;; Calculator for GNU Emacs, part II [calc-alg.el]
-;; Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
+;; Copyright (C) 1990, 1991, 1992, 1993, 2001 Free Software Foundation, Inc.
;; Written by Dave Gillespie, daveg@synaptics.com.
;; This file is part of GNU Emacs.
(calc-with-default-simplification
(let ((math-simplify-only nil))
(calc-modify-simplify-mode arg)
- (calc-enter-result 1 "dsmp" (calc-top 1)))))
-)
+ (calc-enter-result 1 "dsmp" (calc-top 1))))))
(defun calc-modify-simplify-mode (arg)
(if (= (math-abs arg) 2)
(if (>= (math-abs arg) 3)
(setq calc-simplify-mode 'ext)))
(if (< arg 0)
- (setq calc-simplify-mode (list calc-simplify-mode)))
-)
+ (setq calc-simplify-mode (list calc-simplify-mode))))
(defun calc-simplify ()
(interactive)
(calc-slow-wrapper
(calc-with-default-simplification
- (calc-enter-result 1 "simp" (math-simplify (calc-top-n 1)))))
-)
+ (calc-enter-result 1 "simp" (math-simplify (calc-top-n 1))))))
(defun calc-simplify-extended ()
(interactive)
(calc-slow-wrapper
(calc-with-default-simplification
- (calc-enter-result 1 "esmp" (math-simplify-extended (calc-top-n 1)))))
-)
+ (calc-enter-result 1 "esmp" (math-simplify-extended (calc-top-n 1))))))
(defun calc-expand-formula (arg)
(interactive "p")
(calc-top-n 1))
(let ((top (calc-top-n 1)))
(or (math-expand-formula top)
- top)))))))
-)
+ top))))))))
(defun calc-factor (arg)
(interactive "P")
(calc-slow-wrapper
(calc-unary-op "fctr" (if (calc-is-hyperbolic)
'calcFunc-factors 'calcFunc-factor)
- arg))
-)
+ arg)))
(defun calc-expand (n)
(interactive "P")
(calc-enter-result 1 "expa"
(append (list 'calcFunc-expand
(calc-top-n 1))
- (and n (list (prefix-numeric-value n))))))
-)
+ (and n (list (prefix-numeric-value n)))))))
(defun calc-collect (&optional var)
(interactive "sCollect terms involving: ")
(error "Bad format in expression: %s" (nth 1 var)))
(calc-enter-result 1 "clct" (list 'calcFunc-collect
(calc-top-n 1)
- var)))))
-)
+ var))))))
(defun calc-apart (arg)
(interactive "P")
(calc-slow-wrapper
- (calc-unary-op "aprt" 'calcFunc-apart arg))
-)
+ (calc-unary-op "aprt" 'calcFunc-apart arg)))
(defun calc-normalize-rat (arg)
(interactive "P")
(calc-slow-wrapper
- (calc-unary-op "nrat" 'calcFunc-nrat arg))
-)
+ (calc-unary-op "nrat" 'calcFunc-nrat arg)))
(defun calc-poly-gcd (arg)
(interactive "P")
(calc-slow-wrapper
- (calc-binary-op "pgcd" 'calcFunc-pgcd arg))
-)
+ (calc-binary-op "pgcd" 'calcFunc-pgcd arg)))
(defun calc-poly-div (arg)
(interactive "P")
(if (not (Math-zerop calc-poly-div-remainder))
(message "(Remainder was %s)"
(math-format-flat-expr calc-poly-div-remainder 0))
- (message "(No remainder)")))))
-)
+ (message "(No remainder)"))))))
(defun calc-poly-rem (arg)
(interactive "P")
(calc-slow-wrapper
- (calc-binary-op "prem" 'calcFunc-prem arg))
-)
+ (calc-binary-op "prem" 'calcFunc-prem arg)))
(defun calc-poly-div-rem (arg)
(interactive "P")
(calc-slow-wrapper
(if (calc-is-hyperbolic)
(calc-binary-op "pdvr" 'calcFunc-pdivide arg)
- (calc-binary-op "pdvr" 'calcFunc-pdivrem arg)))
-)
+ (calc-binary-op "pdvr" 'calcFunc-pdivrem arg))))
(defun calc-substitute (&optional oldname newname)
(interactive "sSubstitute old: ")
(error "Bad format in expression: %s" (nth 1 old)))
(or (math-expr-contains expr old)
(error "No occurrences found.")))
