implement REG_NOTEOL, we could simply
- pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
- was a little bit longer but still only matching the real part.
- This works because the `endline' will check for a '\n' and will find a
- '\0', correctly deciding that this is not the end of a line.
- But it doesn't work out so nicely for REG_NOTBOL, since we don't have
- a convenient '\0' there. For all we know, the string could be preceded
- by '\n' which would throw things off. */
-
- /* Perform the searching operation. */
- ret = re_search (&private_preg, string, len,
- /* start: */ 0, /* range: */ len,
- want_reg_info ? ®s : 0);
-
- /* Copy the register information to the POSIX structure. */
- if (want_reg_info)
- {
- if (ret >= 0)
- {
- unsigned r;
-
- for (r = 0; r < nmatch; r++)
- {
- pmatch[r].rm_so = regs.start[r];
- pmatch[r].rm_eo = regs.end[r];
- }
- }
-
- /* If we needed the temporary register info, free the space now. */
- free (regs.start);
- }
-
- /* We want zero return to mean success, unlike `re_search'. */
- return ret >= 0 ? REG_NOERROR : REG_NOMATCH;
-}
-WEAK_ALIAS (__regexec, regexec)
-
-
-/* Returns a message corresponding to an error code, ERR_CODE, returned
- from either regcomp or regexec. We don't use PREG here.
-
- ERR_CODE was previously called ERRCODE, but that name causes an
- error with msvc8 compiler. */
-
-size_t
-regerror (int err_code, const regex_t *preg, char *errbuf, size_t errbuf_size)
-{
- const char *msg;
- size_t msg_size;
-
- if (err_code < 0
- || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
- /* Only error codes returned by the rest of the code should be passed
- to this routine. If we are given anything else, or if other regex
- code generates an invalid error code, then the program has a bug.
- Dump core so we can fix it. */
- abort ();
-
- msg = gettext (re_error_msgid[err_code]);
-
- msg_size = strlen (msg) + 1; /* Includes the null. */
-
- if (errbuf_size != 0)
- {
- if (msg_size > errbuf_size)
- {
- memcpy (errbuf, msg, errbuf_size - 1);
- errbuf[errbuf_size - 1] = 0;
- }
- else
- strcpy (errbuf, msg);
- }
-
- return msg_size;
-}
-WEAK_ALIAS (__regerror, regerror)
-
-
-/* Free dynamically allocated space used by PREG. */
-
-void
-regfree (regex_t *preg)
-{
- free (preg->buffer);
- preg->buffer = NULL;
-
- preg->allocated = 0;
- preg->used = 0;
-
- free (preg->fastmap);
- preg->fastmap = NULL;
- preg->fastmap_accurate = 0;
-
- free (preg->translate);
- preg->translate = NULL;
-}
-WEAK_ALIAS (__regfree, regfree)
-
-#endif /* not emacs */
+++ /dev/null
-/* Definitions for data structures and routines for the regular
- expression library, version 0.12.
-
- Copyright (C) 1985, 1989-1993, 1995, 2000-2018 Free Software
- Foundation, Inc.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3, or (at your option)
- any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <https://www.gnu.org/licenses/>. */
-
-#ifndef _REGEX_H
-#define _REGEX_H 1
-
-#if defined emacs && (defined _REGEX_RE_COMP || defined _LIBC)
-/* We're not defining re_set_syntax and using a different prototype of
- re_compile_pattern when building Emacs so fail compilation early with
- a (somewhat helpful) error message when conflict is detected. */
-# error "_REGEX_RE_COMP nor _LIBC can be defined if emacs is defined."
-#endif
-
-#include <sys/types.h>
-
-/* Allow the use in C++ code. */
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#if !defined _POSIX_C_SOURCE && !defined _POSIX_SOURCE && defined VMS
-/* VMS doesn't have `size_t' in <sys/types.h>, even though POSIX says it
- should be there. */
-# include <stddef.h>
-#endif
-
-/* The following bits are used to determine the regexp syntax we
- recognize. The set/not-set meanings where historically chosen so
- that Emacs syntax had the value 0.
- The bits are given in alphabetical order, and
- the definitions shifted by one from the previous bit; thus, when we
- add or remove a bit, only one other definition need change. */
-typedef unsigned long reg_syntax_t;
-
-/* If this bit is not set, then \ inside a bracket expression is literal.
- If set, then such a \ quotes the following character. */
-#define RE_BACKSLASH_ESCAPE_IN_LISTS ((unsigned long int) 1)
-
-/* If this bit is not set, then + and ? are operators, and \+ and \? are
- literals.
- If set, then \+ and \? are operators and + and ? are literals. */
-#define RE_BK_PLUS_QM (RE_BACKSLASH_ESCAPE_IN_LISTS << 1)
-
-/* If this bit is set, then character classes are supported. They are:
- [:alpha:], [:upper:], [:lower:], [:digit:], [:alnum:], [:xdigit:],
- [:space:], [:print:], [:punct:], [:graph:], and [:cntrl:].
- If not set, then character classes are not supported. */
-#define RE_CHAR_CLASSES (RE_BK_PLUS_QM << 1)
-
-/* If this bit is set, then ^ and $ are always anchors (outside bracket
- expressions, of course).
- If this bit is not set, then it depends:
- ^ is an anchor if it is at the beginning of a regular
- expression or after an open-group or an alternation operator;
- $ is an anchor if it is at the end of a regular expression, or
- before a close-group or an alternation operator.
-
- This bit could be (re)combined with RE_CONTEXT_INDEP_OPS, because
- POSIX draft 11.2 says that * etc. in leading positions is undefined.
- We already implemented a previous draft which made those constructs
- invalid, though, so we haven't changed the code back. */
-#define RE_CONTEXT_INDEP_ANCHORS (RE_CHAR_CLASSES << 1)
-
-/* If this bit is set, then special characters are always special
- regardless of where they are in the pattern.
- If this bit is not set, then special characters are special only in
- some contexts; otherwise they are ordinary. Specifically,
- * + ? and intervals are only special when not after the beginning,
- open-group, or alternation operator. */
-#define RE_CONTEXT_INDEP_OPS (RE_CONTEXT_INDEP_ANCHORS << 1)
-
-/* If this bit is set, then *, +, ?, and { cannot be first in an re or
- immediately after an alternation or begin-group operator. */
-#define RE_CONTEXT_INVALID_OPS (RE_CONTEXT_INDEP_OPS << 1)
-
-/* If this bit is set, then . matches newline.
- If not set, then it doesn't. */
-#define RE_DOT_NEWLINE (RE_CONTEXT_INVALID_OPS << 1)
-
-/* If this bit is set, then . doesn't match NUL.
- If not set, then it does. */
-#define RE_DOT_NOT_NULL (RE_DOT_NEWLINE << 1)
-
-/* If this bit is set, nonmatching lists [^...] do not match newline.
- If not set, they do. */
-#define RE_HAT_LISTS_NOT_NEWLINE (RE_DOT_NOT_NULL << 1)
-
-/* If this bit is set, either \{...\} or {...} defines an
- interval, depending on RE_NO_BK_BRACES.
- If not set, \{, \}, {, and } are literals. */
-#define RE_INTERVALS (RE_HAT_LISTS_NOT_NEWLINE << 1)
-
-/* If this bit is set, +, ? and | aren't recognized as operators.
- If not set, they are. */
-#define RE_LIMITED_OPS (RE_INTERVALS << 1)
-
-/* If this bit is set, newline is an alternation operator.
- If not set, newline is literal. */
-#define RE_NEWLINE_ALT (RE_LIMITED_OPS << 1)
-
-/* If this bit is set, then `{...}' defines an interval, and \{ and \}
- are literals.
- If not set, then `\{...\}' defines an interval. */
-#define RE_NO_BK_BRACES (RE_NEWLINE_ALT << 1)
-
-/* If this bit is set, (...) defines a group, and \( and \) are literals.
- If not set, \(...\) defines a group, and ( and ) are literals. */
-#define RE_NO_BK_PARENS (RE_NO_BK_BRACES << 1)
-
-/* If this bit is set, then \<digit> matches <digit>.
- If not set, then \<digit> is a back-reference. */
-#define RE_NO_BK_REFS (RE_NO_BK_PARENS << 1)
-
-/* If this bit is set, then | is an alternation operator, and \| is literal.
- If not set, then \| is an alternation operator, and | is literal. */
-#define RE_NO_BK_VBAR (RE_NO_BK_REFS << 1)
-
-/* If this bit is set, then an ending range point collating higher
- than the starting range point, as in [z-a], is invalid.
- If not set, then when ending range point collates higher than the
- starting range point, the range is ignored. */
-#define RE_NO_EMPTY_RANGES (RE_NO_BK_VBAR << 1)
-
-/* If this bit is set, then an unmatched ) is ordinary.
- If not set, then an unmatched ) is invalid. */
-#define RE_UNMATCHED_RIGHT_PAREN_ORD (RE_NO_EMPTY_RANGES << 1)
-
-/* If this bit is set, succeed as soon as we match the whole pattern,
- without further backtracking. */
-#define RE_NO_POSIX_BACKTRACKING (RE_UNMATCHED_RIGHT_PAREN_ORD << 1)
-
-/* If this bit is set, do not process the GNU regex operators.
- If not set, then the GNU regex operators are recognized. */
-#define RE_NO_GNU_OPS (RE_NO_POSIX_BACKTRACKING << 1)
-
-/* If this bit is set, then *?, +? and ?? match non greedily. */
-#define RE_FRUGAL (RE_NO_GNU_OPS << 1)
-
-/* If this bit is set, then (?:...) is treated as a shy group. */
-#define RE_SHY_GROUPS (RE_FRUGAL << 1)
-
-/* If this bit is set, ^ and $ only match at beg/end of buffer. */
-#define RE_NO_NEWLINE_ANCHOR (RE_SHY_GROUPS << 1)
-
-/* If this bit is set, turn on internal regex debugging.
- If not set, and debugging was on, turn it off.
- This only works if regex.c is compiled -DDEBUG.
- We define this bit always, so that all that's needed to turn on
- debugging is to recompile regex.c; the calling code can always have
- this bit set, and it won't affect anything in the normal case. */
-#define RE_DEBUG (RE_NO_NEWLINE_ANCHOR << 1)
-
-/* This global variable defines the particular regexp syntax to use (for
- some interfaces). When a regexp is compiled, the syntax used is
- stored in the pattern buffer, so changing this does not affect
- already-compiled regexps. */
-/* extern reg_syntax_t re_syntax_options; */
-
-#ifdef emacs
-# include "lisp.h"
-/* In Emacs, this is the string or buffer in which we are matching.
