@c -*-texinfo-*-
@c This is part of the GNU Emacs Lisp Reference Manual.
-@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999
+@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2003
@c Free Software Foundation, Inc.
@c See the file elisp.texi for copying conditions.
@setfilename ../info/numbers
@section Integer Basics
The range of values for an integer depends on the machine. The
-minimum range is @minus{}134217728 to 134217727 (28 bits; i.e.,
+minimum range is @minus{}268435456 to 268435455 (29 bits; i.e.,
@ifnottex
--2**27
+-2**28
@end ifnottex
@tex
-@math{-2^{27}}
+@math{-2^{28}}
@end tex
to
@ifnottex
-2**27 - 1),
+2**28 - 1),
@end ifnottex
@tex
-@math{2^{27}-1}),
+@math{2^{28}-1}),
@end tex
but some machines may provide a wider range. Many examples in this
-chapter assume an integer has 28 bits.
+chapter assume an integer has 29 bits.
@cindex overflow
The Lisp reader reads an integer as a sequence of digits with optional
bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
view the numbers in their binary form.
- In 28-bit binary, the decimal integer 5 looks like this:
+ In 29-bit binary, the decimal integer 5 looks like this:
@example
-0000 0000 0000 0000 0000 0000 0101
+0 0000 0000 0000 0000 0000 0000 0101
@end example
@noindent
The integer @minus{}1 looks like this:
@example
-1111 1111 1111 1111 1111 1111 1111
+1 1111 1111 1111 1111 1111 1111 1111
@end example
@noindent
@cindex two's complement
-@minus{}1 is represented as 28 ones. (This is called @dfn{two's
+@minus{}1 is represented as 29 ones. (This is called @dfn{two's
complement} notation.)
The negative integer, @minus{}5, is creating by subtracting 4 from
@minus{}5 looks like this:
@example
-1111 1111 1111 1111 1111 1111 1011
+1 1111 1111 1111 1111 1111 1111 1011
@end example
- In this implementation, the largest 28-bit binary integer value is
-134,217,727 in decimal. In binary, it looks like this:
+ In this implementation, the largest 29-bit binary integer value is
+268,435,455 in decimal. In binary, it looks like this:
@example
-0111 1111 1111 1111 1111 1111 1111
+0 1111 1111 1111 1111 1111 1111 1111
@end example
Since the arithmetic functions do not check whether integers go
-outside their range, when you add 1 to 134,217,727, the value is the
-negative integer @minus{}134,217,728:
+outside their range, when you add 1 to 268,435,455, the value is the
+negative integer @minus{}268,435,456:
@example
-(+ 1 134217727)
- @result{} -134217728
- @result{} 1000 0000 0000 0000 0000 0000 0000
+(+ 1 268435455)
+ @result{} -268435456
+ @result{} 1 0000 0000 0000 0000 0000 0000 0000
@end example
Many of the functions described in this chapter accept markers for
if any argument is floating.
It is important to note that in Emacs Lisp, arithmetic functions
-do not check for overflow. Thus @code{(1+ 134217727)} may evaluate to
-@minus{}134217728, depending on your hardware.
+do not check for overflow. Thus @code{(1+ 268435455)} may evaluate to
+@minus{}268435456, depending on your hardware.
@defun 1+ number-or-marker
This function returns @var{number-or-marker} plus 1.
The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
not check for overflow, so shifting left can discard significant bits
and change the sign of the number. For example, left shifting
-134,217,727 produces @minus{}2 on a 28-bit machine:
+268,435,455 produces @minus{}2 on a 29-bit machine:
@example
-(lsh 134217727 1) ; @r{left shift}
+(lsh 268435455 1) ; @r{left shift}
@result{} -2
@end example
-In binary, in the 28-bit implementation, the argument looks like this:
+In binary, in the 29-bit implementation, the argument looks like this:
@example
@group
-;; @r{Decimal 134,217,727}
-0111 1111 1111 1111 1111 1111 1111
+;; @r{Decimal 268,435,455}
+0 1111 1111 1111 1111 1111 1111 1111
@end group
@end example
@example
@group
;; @r{Decimal @minus{}2}
-1111 1111 1111 1111 1111 1111 1110
+1 1111 1111 1111 1111 1111 1111 1110
@end group
@end example
@end defun
@group
(ash -6 -1) @result{} -3
;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
-1111 1111 1111 1111 1111 1111 1010
+1 1111 1111 1111 1111 1111 1111 1010
@result{}
-1111 1111 1111 1111 1111 1111 1101
+1 1111 1111 1111 1111 1111 1111 1101
@end group
@end example
@example
@group
-(lsh -6 -1) @result{} 134217725
-;; @r{Decimal @minus{}6 becomes decimal 134,217,725.}
-1111 1111 1111 1111 1111 1111 1010
+(lsh -6 -1) @result{} 268435453
+;; @r{Decimal @minus{}6 becomes decimal 268,435,453.}
+1 1111 1111 1111 1111 1111 1111 1010
@result{}
-0111 1111 1111 1111 1111 1111 1101
+0 1111 1111 1111 1111 1111 1111 1101
@end group
@end example
@c with smallbook but not with regular book! --rjc 16mar92
@smallexample
@group
- ; @r{ 28-bit binary values}
+ ; @r{ 29-bit binary values}
