@item
JSON has only one map type, the object. JSON objects are represented
-using Lisp hashtables.
+using Lisp hashtables or alists.
@end itemize
@noindent
-Note that @code{nil} doesn't represent any JSON values: this is to
-avoid confusion, because @code{nil} could either represent
-@code{null}, @code{false}, or an empty array, all of which are
+Note that @code{nil} represents the empty JSON object, @code{@{@}},
+not @code{null}, @code{false}, or an empty array, all of which are
different JSON values.
If some Lisp object can't be represented in JSON, the serialization
Only top-level values (arrays and objects) can be serialized to
JSON. The subobjects within these top-level values can be of any
-type. Likewise, the parsing functions will only return vectors and
-hashtables.
+type. Likewise, the parsing functions will only return vectors,
+hashtables, and alists.
+
+ The parsing functions accept keyword arguments. Currently only one
+keyword argument, @code{:object-type}, is recognized; its value can be
+either @code{hash-table} to parse JSON objects as hashtables with
+string keys (the default) or @code{alist} to parse them as alists.
@defun json-serialize object
This function returns a new Lisp string which contains the JSON
current buffer before point.
@end defun
-@defun json-parse-string string
+@defun json-parse-string string &key (object-type @code{hash-table})
This function parses the JSON value in @var{string}, which must be a
Lisp string.
@end defun
-@defun json-parse-buffer
+@defun json-parse-buffer &key (object-type @code{hash-table})
This function reads the next JSON value from the current buffer,
starting at point. It moves point to the position immediately after
the value if a value could be read and converted to Lisp; otherwise it
return unbind_to (count, Qnil);
}
+enum json_object_type {
+ json_object_hashtable,
+ json_object_alist,
+};
+
/* Convert a JSON object to a Lisp object. */
static _GL_ARG_NONNULL ((1)) Lisp_Object
-json_to_lisp (json_t *json)
+json_to_lisp (json_t *json, enum json_object_type object_type)
{
switch (json_typeof (json))
{
Lisp_Object result = Fmake_vector (make_natnum (size), Qunbound);
for (ptrdiff_t i = 0; i < size; ++i)
ASET (result, i,
- json_to_lisp (json_array_get (json, i)));
+ json_to_lisp (json_array_get (json, i), object_type));
--lisp_eval_depth;
return result;
}
{
if (++lisp_eval_depth > max_lisp_eval_depth)
xsignal0 (Qjson_object_too_deep);
- size_t size = json_object_size (json);
- if (FIXNUM_OVERFLOW_P (size))
- xsignal0 (Qoverflow_error);
- Lisp_Object result = CALLN (Fmake_hash_table, QCtest, Qequal,
- QCsize, make_natnum (size));
- struct Lisp_Hash_Table *h = XHASH_TABLE (result);
- const char *key_str;
- json_t *value;
- json_object_foreach (json, key_str, value)
+ Lisp_Object result;
+ switch (object_type)
{
- Lisp_Object key = json_build_string (key_str);
- EMACS_UINT hash;
- ptrdiff_t i = hash_lookup (h, key, &hash);
- /* Keys in JSON objects are unique, so the key can't be
- present yet. */
- eassert (i < 0);
- hash_put (h, key, json_to_lisp (value), hash);
+ case json_object_hashtable:
+ {
+ size_t size = json_object_size (json);
+ if (FIXNUM_OVERFLOW_P (size))
+ xsignal0 (Qoverflow_error);
+ result = CALLN (Fmake_hash_table, QCtest, Qequal, QCsize,
+ make_natnum (size));
+ struct Lisp_Hash_Table *h = XHASH_TABLE (result);
+ const char *key_str;
+ json_t *value;
+ json_object_foreach (json, key_str, value)
+ {
+ Lisp_Object key = json_build_string (key_str);
+ EMACS_UINT hash;
+ ptrdiff_t i = hash_lookup (h, key, &hash);
+ /* Keys in JSON objects are unique, so the key can't
+ be present yet. */
+ eassert (i < 0);
+ hash_put (h, key, json_to_lisp (value, object_type), hash);
+ }
+ break;
+ }
+ case json_object_alist:
+ {
+ result = Qnil;
+ const char *key_str;
+ json_t *value;
+ json_object_foreach (json, key_str, value)