- It is used for looking up syntax properties.
-
- If the value is a Lisp string object, we are matching text in that
- string; if it's nil, we are matching text in the current buffer; if
- it's t, we are matching text in a C string.
-
- This value is effectively another parameter to re_search_2 and
- re_match_2. No calls into Lisp or thread switches are allowed
- before setting re_match_object and calling into the regex search
- and match functions. These functions capture the current value of
- re_match_object into gl_state on entry.
-
- TODO: once we get rid of the !emacs case in this code, turn into an
- actual function parameter. */
-extern Lisp_Object re_match_object;
-#endif
-
-/* Roughly the maximum number of failure points on the stack. */
-extern size_t emacs_re_max_failures;
-
-#ifdef emacs
-/* Amount of memory that we can safely stack allocate. */
-extern ptrdiff_t emacs_re_safe_alloca;
-#endif
-
-\f
-/* Define combinations of the above bits for the standard possibilities.
- (The [[[ comments delimit what gets put into the Texinfo file, so
- don't delete them!) */
-/* [[[begin syntaxes]]] */
-#define RE_SYNTAX_EMACS \
- (RE_CHAR_CLASSES | RE_INTERVALS | RE_SHY_GROUPS | RE_FRUGAL)
-
-#define RE_SYNTAX_AWK \
- (RE_BACKSLASH_ESCAPE_IN_LISTS | RE_DOT_NOT_NULL \
- | RE_NO_BK_PARENS | RE_NO_BK_REFS \
- | RE_NO_BK_VBAR | RE_NO_EMPTY_RANGES \
- | RE_DOT_NEWLINE | RE_CONTEXT_INDEP_ANCHORS \
- | RE_UNMATCHED_RIGHT_PAREN_ORD | RE_NO_GNU_OPS)
-
-#define RE_SYNTAX_GNU_AWK \
- ((RE_SYNTAX_POSIX_EXTENDED | RE_BACKSLASH_ESCAPE_IN_LISTS | RE_DEBUG) \
- & ~(RE_DOT_NOT_NULL | RE_INTERVALS | RE_CONTEXT_INDEP_OPS))
-
-#define RE_SYNTAX_POSIX_AWK \
- (RE_SYNTAX_POSIX_EXTENDED | RE_BACKSLASH_ESCAPE_IN_LISTS \
- | RE_INTERVALS | RE_NO_GNU_OPS)
-
-#define RE_SYNTAX_GREP \
- (RE_BK_PLUS_QM | RE_CHAR_CLASSES \
- | RE_HAT_LISTS_NOT_NEWLINE | RE_INTERVALS \
- | RE_NEWLINE_ALT)
-
-#define RE_SYNTAX_EGREP \
- (RE_CHAR_CLASSES | RE_CONTEXT_INDEP_ANCHORS \
- | RE_CONTEXT_INDEP_OPS | RE_HAT_LISTS_NOT_NEWLINE \
- | RE_NEWLINE_ALT | RE_NO_BK_PARENS \
- | RE_NO_BK_VBAR)
-
-#define RE_SYNTAX_POSIX_EGREP \
- (RE_SYNTAX_EGREP | RE_INTERVALS | RE_NO_BK_BRACES)
-
-/* P1003.2/D11.2, section 4.20.7.1, lines 5078ff. */
-#define RE_SYNTAX_ED RE_SYNTAX_POSIX_BASIC
-
-#define RE_SYNTAX_SED RE_SYNTAX_POSIX_BASIC
-
-/* Syntax bits common to both basic and extended POSIX regex syntax. */
-#define _RE_SYNTAX_POSIX_COMMON \
- (RE_CHAR_CLASSES | RE_DOT_NEWLINE | RE_DOT_NOT_NULL \
- | RE_INTERVALS | RE_NO_EMPTY_RANGES)
-
-#define RE_SYNTAX_POSIX_BASIC \
- (_RE_SYNTAX_POSIX_COMMON | RE_BK_PLUS_QM)
-
-/* Differs from ..._POSIX_BASIC only in that RE_BK_PLUS_QM becomes
- RE_LIMITED_OPS, i.e., \? \+ \| are not recognized. Actually, this
- isn't minimal, since other operators, such as \`, aren't disabled. */
-#define RE_SYNTAX_POSIX_MINIMAL_BASIC \
- (_RE_SYNTAX_POSIX_COMMON | RE_LIMITED_OPS)
-
-#define RE_SYNTAX_POSIX_EXTENDED \
- (_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS \
- | RE_CONTEXT_INDEP_OPS | RE_NO_BK_BRACES \
- | RE_NO_BK_PARENS | RE_NO_BK_VBAR \
- | RE_CONTEXT_INVALID_OPS | RE_UNMATCHED_RIGHT_PAREN_ORD)
-
-/* Differs from ..._POSIX_EXTENDED in that RE_CONTEXT_INDEP_OPS is
- removed and RE_NO_BK_REFS is added. */
-#define RE_SYNTAX_POSIX_MINIMAL_EXTENDED \
- (_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS \
- | RE_CONTEXT_INVALID_OPS | RE_NO_BK_BRACES \
- | RE_NO_BK_PARENS | RE_NO_BK_REFS \
- | RE_NO_BK_VBAR | RE_UNMATCHED_RIGHT_PAREN_ORD)
-/* [[[end syntaxes]]] */
-\f
-/* Maximum number of duplicates an interval can allow. Some systems
- (erroneously) define this in other header files, but we want our
- value, so remove any previous define. */
-#ifdef RE_DUP_MAX
-# undef RE_DUP_MAX
-#endif
-/* Repeat counts are stored in opcodes as 2 byte integers. This was
- previously limited to 7fff because the parsing code uses signed
- ints. But Emacs only runs on 32 bit platforms anyway. */
-#define RE_DUP_MAX (0xffff)
-
-
-/* POSIX `cflags' bits (i.e., information for `regcomp'). */
-
-/* If this bit is set, then use extended regular expression syntax.
- If not set, then use basic regular expression syntax. */
-#define REG_EXTENDED 1
-
-/* If this bit is set, then ignore case when matching.
- If not set, then case is significant. */
-#define REG_ICASE (REG_EXTENDED << 1)
-
-/* If this bit is set, then anchors do not match at newline
- characters in the string.
- If not set, then anchors do match at newlines. */
-#define REG_NEWLINE (REG_ICASE << 1)
-
-/* If this bit is set, then report only success or fail in regexec.
- If not set, then returns differ between not matching and errors. */
-#define REG_NOSUB (REG_NEWLINE << 1)
-
-
-/* POSIX `eflags' bits (i.e., information for regexec). */
-
-/* If this bit is set, then the beginning-of-line operator doesn't match
- the beginning of the string (presumably because it's not the
- beginning of a line).
- If not set, then the beginning-of-line operator does match the
- beginning of the string. */
-#define REG_NOTBOL 1
-
-/* Like REG_NOTBOL, except for the end-of-line. */
-#define REG_NOTEOL (1 << 1)
-
-
-/* If any error codes are removed, changed, or added, update the
- `re_error_msg' table in regex.c. */
-typedef enum
-{
-#ifdef _XOPEN_SOURCE
- REG_ENOSYS = -1, /* This will never happen for this implementation. */
-#endif
-
- REG_NOERROR = 0, /* Success. */
- REG_NOMATCH, /* Didn't find a match (for regexec). */
-
- /* POSIX regcomp return error codes. (In the order listed in the
- standard.) */
- REG_BADPAT, /* Invalid pattern. */
- REG_ECOLLATE, /* Not implemented. */
- REG_ECTYPE, /* Invalid character class name. */
- REG_EESCAPE, /* Trailing backslash. */
- REG_ESUBREG, /* Invalid back reference. */
- REG_EBRACK, /* Unmatched left bracket. */
- REG_EPAREN, /* Parenthesis imbalance. */
- REG_EBRACE, /* Unmatched \{. */
- REG_BADBR, /* Invalid contents of \{\}. */
- REG_ERANGE, /* Invalid range end. */
- REG_ESPACE, /* Ran out of memory. */
- REG_BADRPT, /* No preceding re for repetition op. */
-
- /* Error codes we've added. */
- REG_EEND, /* Premature end. */
- REG_ESIZE, /* Compiled pattern bigger than 2^16 bytes. */
- REG_ERPAREN, /* Unmatched ) or \); not returned from regcomp. */
- REG_ERANGEX, /* Range striding over charsets. */
- REG_ESIZEBR /* n or m too big in \{n,m\} */
-} reg_errcode_t;
-\f
-/* This data structure represents a compiled pattern. Before calling
- the pattern compiler, the fields `buffer', `allocated', `fastmap',
- `translate', and `no_sub' can be set. After the pattern has been
- compiled, the `re_nsub' field is available. All other fields are
- private to the regex routines. */
-
-#ifndef RE_TRANSLATE_TYPE
-# define RE_TRANSLATE_TYPE char *
-#endif
-
-struct re_pattern_buffer
-{
-/* [[[begin pattern_buffer]]] */
- /* Space that holds the compiled pattern. It is declared as
- `unsigned char *' because its elements are
- sometimes used as array indexes. */
- unsigned char *buffer;
-
- /* Number of bytes to which `buffer' points. */
- size_t allocated;
-
- /* Number of bytes actually used in `buffer'. */
- size_t used;
-
-#ifdef emacs
- /* Charset of unibyte characters at compiling time. */
- int charset_unibyte;
-#else
- /* Syntax setting with which the pattern was compiled. */
- reg_syntax_t syntax;
-#endif
- /* Pointer to a fastmap, if any, otherwise zero. re_search uses
- the fastmap, if there is one, to skip over impossible
- starting points for matches. */
- char *fastmap;
-
- /* Either a translate table to apply to all characters before
- comparing them, or zero for no translation. The translation
- is applied to a pattern when it is compiled and to a string
- when it is matched. */
- RE_TRANSLATE_TYPE translate;
-
- /* Number of subexpressions found by the compiler. */
- size_t re_nsub;
-
- /* Zero if this pattern cannot match the empty string, one else.