-(lsh 5 2) ; 5 = @r{0000 0000 0000 0000 0000 0000 0101}
- @result{} 20 ; = @r{0000 0000 0000 0000 0000 0001 0100}
+(lsh 5 2) ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
+ @result{} 20 ; = @r{0 0000 0000 0000 0000 0000 0001 0100}
@end group
@group
(ash 5 2)
@result{} 20
-(lsh -5 2) ; -5 = @r{1111 1111 1111 1111 1111 1111 1011}
- @result{} -20 ; = @r{1111 1111 1111 1111 1111 1110 1100}
+(lsh -5 2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011}
+ @result{} -20 ; = @r{1 1111 1111 1111 1111 1111 1110 1100}
(ash -5 2)
@result{} -20
@end group
@group
-(lsh 5 -2) ; 5 = @r{0000 0000 0000 0000 0000 0000 0101}
- @result{} 1 ; = @r{0000 0000 0000 0000 0000 0000 0001}
+(lsh 5 -2) ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
+ @result{} 1 ; = @r{0 0000 0000 0000 0000 0000 0000 0001}
@end group
@group
(ash 5 -2)
@result{} 1
@end group
@group
-(lsh -5 -2) ; -5 = @r{1111 1111 1111 1111 1111 1111 1011}
- @result{} 4194302 ; = @r{0011 1111 1111 1111 1111 1111 1110}
+(lsh -5 -2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011}
+ @result{} 134217726 ; = @r{0 0111 1111 1111 1111 1111 1111 1110}
@end group
@group
-(ash -5 -2) ; -5 = @r{1111 1111 1111 1111 1111 1111 1011}
- @result{} -2 ; = @r{1111 1111 1111 1111 1111 1111 1110}
+(ash -5 -2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011}
+ @result{} -2 ; = @r{1 1111 1111 1111 1111 1111 1111 1110}
@end group
@end smallexample
@end defun
@smallexample
@group
- ; @r{ 28-bit binary values}
+ ; @r{ 29-bit binary values}
-(logand 14 13) ; 14 = @r{0000 0000 0000 0000 0000 0000 1110}
- ; 13 = @r{0000 0000 0000 0000 0000 0000 1101}
- @result{} 12 ; 12 = @r{0000 0000 0000 0000 0000 0000 1100}
+(logand 14 13) ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110}
+ ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101}
+ @result{} 12 ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100}
@end group
@group
-(logand 14 13 4) ; 14 = @r{0000 0000 0000 0000 0000 0000 1110}
- ; 13 = @r{0000 0000 0000 0000 0000 0000 1101}
- ; 4 = @r{0000 0000 0000 0000 0000 0000 0100}
- @result{} 4 ; 4 = @r{0000 0000 0000 0000 0000 0000 0100}
+(logand 14 13 4) ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110}
+ ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101}
+ ; 4 = @r{0 0000 0000 0000 0000 0000 0000 0100}
+ @result{} 4 ; 4 = @r{0 0000 0000 0000 0000 0000 0000 0100}
@end group
@group
(logand)
- @result{} -1 ; -1 = @r{1111 1111 1111 1111 1111 1111 1111}
+ @result{} -1 ; -1 = @r{1 1111 1111 1111 1111 1111 1111 1111}
@end group
@end smallexample
@end defun
@smallexample
@group
- ; @r{ 28-bit binary values}
+ ; @r{ 29-bit binary values}
-(logior 12 5) ; 12 = @r{0000 0000 0000 0000 0000 0000 1100}
- ; 5 = @r{0000 0000 0000 0000 0000 0000 0101}
- @result{} 13 ; 13 = @r{0000 0000 0000 0000 0000 0000 1101}
+(logior 12 5) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100}
+ ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
+ @result{} 13 ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101}
@end group
@group
-(logior 12 5 7) ; 12 = @r{0000 0000 0000 0000 0000 0000 1100}
- ; 5 = @r{0000 0000 0000 0000 0000 0000 0101}
- ; 7 = @r{0000 0000 0000 0000 0000 0000 0111}
- @result{} 15 ; 15 = @r{0000 0000 0000 0000 0000 0000 1111}
+(logior 12 5 7) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100}
+ ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
+ ; 7 = @r{0 0000 0000 0000 0000 0000 0000 0111}
+ @result{} 15 ; 15 = @r{0 0000 0000 0000 0000 0000 0000 1111}
@end group
@end smallexample
@end defun
@smallexample
@group
- ; @r{ 28-bit binary values}
+ ; @r{ 29-bit binary values}
-(logxor 12 5) ; 12 = @r{0000 0000 0000 0000 0000 0000 1100}
- ; 5 = @r{0000 0000 0000 0000 0000 0000 0101}
- @result{} 9 ; 9 = @r{0000 0000 0000 0000 0000 0000 1001}
+(logxor 12 5) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100}
+ ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
+ @result{} 9 ; 9 = @r{0 0000 0000 0000 0000 0000 0000 1001}
@end group
@group
-(logxor 12 5 7) ; 12 = @r{0000 0000 0000 0000 0000 0000 1100}
- ; 5 = @r{0000 0000 0000 0000 0000 0000 0101}
- ; 7 = @r{0000 0000 0000 0000 0000 0000 0111}
- @result{} 14 ; 14 = @r{0000 0000 0000 0000 0000 0000 1110}
+(logxor 12 5 7) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100}
+ ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
+ ; 7 = @r{0 0000 0000 0000 0000 0000 0000 0111}
+ @result{} 14 ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110}
@end group
@end smallexample
@end defun
@example
(lognot 5)
@result{} -6
-;; 5 = @r{0000 0000 0000 0000 0000 0000 0101}
+;; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
;; @r{becomes}
-;; -6 = @r{1111 1111 1111 1111 1111 1111 1010}
+;; -6 = @r{1 1111 1111 1111 1111 1111 1111 1010}
@end example
@end defun