- (calc-enter-result num "sbst" (math-expr-subst expr old new))))
-)
+ (calc-enter-result num "sbst" (math-expr-subst expr old new)))))
(defun calc-has-rules (name)
(setq name (calc-var-value name))
(and (consp name)
(memq (car name) '(vec calcFunc-assign calcFunc-condition))
- name)
-)
+ name))
(defun math-recompile-eval-rules ()
(setq math-eval-rules-cache (and (calc-has-rules 'var-EvalRules)
(math-compile-rewrites
'(var EvalRules var-EvalRules)))
math-eval-rules-cache-other (assq nil math-eval-rules-cache)
- math-eval-rules-cache-tag (calc-var-value 'var-EvalRules))
-)
+ math-eval-rules-cache-tag (calc-var-value 'var-EvalRules)))
;;; Try to expand a formula according to its definition.
(let ((res (let ((math-expand-formulas t))
(apply (car expr) (cdr expr)))))
(and (not (eq (car-safe res) (car expr)))
- res)))
-)
+ res))))
(and b
(or (null a)
(math-beforep (car a) (car b)))))
- (t (string-lessp (symbol-name (car a)) (symbol-name (car b)))))
-)
+ (t (string-lessp (symbol-name (car a)) (symbol-name (car b))))))
-(defun math-simplify-extended (a)
+(defsubst math-simplify-extended (a)
(let ((math-living-dangerously t))
- (math-simplify a))
-)
-(fset 'calcFunc-esimplify (symbol-function 'math-simplify-extended))
+ (math-simplify a)))
+
+(defalias 'calcFunc-esimplify 'math-simplify-extended)
(defun math-simplify (top-expr)
(let ((math-simplifying t)
r (cdr r)))
(not (equal top-expr (setq res (math-simplify-step res)))))
(setq top-expr res)))))
- top-expr
-)
-(fset 'calcFunc-simplify (symbol-function 'math-simplify))
+ top-expr)
+
+(defalias 'calcFunc-simplify 'math-simplify)
;;; The following has a "bug" in that if any recursive simplifications
;;; occur only the first handler will be tried; this doesn't really
aa))
a))
(setq handler (cdr handler))))))
- aa))
-)
+ aa)))
+;; Placeholder, to synchronize autoloading.
(defun math-need-std-simps ()
- ;; Placeholder, to synchronize autoloading.
-)
+ nil)
(math-defsimplify (+ -)
(math-simplify-plus))
(setcar (cdr (cdr expr)) temp)
(setcar expr '+)
(setcar (cdr aa) 0)))
- expr)
-)
+ expr))
(math-defsimplify *
(math-simplify-times))
(memq (nth 1 (nth 1 expr)) '(1 -1)))
(math-div (math-mul (nth 2 expr) (nth 1 (nth 1 expr)))
(nth 2 (nth 1 expr)))
- expr))
-)
+ expr)))
(math-defsimplify /
(math-simplify-divide))
(math-simplify-divisor (cdr n) (cdr (cdr expr)) nover t))
(setq np (cdr (cdr n))))
(math-simplify-divisor np (cdr (cdr expr)) nover t)
- expr)
-)
+ expr))
(defun math-simplify-divisor (np dp nover dover)
(cond ((eq (car-safe (car dp)) '/)
(setq safe (or scalar (math-known-scalarp (nth 1 d) t))
dp (cdr (cdr d))))
(if safe
- (math-simplify-one-divisor np dp)))))
-)
+ (math-simplify-one-divisor np dp))))))
(defun math-simplify-one-divisor (np dp)
(if (setq temp (math-combine-prod (car np) (car dp) nover dover t))
(progn
(setcar np (math-mul (car np)
(list 'calcFunc-sqrt (nth 1 (car dp)))))
- (setcar dp (nth 1 (car dp))))))
-)
+ (setcar dp (nth 1 (car dp)))))))
(defun math-common-constant-factor (expr)
(if (Math-realp expr)
(if (eq (car expr) '/)
(or (math-common-constant-factor (nth 1 expr))
(and (Math-integerp (nth 2 expr))
- (list 'frac 1 (math-abs (nth 2 expr)))))))))
-)