- Well, in truth it's used only in `re_search_2', to see
- whether or not we should use the fastmap, so we don't set
- this absolutely perfectly; see `re_compile_fastmap'. */
- unsigned can_be_null : 1;
-
- /* If REGS_UNALLOCATED, allocate space in the `regs' structure
- for `max (RE_NREGS, re_nsub + 1)' groups.
- If REGS_REALLOCATE, reallocate space if necessary.
- If REGS_FIXED, use what's there. */
-#define REGS_UNALLOCATED 0
-#define REGS_REALLOCATE 1
-#define REGS_FIXED 2
- unsigned regs_allocated : 2;
-
- /* Set to zero when `regex_compile' compiles a pattern; set to one
- by `re_compile_fastmap' if it updates the fastmap. */
- unsigned fastmap_accurate : 1;
-
- /* If set, `re_match_2' does not return information about
- subexpressions. */
- unsigned no_sub : 1;
-
- /* If set, a beginning-of-line anchor doesn't match at the
- beginning of the string. */
- unsigned not_bol : 1;
-
- /* Similarly for an end-of-line anchor. */
- unsigned not_eol : 1;
-
- /* If true, the compilation of the pattern had to look up the syntax table,
- so the compiled pattern is only valid for the current syntax table. */
- unsigned used_syntax : 1;
-
-#ifdef emacs
- /* If true, multi-byte form in the regexp pattern should be
- recognized as a multibyte character. */
- unsigned multibyte : 1;
-
- /* If true, multi-byte form in the target of match should be
- recognized as a multibyte character. */
- unsigned target_multibyte : 1;
-#endif
-
-/* [[[end pattern_buffer]]] */
-};
-
-typedef struct re_pattern_buffer regex_t;
-\f
-/* POSIX 1003.1-2008 requires that regoff_t be at least as wide as
- ptrdiff_t and ssize_t. We don't know of any hosts where ptrdiff_t
- is wider than ssize_t, so ssize_t is safe. ptrdiff_t is not
- necessarily visible here, so use ssize_t. */
-typedef ssize_t regoff_t;
-
-
-/* This is the structure we store register match data in. See
- regex.texinfo for a full description of what registers match. */
-struct re_registers
-{
- unsigned num_regs;
- regoff_t *start;
- regoff_t *end;
-};
-
-
-/* If `regs_allocated' is REGS_UNALLOCATED in the pattern buffer,
- `re_match_2' returns information about at least this many registers
- the first time a `regs' structure is passed. */
-#ifndef RE_NREGS
-# define RE_NREGS 30
-#endif
-
-
-/* POSIX specification for registers. Aside from the different names than
- `re_registers', POSIX uses an array of structures, instead of a
- structure of arrays. */
-typedef struct
-{
- regoff_t rm_so; /* Byte offset from string's start to substring's start. */
- regoff_t rm_eo; /* Byte offset from string's start to substring's end. */
-} regmatch_t;
-\f
-/* Declarations for routines. */
-
-#ifndef emacs
-
-/* Sets the current default syntax to SYNTAX, and return the old syntax.
- You can also simply assign to the `re_syntax_options' variable. */
-extern reg_syntax_t re_set_syntax (reg_syntax_t __syntax);
-
-#endif
-
-/* Compile the regular expression PATTERN, with length LENGTH
- and syntax given by the global `re_syntax_options', into the buffer
- BUFFER. Return NULL if successful, and an error string if not. */
-extern const char *re_compile_pattern (const char *__pattern, size_t __length,
-#ifdef emacs
- bool posix_backtracking,
- const char *whitespace_regexp,
-#endif
- struct re_pattern_buffer *__buffer);
-
-
-/* Compile a fastmap for the compiled pattern in BUFFER; used to
- accelerate searches. Return 0 if successful and -2 if was an
- internal error. */
-extern int re_compile_fastmap (struct re_pattern_buffer *__buffer);
-
-
-/* Search in the string STRING (with length LENGTH) for the pattern
- compiled into BUFFER. Start searching at position START, for RANGE
- characters. Return the starting position of the match, -1 for no
- match, or -2 for an internal error. Also return register
- information in REGS (if REGS and BUFFER->no_sub are nonzero). */
-extern regoff_t re_search (struct re_pattern_buffer *__buffer,
- const char *__string, size_t __length,
- ssize_t __start, ssize_t __range,
- struct re_registers *__regs);
-
-
-/* Like `re_search', but search in the concatenation of STRING1 and
- STRING2. Also, stop searching at index START + STOP. */
-extern regoff_t re_search_2 (struct re_pattern_buffer *__buffer,
- const char *__string1, size_t __length1,
- const char *__string2, size_t __length2,
- ssize_t __start, ssize_t __range,
- struct re_registers *__regs,
- ssize_t __stop);
-
-
-/* Like `re_search', but return how many characters in STRING the regexp
- in BUFFER matched, starting at position START. */
-extern regoff_t re_match (struct re_pattern_buffer *__buffer,
- const char *__string, size_t __length,
- ssize_t __start, struct re_registers *__regs);
-
-
-/* Relates to `re_match' as `re_search_2' relates to `re_search'. */
-extern regoff_t re_match_2 (struct re_pattern_buffer *__buffer,
- const char *__string1, size_t __length1,
- const char *__string2, size_t __length2,
- ssize_t __start, struct re_registers *__regs,
- ssize_t __stop);
-
-
-/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
- ENDS. Subsequent matches using BUFFER and REGS will use this memory
- for recording register information. STARTS and ENDS must be
- allocated with malloc, and must each be at least `NUM_REGS * sizeof
- (regoff_t)' bytes long.
-
- If NUM_REGS == 0, then subsequent matches should allocate their own
- register data.
-
- Unless this function is called, the first search or match using
- PATTERN_BUFFER will allocate its own register data, without
- freeing the old data. */
-extern void re_set_registers (struct re_pattern_buffer *__buffer,
- struct re_registers *__regs,
- unsigned __num_regs,
- regoff_t *__starts, regoff_t *__ends);
-
-#if defined _REGEX_RE_COMP || defined _LIBC
-# ifndef _CRAY
-/* 4.2 bsd compatibility. */
-extern char *re_comp (const char *);
-extern int re_exec (const char *);
-# endif
-#endif
-
-/* GCC 2.95 and later have "__restrict"; C99 compilers have
- "restrict", and "configure" may have defined "restrict".
- Other compilers use __restrict, __restrict__, and _Restrict, and
- 'configure' might #define 'restrict' to those words, so pick a
- different name. */
-#ifndef _Restrict_
-# if 199901L <= __STDC_VERSION__
-# define _Restrict_ restrict
-# elif 2 < __GNUC__ || (2 == __GNUC__ && 95 <= __GNUC_MINOR__)
-# define _Restrict_ __restrict
-# else
-# define _Restrict_
-# endif
-#endif
-/* gcc 3.1 and up support the [restrict] syntax. Don't trust
- sys/cdefs.h's definition of __restrict_arr, though, as it
- mishandles gcc -ansi -pedantic. */
-#ifndef _Restrict_arr_
-# if ((199901L <= __STDC_VERSION__ \
- || ((3 < __GNUC__ || (3 == __GNUC__ && 1 <= __GNUC_MINOR__)) \
- && !defined __STRICT_ANSI__)) \
- && !defined __GNUG__)
-# define _Restrict_arr_ _Restrict_
-# else
-# define _Restrict_arr_
-# endif
-#endif
-
-/* POSIX compatibility. */
-extern reg_errcode_t regcomp (regex_t *_Restrict_ __preg,
- const char *_Restrict_ __pattern,
- int __cflags);
-
-extern reg_errcode_t regexec (const regex_t *_Restrict_ __preg,
- const char *_Restrict_ __string, size_t __nmatch,
- regmatch_t __pmatch[_Restrict_arr_],
- int __eflags);
-
-extern size_t regerror (int __errcode, const regex_t * __preg,
- char *__errbuf, size_t __errbuf_size);
-
-extern void regfree (regex_t *__preg);
-
-
-#ifdef __cplusplus
-}
-#endif /* C++ */
-
-/* For platform which support the ISO C amendment 1 functionality we
- support user defined character classes. */
-#if WIDE_CHAR_SUPPORT
-/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
-# include <wchar.h>
-# include <wctype.h>
-
-typedef wctype_t re_wctype_t;
-typedef wchar_t re_wchar_t;
-# define re_wctype wctype
-# define re_iswctype iswctype
-# define re_wctype_to_bit(cc) 0
-#else
-# ifndef emacs
-# define btowc(c) c
-# endif
-
-/* Character classes. */
-typedef enum { RECC_ERROR = 0,
- RECC_ALNUM, RECC_ALPHA, RECC_WORD,
- RECC_GRAPH, RECC_PRINT,
- RECC_LOWER, RECC_UPPER,
- RECC_PUNCT, RECC_CNTRL,
- RECC_DIGIT, RECC_XDIGIT,
- RECC_BLANK, RECC_SPACE,
- RECC_MULTIBYTE, RECC_NONASCII,
- RECC_ASCII, RECC_UNIBYTE
-} re_wctype_t;
-
-extern char re_iswctype (int ch, re_wctype_t cc);
-extern re_wctype_t re_wctype_parse (const unsigned char **strp, unsigned limit);
-
-typedef int re_wchar_t;
-
-#endif /* not WIDE_CHAR_SUPPORT */
-
-#endif /* regex.h */
-\f
#include "blockinput.h"
#include "intervals.h"
-#include "regex.h"
+#include "regex-emacs.h"
#define REGEXP_CACHE_SIZE 20
if (running_asynch_code)
save_search_regs ();
- /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
+ /* This is so set_image_of_range_1 in regex-emacs.c can find the EQV
+ table. */
set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
BVAR (current_buffer, case_eqv_table));
pos_byte = string_char_to_byte (string, pos);
}
- /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
+ /* This is so set_image_of_range_1 in regex-emacs.c can find the EQV
+ table. */
set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
BVAR (current_buffer, case_eqv_table));
lim_byte = CHAR_TO_BYTE (lim);
}
- /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
+ /* This is so set_image_of_range_1 in regex-emacs.c can find the EQV
+ table. */
set_char_table_extras (BVAR (current_buffer, case_canon_table), 2,
BVAR (current_buffer, case_eqv_table));
#include "lisp.h"
#include "character.h"
#include "buffer.h"
-#include "regex.h"
+#include "regex-emacs.h"
#include "syntax.h"
#include "intervals.h"
#include "category.h"
If it is t (which is only used in fast_c_string_match_ignore_case),
ignore properties altogether.