+ {
+ Lisp_Object key = Fintern (json_build_string (key_str), Qnil);
+ result
+ = Fcons (Fcons (key, json_to_lisp (value, object_type)),
+ result);
+ }
+ result = Fnreverse (result);
+ break;
+ }
+ default:
+ /* Can't get here. */
+ emacs_abort ();
}
--lisp_eval_depth;
return result;
emacs_abort ();
}
-DEFUN ("json-parse-string", Fjson_parse_string, Sjson_parse_string, 1, 1, NULL,
+static enum json_object_type
+json_parse_object_type (ptrdiff_t nargs, Lisp_Object *args)
+{
+ switch (nargs)
+ {
+ case 0:
+ return json_object_hashtable;
+ case 2:
+ {
+ Lisp_Object key = args[0];
+ Lisp_Object value = args[1];
+ if (!EQ (key, QCobject_type))
+ wrong_choice (list1 (QCobject_type), key);
+ if (EQ (value, Qhash_table))
+ return json_object_hashtable;
+ else if (EQ (value, Qalist))
+ return json_object_alist;
+ else
+ wrong_choice (list2 (Qhash_table, Qalist), value);
+ }
+ default:
+ wrong_type_argument (Qplistp, Flist (nargs, args));
+ }
+}
+
+DEFUN ("json-parse-string", Fjson_parse_string, Sjson_parse_string, 1, MANY,
+ NULL,
doc: /* Parse the JSON STRING into a Lisp object.
This is essentially the reverse operation of `json-serialize', which
-see. The returned object will be a vector or hashtable. Its elements
-will be `:null', `:false', t, numbers, strings, or further vectors and
-hashtables. If there are duplicate keys in an object, all but the
-last one are ignored. If STRING doesn't contain a valid JSON object,
-an error of type `json-parse-error' is signaled. */)
- (Lisp_Object string)
+see. The returned object will be a vector, hashtable, or alist. Its
+elements will be `:null', `:false', t, numbers, strings, or further
+vectors, hashtables, and alists. If there are duplicate keys in an
+object, all but the last one are ignored. If STRING doesn't contain a
+valid JSON object, an error of type `json-parse-error' is signaled.
+The keyword argument `:object-type' specifies which Lisp type is used
+to represent objects; it can be `hash-table' or `alist'.
+usage: (string &key (OBJECT-TYPE \\='hash-table)) */)
+ (ptrdiff_t nargs, Lisp_Object *args)
{
ptrdiff_t count = SPECPDL_INDEX ();
}
#endif
+ Lisp_Object string = args[0];
Lisp_Object encoded = json_encode (string);
check_string_without_embedded_nulls (encoded);
+ enum json_object_type object_type
+ = json_parse_object_type (nargs - 1, args + 1);
json_error_t error;
json_t *object = json_loads (SSDATA (encoded), 0, &error);
if (object != NULL)
record_unwind_protect_ptr (json_release_object, object);
- return unbind_to (count, json_to_lisp (object));
+ return unbind_to (count, json_to_lisp (object, object_type));
}
struct json_read_buffer_data
}
DEFUN ("json-parse-buffer", Fjson_parse_buffer, Sjson_parse_buffer,
- 0, 0, NULL,
+ 0, MANY, NULL,
doc: /* Read JSON object from current buffer starting at point.
This is similar to `json-parse-string', which see. Move point after
the end of the object if parsing was successful. On error, point is
-not moved. */)
- (void)
+not moved.
+usage: (&key (OBJECT-TYPE \\='hash-table)) */)
+ (ptrdiff_t nargs, Lisp_Object *args)
{
ptrdiff_t count = SPECPDL_INDEX ();
}
#endif
+ enum json_object_type object_type = json_parse_object_type (nargs, args);
+
ptrdiff_t point = PT_BYTE;
struct json_read_buffer_data data = {.point = point};
json_error_t error;
record_unwind_protect_ptr (json_release_object, object);
/* Convert and then move point only if everything succeeded. */
- Lisp_Object lisp = json_to_lisp (object);
+ Lisp_Object lisp = json_to_lisp (object, object_type);
/* Adjust point by how much we just read. */
point += error.position;
Fput (Qjson_parse_string, Qpure, Qt);
Fput (Qjson_parse_string, Qside_effect_free, Qt);
+ DEFSYM (QCobject_type, ":object-type");
+ DEFSYM (Qalist, "alist");
+
defsubr (&Sjson_serialize);
defsubr (&Sjson_insert);
defsubr (&Sjson_parse_string);