+ (list 'frac 1 (math-abs (nth 2 expr))))))))))
(defun math-cancel-common-factor (expr val)
(if (memq (car-safe expr) '(+ - cplx sdev))
expr)
(if (eq (car-safe expr) '*)
(math-mul (math-cancel-common-factor (nth 1 expr) val) (nth 2 expr))
- (math-div expr val)))
-)
+ (math-div expr val))))
(defun math-frac-gcd (a b)
(if (Math-zerop a)
(and (Math-integerp a) (setq a (list 'frac a 1)))
(and (Math-integerp b) (setq b (list 'frac b 1)))
(math-make-frac (math-gcd (nth 1 a) (nth 1 b))
- (math-gcd (nth 2 a) (nth 2 b))))))
-)
+ (math-gcd (nth 2 a) (nth 2 b)))))))
(math-defsimplify %
(math-simplify-mod))
(math-known-integerp (if lin
(math-mul (nth 1 lin) (nth 2 lin))
(nth 1 expr)))
- (if lin (math-mod (car lin) 1) 0)))))
-)
+ (if lin (math-mod (car lin) 1) 0))))))
(math-defsimplify (calcFunc-eq calcFunc-neq calcFunc-lt
calcFunc-gt calcFunc-leq calcFunc-geq)
((eq (car expr) 'calcFunc-geq)
(or (and (eq signs 1) 0)
(and (memq signs '(2 4 6)) 1))))
- expr)))
-)
+ expr))))
(defun math-simplify-add-term (np dp minus lplain)
(or (math-vectorp (car np))
(setcar dp 0))
(progn
(setcar np 0)
- (setcar dp (setq n (math-neg temp))))))))
-)
+ (setcar dp (setq n (math-neg temp)))))))))
(math-defsimplify calcFunc-sin
(or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin)
(list '* (list 'calcFunc-sin (list '* (1- n) a))
(list 'calcFunc-cos a))
(list '* (list 'calcFunc-cos (list '* (1- n) a))
- (list 'calcFunc-sin a)))))))
-)
+ (list 'calcFunc-sin a))))))))
(math-defsimplify calcFunc-cos
(or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos)
(list '* (list 'calcFunc-cos (list '* (1- n) a))
(list 'calcFunc-cos a))
(list '* (list 'calcFunc-sin (list '* (1- n) a))
- (list 'calcFunc-sin a)))))))
-)
+ (list 'calcFunc-sin a))))))))
(defun math-should-expand-trig (x &optional hyperbolic)
(let ((m (math-is-multiple x)))
'(calcFunc-arcsin calcFunc-arccos calcFunc-arctan)))
(and (eq (car-safe (nth 1 m)) 'calcFunc-ln)
(eq hyperbolic 'exp)))
- m))
-)
+ m)))
(defun math-known-sin (plus n mul off)
(setq n (math-mul n mul))
(60 . 1)))))
(cond ((eq n 0) (math-normalize (list 'calcFunc-sin plus)))
((eq n 60) (math-normalize (list 'calcFunc-cos plus)))
- (t nil)))))
-)
+ (t nil))))))
(math-defsimplify calcFunc-tan
(or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan)
(math-div (math-sub 1 (list 'calcFunc-cos (nth 1 m)))
(list 'calcFunc-sin (nth 1 m)))
(math-div (list 'calcFunc-sin (nth 1 expr))
- (list 'calcFunc-cos (nth 1 expr)))))))
-)
+ (list 'calcFunc-cos (nth 1 expr))))))))
(defun math-known-tan (plus n mul)
(setq n (math-mul n mul))
(cond ((eq n 0) (math-normalize (list 'calcFunc-tan plus)))
((eq n 60) (math-normalize (list '/ -1
(list 'calcFunc-tan plus))))
- (t nil)))))
-)
+ (t nil))))))
(math-defsimplify calcFunc-sinh
(or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh)
(list '* (list 'calcFunc-sinh (list '* (1- n) a))
(list 'calcFunc-cosh a))
(list '* (list 'calcFunc-cosh (list '* (1- n) a))
- (list 'calcFunc-sinh a))))))))
-)
+ (list 'calcFunc-sinh a)))))))))
(math-defsimplify calcFunc-cosh
(or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh)
(list '* (list 'calcFunc-cosh (list '* (1- n) a))
(list 'calcFunc-cosh a))