- This is meant for regex.c to use. For buffers, regex.c passes arguments
- to the UPDATE_SYNTAX_TABLE functions which are relative to BEGV.
- So if it is a buffer, we set the offset field to BEGV. */
+ This is meant for regex-emacs.c to use. For buffers, regex-emacs.c
+ passes arguments to the UPDATE_SYNTAX_TABLE functions which are
+ relative to BEGV. So if it is a buffer, we set the offset field to
+ BEGV. */
void
SETUP_SYNTAX_TABLE_FOR_OBJECT (Lisp_Object object,
staticpro (&gl_state.current_syntax_table);
staticpro (&gl_state.old_prop);
- /* Defined in regex.c. */
+ /* Defined in regex-emacs.c. */
staticpro (&re_match_object);
DEFSYM (Qscan_error, "scan-error");
#ifndef THREAD_H
#define THREAD_H
-#include "regex.h"
+#include "regex-emacs.h"
#ifdef WINDOWSNT
#include <sys/socket.h>
--- /dev/null
+;;; regex-emacs-tests.el --- tests for regex-emacs.c -*- lexical-binding: t -*-
+
+;; Copyright (C) 2015-2018 Free Software Foundation, Inc.
+
+;; This file is part of GNU Emacs.
+
+;; GNU Emacs is free software: you can redistribute it and/or modify
+;; it under the terms of the GNU General Public License as published by
+;; the Free Software Foundation, either version 3 of the License, or
+;; (at your option) any later version.
+
+;; GNU Emacs is distributed in the hope that it will be useful,
+;; but WITHOUT ANY WARRANTY; without even the implied warranty of
+;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+;; GNU General Public License for more details.
+
+;; You should have received a copy of the GNU General Public License
+;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
+
+;;; Code:
+
+(require 'ert)
+
+(defvar regex-tests--resources-dir
+ (concat (concat (file-name-directory (or load-file-name buffer-file-name))
+ "/regex-resources/"))
+ "Path to regex-resources directory next to the \"regex-emacs-tests.el\" file.")
+
+(ert-deftest regex-word-cc-fallback-test ()
+ "Test that \"[[:cc:]]*x\" matches \"x\" (bug#24020).
+
+Test that a regex of the form \"[[:cc:]]*x\" where CC is
+a character class which matches a multibyte character X, matches
+string \"x\".
+
+For example, \"[[:word:]]*\u2620\" regex (note: \u2620 is a word
+character) must match a string \"\u2420\"."
+ (dolist (class '("[[:word:]]" "\\sw"))
+ (dolist (repeat '("*" "+"))
+ (dolist (suffix '("" "b" "bar" "\u2620"))
+ (dolist (string '("" "foo"))
+ (when (not (and (string-equal repeat "+")
+ (string-equal string "")))
+ (should (string-match (concat "^" class repeat suffix "$")
+ (concat string suffix)))))))))
+
+(defun regex--test-cc (name matching not-matching)
+ (let (case-fold-search)
+ (should (string-match-p (concat "^[[:" name ":]]*$") matching))
+ (should (string-match-p (concat "^[[:" name ":]]*?\u2622$")
+ (concat matching "\u2622")))
+ (should (string-match-p (concat "^[^[:" name ":]]*$") not-matching))
+ (should (string-match-p (concat "^[^[:" name ":]]*\u2622$")
+ (concat not-matching "\u2622")))
+ (with-temp-buffer
+ (insert matching)
+ (let ((p (point)))
+ (insert not-matching)
+ (goto-char (point-min))
+ (skip-chars-forward (concat "[:" name ":]"))
+ (should (equal (point) p))
+ (skip-chars-forward (concat "^[:" name ":]"))
+ (should (equal (point) (point-max)))
+ (goto-char (point-min))
+ (skip-chars-forward (concat "[:" name ":]\u2622"))
+ (should (or (equal (point) p) (equal (point) (1+ p))))))))
+
+(dolist (test '(("alnum" "abcABC012łąka" "-, \t\n")
+ ("alpha" "abcABCłąka" "-,012 \t\n")
+ ("digit" "012" "abcABCłąka-, \t\n")
+ ("xdigit" "0123aBc" "łąk-, \t\n")
+ ("upper" "ABCŁĄKA" "abc012-, \t\n")
+ ("lower" "abcłąka" "ABC012-, \t\n")
+
+ ("word" "abcABC012\u2620" "-, \t\n")
+
+ ("punct" ".,-" "abcABC012\u2620 \t\n")
+ ("cntrl" "\1\2\t\n" ".,-abcABC012\u2620 ")
+ ("graph" "abcłąka\u2620-," " \t\n\1")
+ ("print" "abcłąka\u2620-, " "\t\n\1")
+
+ ("space" " \t\n\u2001" "abcABCł0123")
+ ("blank" " \t\u2001" "\n")
+
+ ("ascii" "abcABC012 \t\n\1" "łą\u2620")
+ ("nonascii" "łą\u2622" "abcABC012 \t\n\1")
+ ("unibyte" "abcABC012 \t\n\1" "łą\u2622")
+ ("multibyte" "łą\u2622" "abcABC012 \t\n\1")))
+ (let ((name (intern (concat "regex-tests-" (car test) "-character-class")))
+ (doc (concat "Perform sanity test of regexes using " (car test)
+ " character class.
+
+Go over all the supported character classes and test whether the
+classes and their inversions match what they are supposed to
+match. The test is done using `string-match-p' as well as
+`skip-chars-forward'.")))
+ (eval `(ert-deftest ,name () ,doc ,(cons 'regex--test-cc test)) t)))
+
+
+(defmacro regex-tests-generic-line (comment-char test-file whitelist &rest body)
+ "Reads a line of the test file TEST-FILE, skipping
+comments (defined by COMMENT-CHAR), and evaluates the tests in
+this line as defined in the BODY. Line numbers in the WHITELIST
+are known failures, and are skipped."
+
+ `(with-temp-buffer
+ (modify-syntax-entry ?_ "w;; ") ; tests expect _ to be a word
+ (insert-file-contents (concat regex-tests--resources-dir ,test-file))
+ (let ((case-fold-search nil)
+ (line-number 1)
+ (whitelist-idx 0))
+
+ (goto-char (point-min))
+
+ (while (not (eobp))
+ (let ((start (point)))
+ (end-of-line)
+ (narrow-to-region start (point))
+
+ (goto-char (point-min))
+
+ (when
+ (and
+ ;; ignore comments
+ (save-excursion
+ (re-search-forward ,(concat "^[^" (string comment-char) "]") nil t))
+
+ ;; skip lines in the whitelist
+ (let ((whitelist-next
+ (condition-case nil
+ (aref ,whitelist whitelist-idx) (args-out-of-range nil))))
+ (cond
+ ;; whitelist exhausted. do process this line
+ ((null whitelist-next) t)
+
+ ;; we're not yet at the next whitelist element. do
+ ;; process this line
+ ((< line-number whitelist-next) t)
+
+ ;; we're past the next whitelist element. This
+ ;; shouldn't happen
+ ((> line-number whitelist-next)
+ (error
+ (format
+ "We somehow skipped the next whitelist element: line %d" whitelist-next)))
+
+ ;; we're at the next whitelist element. Skip this
+ ;; line, and advance the whitelist index
+ (t
+ (setq whitelist-idx (1+ whitelist-idx)) nil))))
+ ,@body)
+
+ (widen)
+ (forward-line)
+ (beginning-of-line)
+ (setq line-number (1+ line-number)))))))
+
+(defun regex-tests-compare (string what-failed bounds-ref &optional substring-ref)
+ "I just ran a search, looking at STRING. WHAT-FAILED describes
+what failed, if anything; valid values are 'search-failed,
+'compilation-failed and nil. I compare the beginning/end of each
+group with their expected values. This is done with either
+BOUNDS-REF or SUBSTRING-REF; one of those should be non-nil.
+BOUNDS-REF is a sequence \[start-ref0 end-ref0 start-ref1
+end-ref1 ....] while SUBSTRING-REF is the expected substring
+obtained by indexing the input string by start/end-ref.
+
+If the search was supposed to fail then start-ref0/substring-ref0
+is 'search-failed. If the search wasn't even supposed to compile
+successfully, then start-ref0/substring-ref0 is
+'compilation-failed. If I only care about a match succeeding,
+this can be set to t.
+
+This function returns a string that describes the failure, or nil
+on success"
+
+ (when (or
+ (and bounds-ref substring-ref)
+ (not (or bounds-ref substring-ref)))
+ (error "Exactly one of bounds-ref and bounds-ref should be non-nil"))
+
+ (let ((what-failed-ref (car (or bounds-ref substring-ref))))
+
+ (cond
+ ((eq what-failed 'search-failed)
+ (cond
+ ((eq what-failed-ref 'search-failed)
+ nil)
+ ((eq what-failed-ref 'compilation-failed)
+ "Expected pattern failure; but no match")
+ (t
+ "Expected match; but no match")))
+
+ ((eq what-failed 'compilation-failed)
+ (cond
+ ((eq what-failed-ref 'search-failed)
+ "Expected no match; but pattern failure")
+ ((eq what-failed-ref 'compilation-failed)
+ nil)
+ (t
+ "Expected match; but pattern failure")))
+
+ ;; The regex match succeeded
+ ((eq what-failed-ref 'search-failed)
+ "Expected no match; but match")
+ ((eq what-failed-ref 'compilation-failed)
+ "Expected pattern failure; but match")
+
+ ;; The regex match succeeded, as expected. I now check all the
+ ;; bounds
+ (t
+ (let ((idx 0)
+ msg
+ ref next-ref-function compare-ref-function mismatched-ref-function)
+
+ (if bounds-ref
+ (setq ref bounds-ref
+ next-ref-function (lambda (x) (cddr x))
+ compare-ref-function (lambda (ref start-pos end-pos)
+ (or (eq (car ref) t)
+ (and (eq start-pos (car ref))
+ (eq end-pos (cadr ref)))))
+ mismatched-ref-function (lambda (ref start-pos end-pos)
+ (format
+ "beginning/end positions: %d/%s and %d/%s"
+ start-pos (car ref) end-pos (cadr ref))))
+ (setq ref substring-ref
+ next-ref-function (lambda (x) (cdr x))
+ compare-ref-function (lambda (ref start-pos end-pos)
+ (or (eq (car ref) t)
+ (string= (substring string start-pos end-pos) (car ref))))
+ mismatched-ref-function (lambda (ref start-pos end-pos)
+ (format
+ "beginning/end positions: %d/%s and %d/%s"
+ start-pos (car ref) end-pos (cadr ref)))))
+
+ (while (not (or (null ref) msg))
+
+ (let ((start (match-beginning idx))
+ (end (match-end idx)))
+
+ (when (not (funcall compare-ref-function ref start end))
+ (setq msg
+ (format
+ "Have expected match, but mismatch in group %d: %s" idx (funcall mismatched-ref-function ref start end))))
+
+ (setq ref (funcall next-ref-function ref)
+ idx (1+ idx))))
+
+ (or msg
+ nil))))))
+
+
+
+(defun regex-tests-match (pattern string bounds-ref &optional substring-ref)
+ "I match the given STRING against PATTERN. I compare the
+beginning/end of each group with their expected values.
+BOUNDS-REF is a sequence [start-ref0 end-ref0 start-ref1 end-ref1
+....].
+
+If the search was supposed to fail then start-ref0 is
+'search-failed. If the search wasn't even supposed to compile
+successfully, then start-ref0 is 'compilation-failed.
+
+This function returns a string that describes the failure, or nil
+on success"
+
+ (if (string-match "\\[\\([\\.=]\\)..?\\1\\]" pattern)
+ ;; Skipping test: [.x.] and [=x=] forms not supported by emacs
+ nil
+
+ (regex-tests-compare
+ string
+ (condition-case nil
+ (if (string-match pattern string) nil 'search-failed)
+ ('invalid-regexp 'compilation-failed))
+ bounds-ref substring-ref)))
+
+
+(defconst regex-tests-re-even-escapes
+ "\\(?:^\\|[^\\\\]\\)\\(?:\\\\\\\\\\)*"
+ "Regex that matches an even number of \\ characters")
+
+(defconst regex-tests-re-odd-escapes
+ (concat regex-tests-re-even-escapes "\\\\")
+ "Regex that matches an odd number of \\ characters")
+
+
+(defun regex-tests-unextend (pattern)
+ "Basic conversion from extended regexes to emacs ones. This is
+mostly a hack that adds \\ to () and | and {}, and removes it if
+it already exists. We also change \\S (and \\s) to \\S- (and
+\\s-) because extended regexes see the former as whitespace, but
+emacs requires an extra symbol character"
+
+ (with-temp-buffer
+ (insert pattern)
+ (goto-char (point-min))
+
+ (while (re-search-forward "[()|{}]" nil t)
+ ;; point is past special character. If it is escaped, unescape
+ ;; it
+
+ (if (save-excursion
+ (re-search-backward (concat regex-tests-re-odd-escapes ".\\=") nil t))
+
+ ;; This special character is preceded by an odd number of \,
+ ;; so I unescape it by removing the last one
+ (progn
+ (forward-char -2)
+ (delete-char 1)
+ (forward-char 1))
+
+ ;; This special character is preceded by an even (possibly 0)
+ ;; number of \. I add an escape
+ (forward-char -1)
+ (insert "\\")
+ (forward-char 1)))
+
+ ;; convert \s to \s-
+ (goto-char (point-min))
+ (while (re-search-forward (concat regex-tests-re-odd-escapes "[Ss]") nil t)
+ (insert "-"))
+
+ (buffer-string)))
+
+(defun regex-tests-BOOST-frob-escapes (s ispattern)
+ "Mangle \\ the way it is done in frob_escapes() in
+regex-tests-BOOST.c in glibc: \\t, \\n, \\r are interpreted;
+\\\\, \\^, \{, \\|, \} are unescaped for the string (not
+pattern)"
+
+ ;; this is all similar to (regex-tests-unextend)
+ (with-temp-buffer
+ (insert s)
+
+ (let ((interpret-list (list "t" "n" "r")))
+ (while interpret-list
+ (goto-char (point-min))
+ (while (re-search-forward
+ (concat "\\(" regex-tests-re-even-escapes "\\)"
+ "\\\\" (car interpret-list))
+ nil t)
+ (replace-match (concat "\\1" (car (read-from-string
+ (concat "\"\\" (car interpret-list) "\""))))))
+
+ (setq interpret-list (cdr interpret-list))))
+
+ (when (not ispattern)
+ ;; unescape \\, \^, \{, \|, \}
+ (let ((unescape-list (list "\\\\" "^" "{" "|" "}")))
+ (while unescape-list
+ (goto-char (point-min))
+ (while (re-search-forward
+ (concat "\\(" regex-tests-re-even-escapes "\\)"
+ "\\\\" (car unescape-list))
+ nil t)
+ (replace-match (concat "\\1" (car unescape-list))))
+
+ (setq unescape-list (cdr unescape-list))))
+ )
+ (buffer-string)))
+
+
+
+
+(defconst regex-tests-BOOST-whitelist
+ [
+ ;; emacs is more stringent with regexes involving unbalanced )
+ 63 65 69
+
+ ;; in emacs, regex . doesn't match \n
+ 91
+
+ ;; emacs is more forgiving with * and ? that don't apply to
+ ;; characters
+ 107 108 109 122 123 124 140 141 142
+
+ ;; emacs accepts regexes with {}
+ 161
+
+ ;; emacs doesn't fail on bogus ranges such as [3-1] or [1-3-5]
+ 222 223
+
+ ;; emacs doesn't match (ab*)[ab]*\1 greedily: only 4 chars of
+ ;; ababaaa match
+ 284 294
+
+ ;; ambiguous groupings are ambiguous
+ 443 444 445 446 448 449 450
+
+ ;; emacs doesn't know how to handle weird ranges such as [a-Z] and
+ ;; [[:alpha:]-a]
+ 539 580 581
+
+ ;; emacs matches non-greedy regex ab.*? non-greedily
+ 639 677 712
+ ]
+ "Line numbers in the boost test that should be skipped. These
+are false-positive test failures that represent known/benign
+differences in behavior.")
+
+;; - Format
+;; - Comments are lines starting with ;
+;; - Lines starting with - set options passed to regcomp() and regexec():
+;; - if no "REG_BASIC" is found, with have an extended regex
+;; - These set a flag:
+;; - REG_ICASE
+;; - REG_NEWLINE (ignored by this function)
+;; - REG_NOTBOL
+;; - REG_NOTEOL
+;;
+;; - Test lines are
+;; pattern string start0 end0 start1 end1 ...
+;;
+;; - pattern, string can have escapes
+;; - string can have whitespace if enclosed in ""
+;; - if string is "!", then the pattern is supposed to fail compilation
+;; - start/end are of group0, group1, etc. group 0 is the full match
+;; - start<0 indicates "no match"
+;; - start is the 0-based index of the first character
+;; - end is the 0-based index of the first character past the group
+(defun regex-tests-BOOST ()
+ (let (failures
+ basic icase notbol noteol)
+ (regex-tests-generic-line
+ ?\; "BOOST.tests" regex-tests-BOOST-whitelist
+ (if (save-excursion (re-search-forward "^-" nil t))
+ (setq basic (save-excursion (re-search-forward "REG_BASIC" nil t))
+ icase (save-excursion (re-search-forward "REG_ICASE" nil t))
+ notbol (save-excursion (re-search-forward "REG_NOTBOL" nil t))
+ noteol (save-excursion (re-search-forward "REG_NOTEOL" nil t)))
+
+ (save-excursion
+ (or (re-search-forward "\\(\\S-+\\)\\s-+\"\\(.*\\)\"\\s-+?\\(.+\\)" nil t)
+ (re-search-forward "\\(\\S-+\\)\\s-+\\(\\S-+\\)\\s-+?\\(.+\\)" nil t)
+ (re-search-forward "\\(\\S-+\\)\\s-+\\(!\\)" nil t)))
+
+ (let* ((pattern-raw (match-string 1))
+ (string-raw (match-string 2))
+ (positions-raw (match-string 3))
+ (pattern (regex-tests-BOOST-frob-escapes pattern-raw t))
+ (string (regex-tests-BOOST-frob-escapes string-raw nil))
+ (positions
+ (if (string= string "!")
+ (list 'compilation-failed 0)
+ (mapcar
+ (lambda (x)
+ (let ((x (string-to-number x)))
+ (if (< x 0) nil x)))
+ (split-string positions-raw)))))
+
+ (when (null (car positions))
+ (setcar positions 'search-failed))
+
+ (when (not basic)
+ (setq pattern (regex-tests-unextend pattern)))
+
+ ;; great. I now have all the data parsed. Let's use it to do
+ ;; stuff
+ (let* ((case-fold-search icase)
+ (msg (regex-tests-match pattern string positions)))
+
+ (if (and
+ ;; Skipping test: notbol/noteol not supported
+ (not notbol) (not noteol)
+
+ msg)
+
+ ;; store failure
+ (setq failures
+ (cons (format "line number %d: Regex '%s': %s"
+ line-number pattern msg)
+ failures)))))))
+
+ failures))
+
+(defconst regex-tests-PCRE-whitelist
+ [
+ ;; ambiguous groupings are ambiguous
+ 610 611 1154 1157 1160 1168 1171 1176 1179 1182 1185 1188 1193 1196 1203
+ ]
+ "Line numbers in the PCRE test that should be skipped. These
+are false-positive test failures that represent known/benign
+differences in behavior.")
+
+;; - Format
+;;
+;; regex
+;; input_string
+;; group_num: group_match | "No match"
+;; input_string
+;; group_num: group_match | "No match"
+;; input_string
+;; group_num: group_match | "No match"
+;; input_string
+;; group_num: group_match | "No match"
+;; ...