(list '* (list 'calcFunc-sinh (list '* (1- n) a))
- (list 'calcFunc-sinh a))))))))
-)
+ (list 'calcFunc-sinh a)))))))))
(math-defsimplify calcFunc-tanh
(or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh)
(math-div (math-sub (list 'calcFunc-cosh (nth 1 m)) 1)
(list 'calcFunc-sinh (nth 1 m)))
(math-div (list 'calcFunc-sinh (nth 1 expr))
- (list 'calcFunc-cosh (nth 1 expr)))))))
-)
+ (list 'calcFunc-cosh (nth 1 expr))))))))
(math-defsimplify calcFunc-arcsin
(or (and (math-looks-negp (nth 1 expr))
(and math-living-dangerously
(eq (car-safe (nth 1 expr)) 'calcFunc-cos)
(math-sub (math-quarter-circle t)
- (nth 1 (nth 1 expr)))))
-)
+ (nth 1 (nth 1 expr))))))
(math-defsimplify calcFunc-arccos
(or (and (eq (nth 1 expr) 0)
(and math-living-dangerously
(eq (car-safe (nth 1 expr)) 'calcFunc-sin)
(math-sub (math-quarter-circle t)
- (nth 1 (nth 1 expr)))))
-)
+ (nth 1 (nth 1 expr))))))
(math-defsimplify calcFunc-arctan
(or (and (math-looks-negp (nth 1 expr))
(math-div (math-half-circle t) 4))
(and math-living-dangerously
(eq (car-safe (nth 1 expr)) 'calcFunc-tan)
- (nth 1 (nth 1 expr))))
-)
+ (nth 1 (nth 1 expr)))))
(math-defsimplify calcFunc-arcsinh
(or (and (math-looks-negp (nth 1 expr))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-sinh)
(or math-living-dangerously
(math-known-realp (nth 1 (nth 1 expr))))
- (nth 1 (nth 1 expr))))
-)
+ (nth 1 (nth 1 expr)))))
(math-defsimplify calcFunc-arccosh
(and (eq (car-safe (nth 1 expr)) 'calcFunc-cosh)
(or math-living-dangerously
(math-known-realp (nth 1 (nth 1 expr))))
- (nth 1 (nth 1 expr)))
-)
+ (nth 1 (nth 1 expr))))
(math-defsimplify calcFunc-arctanh
(or (and (math-looks-negp (nth 1 expr))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-tanh)
(or math-living-dangerously
(math-known-realp (nth 1 (nth 1 expr))))
- (nth 1 (nth 1 expr))))
-)
+ (nth 1 (nth 1 expr)))))
(math-defsimplify calcFunc-sqrt
- (math-simplify-sqrt)
-)
+ (math-simplify-sqrt))
(defun math-simplify-sqrt ()
(or (and (eq (car-safe (nth 1 expr)) 'frac)
(math-mul
out
(list 'calcFunc-sqrt
- (math-mul sums rest)))))))))))
-)
+ (math-mul sums rest))))))))))))
;;; Rather than factoring x into primes, just check for the first ten primes.
(defun math-squared-factor (x)
(setq x (car res)
fac (math-mul fac (car prsqr)))
(setq prsqr (cdr prsqr))))
- fac))
-)
+ fac)))
(math-defsimplify calcFunc-exp
- (math-simplify-exp (nth 1 expr))
-)
+ (math-simplify-exp (nth 1 expr)))
(defun math-simplify-exp (x)
(or (and (eq (car-safe x) 'calcFunc-ln)
(and n
(setq s (math-known-sin (car n) (nth 1 n) 120 0))
(setq c (math-known-sin (car n) (nth 1 n) 120 300))
- (list '+ c (list '* s '(var i var-i)))))))
-)
+ (list '+ c (list '* s '(var i var-i))))))))
(math-defsimplify calcFunc-ln
(or (and (eq (car-safe (nth 1 expr)) 'calcFunc-exp)
'(/ (* (var pi var-pi) (var i var-i)) 2)))
(and (memq ips '(1 3))
(math-sub (list 'calcFunc-ln (math-neg ip))
- '(/ (* (var pi var-pi) (var i var-i)) 2)))))))
-)
+ '(/ (* (var pi var-pi) (var i var-i)) 2))))))))
(math-defsimplify ^
(math-simplify-pow))
(and (eq (math-quarter-integer (nth 2 expr)) 2)
(let ((temp (math-simplify-sqrt)))
(and temp
- (list '^ temp (math-mul (nth 2 expr) 2))))))
-)
+ (list '^ temp (math-mul (nth 2 expr) 2)))))))