+(defun regex-tests-PCRE ()
+ (let (failures
+ pattern icase string what-failed matches-observed)
+ (regex-tests-generic-line
+ ?# "PCRE.tests" regex-tests-PCRE-whitelist
+
+ (cond
+
+ ;; pattern
+ ((save-excursion (re-search-forward "^/\\(.*\\)/\\(.*i?\\)$" nil t))
+ (setq icase (string= "i" (match-string 2))
+ pattern (regex-tests-unextend (match-string 1))))
+
+ ;; string. read it in, match against pattern, and save all the results
+ ((save-excursion (re-search-forward "^ \\(.*\\)" nil t))
+ (let ((case-fold-search icase))
+ (setq string (match-string 1)
+
+ ;; the regex match under test
+ what-failed
+ (condition-case nil
+ (if (string-match pattern string) nil 'search-failed)
+ ('invalid-regexp 'compilation-failed))
+
+ matches-observed
+ (cl-loop for x from 0 to 20
+ collect (and (not what-failed)
+ (or (match-string x string) "<unset>")))))
+ nil)
+
+ ;; verification line: failed match
+ ((save-excursion (re-search-forward "^No match" nil t))
+ (unless what-failed
+ (setq failures
+ (cons (format "line number %d: Regex '%s': Expected no match; but match"
+ line-number pattern)
+ failures))))
+
+ ;; verification line: succeeded match
+ ((save-excursion (re-search-forward "^ *\\([0-9]+\\): \\(.*\\)" nil t))
+ (let* ((match-ref (match-string 2))
+ (idx (string-to-number (match-string 1))))
+
+ (if what-failed
+ "Expected match; but no match"
+ (unless (string= match-ref (elt matches-observed idx))
+ (setq failures
+ (cons (format "line number %d: Regex '%s': Have expected match, but group %d is wrong: '%s'/'%s'"
+ line-number pattern
+ idx match-ref (elt matches-observed idx))
+ failures))))))
+
+ ;; reset
+ (t (setq pattern nil) nil)))
+
+ failures))
+
+(defconst regex-tests-PTESTS-whitelist
+ [
+ ;; emacs doesn't barf on weird ranges such as [b-a], but simply
+ ;; fails to match
+ 138
+
+ ;; emacs doesn't see DEL (0x78) as a [:cntrl:] character
+ 168
+ ]
+ "Line numbers in the PTESTS test that should be skipped. These
+are false-positive test failures that represent known/benign
+differences in behavior.")
+
+;; - Format
+;; - fields separated by ¦ (note: this is not a |)
+;; - start¦end¦pattern¦string
+;; - start is the 1-based index of the first character
+;; - end is the 1-based index of the last character
+(defun regex-tests-PTESTS ()
+ (let (failures)
+ (regex-tests-generic-line
+ ?# "PTESTS" regex-tests-PTESTS-whitelist
+ (let* ((fields (split-string (buffer-string) "¦"))
+
+ ;; string has 1-based index of first char in the
+ ;; match. -1 means "no match". -2 means "invalid
+ ;; regex".
+ ;;
+ ;; start-ref is 0-based index of first char in the
+ ;; match
+ ;;
+ ;; string==0 is a special case, and I have to treat
+ ;; it as start-ref = 0
+ (start-ref (let ((raw (string-to-number (elt fields 0))))
+ (cond
+ ((= raw -2) 'compilation-failed)
+ ((= raw -1) 'search-failed)
+ ((= raw 0) 0)
+ (t (1- raw)))))
+
+ ;; string has 1-based index of last char in the
+ ;; match. end-ref is 0-based index of first char past
+ ;; the match
+ (end-ref (string-to-number (elt fields 1)))
+ (pattern (elt fields 2))
+ (string (elt fields 3)))
+
+ (let ((msg (regex-tests-match pattern string (list start-ref end-ref))))
+ (when msg
+ (setq failures
+ (cons (format "line number %d: Regex '%s': %s"
+ line-number pattern msg)
+ failures))))))
+ failures))
+
+(defconst regex-tests-TESTS-whitelist
+ [
+ ;; emacs doesn't barf on weird ranges such as [b-a], but simply
+ ;; fails to match
+ 42
+
+ ;; emacs is more forgiving with * and ? that don't apply to
+ ;; characters
+ 57 58 59 60
+
+ ;; emacs is more stringent with regexes involving unbalanced )
+ 67
+ ]
+ "Line numbers in the TESTS test that should be skipped. These
+are false-positive test failures that represent known/benign
+differences in behavior.")
+
+;; - Format
+;; - fields separated by :. Watch for [\[:xxx:]]
+;; - expected:pattern:string
+;;
+;; expected:
+;; | 0 | successful match |
+;; | 1 | failed match |
+;; | 2 | regcomp() should fail |
+(defun regex-tests-TESTS ()
+ (let (failures)
+ (regex-tests-generic-line
+ ?# "TESTS" regex-tests-TESTS-whitelist
+ (if (save-excursion (re-search-forward "^\\([^:]+\\):\\(.*\\):\\([^:]*\\)$" nil t))
+ (let* ((what-failed
+ (let ((raw (string-to-number (match-string 1))))
+ (cond
+ ((= raw 2) 'compilation-failed)
+ ((= raw 1) 'search-failed)
+ (t t))))
+ (string (match-string 3))
+ (pattern (regex-tests-unextend (match-string 2))))
+
+ (let ((msg (regex-tests-match pattern string nil (list what-failed))))
+ (when msg
+ (setq failures
+ (cons (format "line number %d: Regex '%s': %s"
+ line-number pattern msg)
+ failures)))))
+
+ (error "Error parsing TESTS file line: '%s'" (buffer-string))))
+ failures))
+
+(ert-deftest regex-tests-BOOST ()
+ "Tests of the regular expression engine.
+This evaluates the BOOST test cases from glibc."
+ (should-not (regex-tests-BOOST)))
+
+(ert-deftest regex-tests-PCRE ()
+ "Tests of the regular expression engine.
+This evaluates the PCRE test cases from glibc."
+ (should-not (regex-tests-PCRE)))
+
+(ert-deftest regex-tests-PTESTS ()
+ "Tests of the regular expression engine.
+This evaluates the PTESTS test cases from glibc."
+ (should-not (regex-tests-PTESTS)))
+
+(ert-deftest regex-tests-TESTS ()
+ "Tests of the regular expression engine.
+This evaluates the TESTS test cases from glibc."
+ (should-not (regex-tests-TESTS)))
+
+(ert-deftest regex-repeat-limit ()
+ "Test the #xFFFF repeat limit."
+ (should (string-match "\\`x\\{65535\\}" (make-string 65535 ?x)))
+ (should-not (string-match "\\`x\\{65535\\}" (make-string 65534 ?x)))
+ (should-error (string-match "\\`x\\{65536\\}" "X") :type 'invalid-regexp))
+
+;;; regex-emacs-tests.el ends here
+++ /dev/null
-;;; regex-tests.el --- tests for regex.c functions -*- lexical-binding: t -*-
-
-;; Copyright (C) 2015-2018 Free Software Foundation, Inc.
-
-;; This file is part of GNU Emacs.
-
-;; GNU Emacs is free software: you can redistribute it and/or modify
-;; it under the terms of the GNU General Public License as published by
-;; the Free Software Foundation, either version 3 of the License, or
-;; (at your option) any later version.
-
-;; GNU Emacs is distributed in the hope that it will be useful,
-;; but WITHOUT ANY WARRANTY; without even the implied warranty of
-;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-;; GNU General Public License for more details.
-
-;; You should have received a copy of the GNU General Public License
-;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
-
-;;; Code:
-
-(require 'ert)
-
-(defvar regex-tests--resources-dir
- (concat (concat (file-name-directory (or load-file-name buffer-file-name))
- "/regex-resources/"))
- "Path to regex-resources directory next to the \"regex-tests.el\" file.")
-
-(ert-deftest regex-word-cc-fallback-test ()
- "Test that \"[[:cc:]]*x\" matches \"x\" (bug#24020).
-
-Test that a regex of the form \"[[:cc:]]*x\" where CC is
-a character class which matches a multibyte character X, matches
-string \"x\".
-
-For example, \"[[:word:]]*\u2620\" regex (note: \u2620 is a word
-character) must match a string \"\u2420\"."
- (dolist (class '("[[:word:]]" "\\sw"))
- (dolist (repeat '("*" "+"))
- (dolist (suffix '("" "b" "bar" "\u2620"))
- (dolist (string '("" "foo"))
- (when (not (and (string-equal repeat "+")
- (string-equal string "")))
- (should (string-match (concat "^" class repeat suffix "$")
- (concat string suffix)))))))))
-
-(defun regex--test-cc (name matching not-matching)
- (let (case-fold-search)
- (should (string-match-p (concat "^[[:" name ":]]*$") matching))
- (should (string-match-p (concat "^[[:" name ":]]*?\u2622$")
- (concat matching "\u2622")))
- (should (string-match-p (concat "^[^[:" name ":]]*$") not-matching))
- (should (string-match-p (concat "^[^[:" name ":]]*\u2622$")
- (concat not-matching "\u2622")))
- (with-temp-buffer
- (insert matching)
- (let ((p (point)))
- (insert not-matching)
- (goto-char (point-min))
- (skip-chars-forward (concat "[:" name ":]"))
- (should (equal (point) p))
- (skip-chars-forward (concat "^[:" name ":]"))
- (should (equal (point) (point-max)))
- (goto-char (point-min))
- (skip-chars-forward (concat "[:" name ":]\u2622"))
- (should (or (equal (point) p) (equal (point) (1+ p))))))))
-
-(dolist (test '(("alnum" "abcABC012łąka" "-, \t\n")
- ("alpha" "abcABCłąka" "-,012 \t\n")
- ("digit" "012" "abcABCłąka-, \t\n")
- ("xdigit" "0123aBc" "łąk-, \t\n")
- ("upper" "ABCŁĄKA" "abc012-, \t\n")
- ("lower" "abcłąka" "ABC012-, \t\n")
-
- ("word" "abcABC012\u2620" "-, \t\n")
-
- ("punct" ".,-" "abcABC012\u2620 \t\n")
- ("cntrl" "\1\2\t\n" ".,-abcABC012\u2620 ")
- ("graph" "abcłąka\u2620-," " \t\n\1")
- ("print" "abcłąka\u2620-, " "\t\n\1")
-
- ("space" " \t\n\u2001" "abcABCł0123")
- ("blank" " \t\u2001" "\n")
-
- ("ascii" "abcABC012 \t\n\1" "łą\u2620")
- ("nonascii" "łą\u2622" "abcABC012 \t\n\1")
- ("unibyte" "abcABC012 \t\n\1" "łą\u2622")
- ("multibyte" "łą\u2622" "abcABC012 \t\n\1")))
- (let ((name (intern (concat "regex-tests-" (car test) "-character-class")))
- (doc (concat "Perform sanity test of regexes using " (car test)
- " character class.
-
-Go over all the supported character classes and test whether the
-classes and their inversions match what they are supposed to
-match. The test is done using `string-match-p' as well as
-`skip-chars-forward'.")))
- (eval `(ert-deftest ,name () ,doc ,(cons 'regex--test-cc test)) t)))
-
-
-(defmacro regex-tests-generic-line (comment-char test-file whitelist &rest body)
- "Reads a line of the test file TEST-FILE, skipping
-comments (defined by COMMENT-CHAR), and evaluates the tests in
-this line as defined in the BODY. Line numbers in the WHITELIST
-are known failures, and are skipped."
-
- `(with-temp-buffer
- (modify-syntax-entry ?_ "w;; ") ; tests expect _ to be a word
- (insert-file-contents (concat regex-tests--resources-dir ,test-file))
- (let ((case-fold-search nil)
- (line-number 1)
- (whitelist-idx 0))
-
- (goto-char (point-min))
-
- (while (not (eobp))
- (let ((start (point)))
- (end-of-line)
- (narrow-to-region start (point))
-
- (goto-char (point-min))
-
- (when
- (and
- ;; ignore comments
- (save-excursion
- (re-search-forward ,(concat "^[^" (string comment-char) "]") nil t))
-
- ;; skip lines in the whitelist
- (let ((whitelist-next
- (condition-case nil
- (aref ,whitelist whitelist-idx) (args-out-of-range nil))))
- (cond
- ;; whitelist exhausted. do process this line
- ((null whitelist-next) t)
-
- ;; we're not yet at the next whitelist element. do
- ;; process this line
- ((< line-number whitelist-next) t)
-
- ;; we're past the next whitelist element. This
- ;; shouldn't happen
- ((> line-number whitelist-next)
- (error
- (format
- "We somehow skipped the next whitelist element: line %d" whitelist-next)))
-
- ;; we're at the next whitelist element. Skip this
- ;; line, and advance the whitelist index
- (t
- (setq whitelist-idx (1+ whitelist-idx)) nil))))
- ,@body)
-
- (widen)
- (forward-line)
- (beginning-of-line)
- (setq line-number (1+ line-number)))))))
-
-(defun regex-tests-compare (string what-failed bounds-ref &optional substring-ref)
- "I just ran a search, looking at STRING. WHAT-FAILED describes
-what failed, if anything; valid values are 'search-failed,
-'compilation-failed and nil. I compare the beginning/end of each
-group with their expected values. This is done with either
-BOUNDS-REF or SUBSTRING-REF; one of those should be non-nil.
-BOUNDS-REF is a sequence \[start-ref0 end-ref0 start-ref1
-end-ref1 ....] while SUBSTRING-REF is the expected substring
-obtained by indexing the input string by start/end-ref.
-
-If the search was supposed to fail then start-ref0/substring-ref0
-is 'search-failed. If the search wasn't even supposed to compile
-successfully, then start-ref0/substring-ref0 is
-'compilation-failed. If I only care about a match succeeding,
-this can be set to t.
-
-This function returns a string that describes the failure, or nil
-on success"
-
- (when (or
- (and bounds-ref substring-ref)
- (not (or bounds-ref substring-ref)))
- (error "Exactly one of bounds-ref and bounds-ref should be non-nil"))
-
- (let ((what-failed-ref (car (or bounds-ref substring-ref))))
-
- (cond
- ((eq what-failed 'search-failed)
- (cond
- ((eq what-failed-ref 'search-failed)
- nil)
- ((eq what-failed-ref 'compilation-failed)
- "Expected pattern failure; but no match")
- (t
- "Expected match; but no match")))
-
- ((eq what-failed 'compilation-failed)
- (cond
- ((eq what-failed-ref 'search-failed)
- "Expected no match; but pattern failure")
- ((eq what-failed-ref 'compilation-failed)
- nil)
- (t
- "Expected match; but pattern failure")))
-
- ;; The regex match succeeded
- ((eq what-failed-ref 'search-failed)
- "Expected no match; but match")
- ((eq what-failed-ref 'compilation-failed)
- "Expected pattern failure; but match")
-
- ;; The regex match succeeded, as expected. I now check all the
- ;; bounds
- (t
- (let ((idx 0)
- msg
- ref next-ref-function compare-ref-function mismatched-ref-function)
-
- (if bounds-ref
- (setq ref bounds-ref
- next-ref-function (lambda (x) (cddr x))
- compare-ref-function (lambda (ref start-pos end-pos)
- (or (eq (car ref) t)
- (and (eq start-pos (car ref))
- (eq end-pos (cadr ref)))))
- mismatched-ref-function (lambda (ref start-pos end-pos)
- (format
- "beginning/end positions: %d/%s and %d/%s"
- start-pos (car ref) end-pos (cadr ref))))
- (setq ref substring-ref
- next-ref-function (lambda (x) (cdr x))
- compare-ref-function (lambda (ref start-pos end-pos)
- (or (eq (car ref) t)
- (string= (substring string start-pos end-pos) (car ref))))
- mismatched-ref-function (lambda (ref start-pos end-pos)
- (format
- "beginning/end positions: %d/%s and %d/%s"
- start-pos (car ref) end-pos (cadr ref)))))
-
- (while (not (or (null ref) msg))
-
- (let ((start (match-beginning idx))
- (end (match-end idx)))
-
- (when (not (funcall compare-ref-function ref start end))
- (setq msg
- (format
- "Have expected match, but mismatch in group %d: %s" idx (funcall mismatched-ref-function ref start end))))
-
- (setq ref (funcall next-ref-function ref)
- idx (1+ idx))))
-
- (or msg
- nil))))))
-
-
-
-(defun regex-tests-match (pattern string bounds-ref &optional substring-ref)
- "I match the given STRING against PATTERN. I compare the
-beginning/end of each group with their expected values.
-BOUNDS-REF is a sequence [start-ref0 end-ref0 start-ref1 end-ref1
-....].
-
-If the search was supposed to fail then start-ref0 is
-'search-failed. If the search wasn't even supposed to compile
-successfully, then start-ref0 is 'compilation-failed.
-
-This function returns a string that describes the failure, or nil
-on success"
-
- (if (string-match "\\[\\([\\.=]\\)..?\\1\\]" pattern)
- ;; Skipping test: [.x.] and [=x=] forms not supported by emacs
- nil
-
- (regex-tests-compare
- string
- (condition-case nil
- (if (string-match pattern string) nil 'search-failed)
- ('invalid-regexp 'compilation-failed))
- bounds-ref substring-ref)))
-
-
-(defconst regex-tests-re-even-escapes
- "\\(?:^\\|[^\\\\]\\)\\(?:\\\\\\\\\\)*"
- "Regex that matches an even number of \\ characters")
-
-(defconst regex-tests-re-odd-escapes
- (concat regex-tests-re-even-escapes "\\\\")
- "Regex that matches an odd number of \\ characters")
-
-
-(defun regex-tests-unextend (pattern)
- "Basic conversion from extended regexes to emacs ones. This is
-mostly a hack that adds \\ to () and | and {}, and removes it if
-it already exists. We also change \\S (and \\s) to \\S- (and
-\\s-) because extended regexes see the former as whitespace, but
-emacs requires an extra symbol character"
-
- (with-temp-buffer
- (insert pattern)
- (goto-char (point-min))
-
- (while (re-search-forward "[()|{}]" nil t)
- ;; point is past special character. If it is escaped, unescape
- ;; it
-
- (if (save-excursion
- (re-search-backward (concat regex-tests-re-odd-escapes ".\\=") nil t))
-
- ;; This special character is preceded by an odd number of \,
- ;; so I unescape it by removing the last one
- (progn
- (forward-char -2)
- (delete-char 1)
- (forward-char 1))
-
- ;; This special character is preceded by an even (possibly 0)
- ;; number of \. I add an escape
- (forward-char -1)
- (insert "\\")
- (forward-char 1)))
-
- ;; convert \s to \s-
- (goto-char (point-min))
- (while (re-search-forward (concat regex-tests-re-odd-escapes "[Ss]") nil t)
- (insert "-"))
-
- (buffer-string)))
-
-(defun regex-tests-BOOST-frob-escapes (s ispattern)
- "Mangle \\ the way it is done in frob_escapes() in
-regex-tests-BOOST.c in glibc: \\t, \\n, \\r are interpreted;
-\\\\, \\^, \{, \\|, \} are unescaped for the string (not
-pattern)"
-
- ;; this is all similar to (regex-tests-unextend)
- (with-temp-buffer
- (insert s)
-
- (let ((interpret-list (list "t" "n" "r")))
- (while interpret-list
- (goto-char (point-min))
- (while (re-search-forward
- (concat "\\(" regex-tests-re-even-escapes "\\)"
- "\\\\" (car interpret-list))
- nil t)
- (replace-match (concat "\\1" (car (read-from-string
- (concat "\"\\" (car interpret-list) "\""))))))
-
- (setq interpret-list (cdr interpret-list))))
-
- (when (not ispattern)
- ;; unescape \\, \^, \{, \|, \}
- (let ((unescape-list (list "\\\\" "^" "{" "|" "}")))
- (while unescape-list
- (goto-char (point-min))
- (while (re-search-forward
- (concat "\\(" regex-tests-re-even-escapes "\\)"
- "\\\\" (car unescape-list))
- nil t)
- (replace-match (concat "\\1" (car unescape-list))))
-
- (setq unescape-list (cdr unescape-list))))
- )
- (buffer-string)))
-
-
-
-
-(defconst regex-tests-BOOST-whitelist
- [
- ;; emacs is more stringent with regexes involving unbalanced )
- 63 65 69
-
- ;; in emacs, regex . doesn't match \n
- 91
-
- ;; emacs is more forgiving with * and ? that don't apply to
- ;; characters
- 107 108 109 122 123 124 140 141 142
-
- ;; emacs accepts regexes with {}
- 161
-
- ;; emacs doesn't fail on bogus ranges such as [3-1] or [1-3-5]
- 222 223
-
- ;; emacs doesn't match (ab*)[ab]*\1 greedily: only 4 chars of
- ;; ababaaa match
- 284 294
-
- ;; ambiguous groupings are ambiguous
- 443 444 445 446 448 449 450
-
- ;; emacs doesn't know how to handle weird ranges such as [a-Z] and
- ;; [[:alpha:]-a]
- 539 580 581
-
- ;; emacs matches non-greedy regex ab.*? non-greedily
- 639 677 712
- ]
- "Line numbers in the boost test that should be skipped. These
-are false-positive test failures that represent known/benign
-differences in behavior.")
-
-;; - Format
-;; - Comments are lines starting with ;
-;; - Lines starting with - set options passed to regcomp() and regexec():
-;; - if no "REG_BASIC" is found, with have an extended regex
-;; - These set a flag:
-;; - REG_ICASE
-;; - REG_NEWLINE (ignored by this function)
-;; - REG_NOTBOL
-;; - REG_NOTEOL
-;;
-;; - Test lines are
-;; pattern string start0 end0 start1 end1 ...
-;;
-;; - pattern, string can have escapes
-;; - string can have whitespace if enclosed in ""
-;; - if string is "!", then the pattern is supposed to fail compilation
-;; - start/end are of group0, group1, etc. group 0 is the full match
-;; - start<0 indicates "no match"
-;; - start is the 0-based index of the first character
-;; - end is the 0-based index of the first character past the group
-(defun regex-tests-BOOST ()
- (let (failures
- basic icase notbol noteol)
- (regex-tests-generic-line
- ?\; "BOOST.tests" regex-tests-BOOST-whitelist
- (if (save-excursion (re-search-forward "^-" nil t))
- (setq basic (save-excursion (re-search-forward "REG_BASIC" nil t))
- icase (save-excursion (re-search-forward "REG_ICASE" nil t))
- notbol (save-excursion (re-search-forward "REG_NOTBOL" nil t))
- noteol (save-excursion (re-search-forward "REG_NOTEOL" nil t)))
-
- (save-excursion
- (or (re-search-forward "\\(\\S-+\\)\\s-+\"\\(.*\\)\"\\s-+?\\(.+\\)" nil t)
- (re-search-forward "\\(\\S-+\\)\\s-+\\(\\S-+\\)\\s-+?\\(.+\\)" nil t)
- (re-search-forward "\\(\\S-+\\)\\s-+\\(!\\)" nil t)))
-
- (let* ((pattern-raw (match-string 1))
- (string-raw (match-string 2))
- (positions-raw (match-string 3))
- (pattern (regex-tests-BOOST-frob-escapes pattern-raw t))
- (string (regex-tests-BOOST-frob-escapes string-raw nil))
- (positions
- (if (string= string "!")
- (list 'compilation-failed 0)
- (mapcar
- (lambda (x)
- (let ((x (string-to-number x)))
- (if (< x 0) nil x)))
- (split-string positions-raw)))))
-
- (when (null (car positions))
- (setcar positions 'search-failed))
-
- (when (not basic)
- (setq pattern (regex-tests-unextend pattern)))
-
- ;; great. I now have all the data parsed. Let's use it to do
- ;; stuff
- (let* ((case-fold-search icase)
- (msg (regex-tests-match pattern string positions)))
-
- (if (and
- ;; Skipping test: notbol/noteol not supported
- (not notbol) (not noteol)
-
- msg)
-
- ;; store failure
- (setq failures
- (cons (format "line number %d: Regex '%s': %s"
- line-number pattern msg)
- failures)))))))
-
- failures))
-
-(defconst regex-tests-PCRE-whitelist
- [
- ;; ambiguous groupings are ambiguous
- 610 611 1154 1157 1160 1168 1171 1176 1179 1182 1185 1188 1193 1196 1203
- ]
- "Line numbers in the PCRE test that should be skipped. These
-are false-positive test failures that represent known/benign
-differences in behavior.")
-
-;; - Format
-;;
-;; regex
-;; input_string
-;; group_num: group_match | "No match"
-;; input_string
-;; group_num: group_match | "No match"
-;; input_string
-;; group_num: group_match | "No match"
-;; input_string
-;; group_num: group_match | "No match"
-;; ...
-(defun regex-tests-PCRE ()
- (let (failures
- pattern icase string what-failed matches-observed)
- (regex-tests-generic-line
- ?# "PCRE.tests" regex-tests-PCRE-whitelist
-
- (cond
-
- ;; pattern
- ((save-excursion (re-search-forward "^/\\(.*\\)/\\(.*i?\\)$" nil t))
- (setq icase (string= "i" (match-string 2))
- pattern (regex-tests-unextend (match-string 1))))
-
- ;; string. read it in, match against pattern, and save all the results
- ((save-excursion (re-search-forward "^ \\(.*\\)" nil t))
- (let ((case-fold-search icase))
- (setq string (match-string 1)
-
- ;; the regex match under test
- what-failed
- (condition-case nil
- (if (string-match pattern string) nil 'search-failed)
- ('invalid-regexp 'compilation-failed))
-
- matches-observed
- (cl-loop for x from 0 to 20
- collect (and (not what-failed)
- (or (match-string x string) "<unset>")))))
- nil)
-
- ;; verification line: failed match
- ((save-excursion (re-search-forward "^No match" nil t))
- (unless what-failed
- (setq failures
- (cons (format "line number %d: Regex '%s': Expected no match; but match"
- line-number pattern)
- failures))))
-
- ;; verification line: succeeded match
- ((save-excursion (re-search-forward "^ *\\([0-9]+\\): \\(.*\\)" nil t))
- (let* ((match-ref (match-string 2))
- (idx (string-to-number (match-string 1))))
-
- (if what-failed
- "Expected match; but no match"
- (unless (string= match-ref (elt matches-observed idx))
- (setq failures
- (cons (format "line number %d: Regex '%s': Have expected match, but group %d is wrong: '%s'/'%s'"
- line-number pattern
- idx match-ref (elt matches-observed idx))
- failures))))))
-
- ;; reset
- (t (setq pattern nil) nil)))
-
- failures))
-
-(defconst regex-tests-PTESTS-whitelist
- [
- ;; emacs doesn't barf on weird ranges such as [b-a], but simply
- ;; fails to match
- 138
-
- ;; emacs doesn't see DEL (0x78) as a [:cntrl:] character
- 168
- ]
- "Line numbers in the PTESTS test that should be skipped. These
-are false-positive test failures that represent known/benign
-differences in behavior.")
-
-;; - Format
-;; - fields separated by ¦ (note: this is not a |)
-;; - start¦end¦pattern¦string
-;; - start is the 1-based index of the first character
-;; - end is the 1-based index of the last character
-(defun regex-tests-PTESTS ()
- (let (failures)
- (regex-tests-generic-line
- ?# "PTESTS" regex-tests-PTESTS-whitelist
- (let* ((fields (split-string (buffer-string) "¦"))
-
- ;; string has 1-based index of first char in the
- ;; match. -1 means "no match". -2 means "invalid
- ;; regex".
- ;;
- ;; start-ref is 0-based index of first char in the
- ;; match
- ;;
- ;; string==0 is a special case, and I have to treat
- ;; it as start-ref = 0
- (start-ref (let ((raw (string-to-number (elt fields 0))))
- (cond
- ((= raw -2) 'compilation-failed)
- ((= raw -1) 'search-failed)
- ((= raw 0) 0)
- (t (1- raw)))))
-
- ;; string has 1-based index of last char in the
- ;; match. end-ref is 0-based index of first char past
- ;; the match
- (end-ref (string-to-number (elt fields 1)))
- (pattern (elt fields 2))
- (string (elt fields 3)))
-
- (let ((msg (regex-tests-match pattern string (list start-ref end-ref))))
- (when msg
- (setq failures
- (cons (format "line number %d: Regex '%s': %s"
- line-number pattern msg)
- failures))))))
- failures))
-
-(defconst regex-tests-TESTS-whitelist
- [
- ;; emacs doesn't barf on weird ranges such as [b-a], but simply
- ;; fails to match
- 42
-
- ;; emacs is more forgiving with * and ? that don't apply to
- ;; characters
- 57 58 59 60
-
- ;; emacs is more stringent with regexes involving unbalanced )
- 67
- ]
- "Line numbers in the TESTS test that should be skipped. These
-are false-positive test failures that represent known/benign
-differences in behavior.")
-
-;; - Format
-;; - fields separated by :. Watch for [\[:xxx:]]
-;; - expected:pattern:string
-;;
-;; expected:
-;; | 0 | successful match |
-;; | 1 | failed match |
-;; | 2 | regcomp() should fail |
-(defun regex-tests-TESTS ()
- (let (failures)
- (regex-tests-generic-line
- ?# "TESTS" regex-tests-TESTS-whitelist
- (if (save-excursion (re-search-forward "^\\([^:]+\\):\\(.*\\):\\([^:]*\\)$" nil t))
- (let* ((what-failed
- (let ((raw (string-to-number (match-string 1))))
- (cond
- ((= raw 2) 'compilation-failed)
- ((= raw 1) 'search-failed)
- (t t))))
- (string (match-string 3))
- (pattern (regex-tests-unextend (match-string 2))))
-
- (let ((msg (regex-tests-match pattern string nil (list what-failed))))
- (when msg
- (setq failures
- (cons (format "line number %d: Regex '%s': %s"
- line-number pattern msg)
- failures)))))
-
- (error "Error parsing TESTS file line: '%s'" (buffer-string))))
- failures))
-
-(ert-deftest regex-tests-BOOST ()
- "Tests of the regular expression engine.
-This evaluates the BOOST test cases from glibc."
- (should-not (regex-tests-BOOST)))
-
-(ert-deftest regex-tests-PCRE ()
- "Tests of the regular expression engine.
-This evaluates the PCRE test cases from glibc."
- (should-not (regex-tests-PCRE)))
-
-(ert-deftest regex-tests-PTESTS ()
- "Tests of the regular expression engine.
-This evaluates the PTESTS test cases from glibc."
- (should-not (regex-tests-PTESTS)))
-
-(ert-deftest regex-tests-TESTS ()
- "Tests of the regular expression engine.
-This evaluates the TESTS test cases from glibc."
- (should-not (regex-tests-TESTS)))
-
-(ert-deftest regex-repeat-limit ()
- "Test the #xFFFF repeat limit."
- (should (string-match "\\`x\\{65535\\}" (make-string 65535 ?x)))
- (should-not (string-match "\\`x\\{65535\\}" (make-string 65534 ?x)))
- (should-error (string-match "\\`x\\{65536\\}" "X") :type 'invalid-regexp))
-
-;;; regex-tests.el ends here