(math-defsimplify calcFunc-log10
(and (eq (car-safe (nth 1 expr)) '^)
(math-equal-int (nth 1 (nth 1 expr)) 10)
(or math-living-dangerously
(math-known-realp (nth 2 (nth 1 expr))))
- (nth 2 (nth 1 expr)))
-)
+ (nth 2 (nth 1 expr))))
(math-defsimplify calcFunc-erf
(or (and (math-looks-negp (nth 1 expr))
(math-neg (list 'calcFunc-erf (math-neg (nth 1 expr)))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-conj)
- (list 'calcFunc-conj (list 'calcFunc-erf (nth 1 (nth 1 expr))))))
-)
+ (list 'calcFunc-conj (list 'calcFunc-erf (nth 1 (nth 1 expr)))))))
(math-defsimplify calcFunc-erfc
(or (and (math-looks-negp (nth 1 expr))
(math-sub 2 (list 'calcFunc-erfc (math-neg (nth 1 expr)))))
(and (eq (car-safe (nth 1 expr)) 'calcFunc-conj)
- (list 'calcFunc-conj (list 'calcFunc-erfc (nth 1 (nth 1 expr))))))
-)
+ (list 'calcFunc-conj (list 'calcFunc-erfc (nth 1 (nth 1 expr)))))))
(defun math-linear-in (expr term &optional always)
(p (math-is-polynomial expr term 1)))
(and (cdr p)
p))
- (and always (list expr 0)))
-)
+ (and always (list expr 0))))
(defun math-multiple-of (expr term)
(let ((p (math-linear-in expr term)))
(and p
(math-zerop (car p))
- (nth 1 p)))
-)
+ (nth 1 p))))
+; not perfect, but it'll do
(defun math-integer-plus (expr)
(cond ((Math-integerp expr)
(list 0 expr))
(Math-integerp (nth 2 expr)))
(list (nth 1 expr)
(if (eq (car expr) '+) (nth 2 expr) (math-neg (nth 2 expr)))))
- (t nil)) ; not perfect, but it'll do
-)
+ (t nil)))
(defun math-is-linear (expr &optional always)
(let ((offset nil)
(if offset
(list offset (or (car coef) 1) (or (nth 1 coef) expr))
(if coef
- (cons 0 coef))))
-)
+ (cons 0 coef)))))
(defun math-is-multiple (expr &optional always)
(or (if (eq (car-safe expr) '*)
(and (eq always 1)
(list expr 1))
(and always
- (list 1 expr))))
-)
+ (list 1 expr)))))
(defun calcFunc-lin (expr &optional var)
(if var
(list 'vec (car res) (nth 1 res) var))
(let ((res (math-is-linear expr t)))
(or res (math-reject-arg expr "Linear term expected"))
- (cons 'vec res)))
-)
+ (cons 'vec res))))
(defun calcFunc-linnt (expr &optional var)
(if var
(list 'vec (car res) (nth 1 res) var))
(let ((res (math-is-linear expr)))
(or res (math-reject-arg expr "Linear term expected"))
- (cons 'vec res)))
-)
+ (cons 'vec res))))
(defun calcFunc-islin (expr &optional var)
(if (and (Math-objvecp expr) (not var))
0
(calcFunc-lin expr var)
- 1)
-)
+ 1))
(defun calcFunc-islinnt (expr &optional var)
(if (Math-objvecp expr)
0
(calcFunc-linnt expr var)
- 1)
-)
+ 1))
(setq num (+ num (or (math-expr-contains-count
(car expr) thing) 0))))
(and (> num 0)
- num))))
-)
+ num)))))
(defun math-expr-contains (expr thing)
(cond ((equal expr thing) 1)
(t
(while (and (setq expr (cdr expr))
(not (math-expr-contains (car expr) thing))))
- expr))
-)
+ expr)))
;;; Return non-nil if any variable of thing occurs in expr.
(defun math-expr-depends (expr thing)
(math-expr-contains expr thing))
(while (and (setq thing (cdr thing))
(not (math-expr-depends expr (car thing)))))
- thing)
-)
+ thing))
;;; Substitute all occurrences of old for new in expr (non-destructive).
(defun math-expr-subst (expr old new)
- (math-expr-subst-rec expr)
-)
-(fset 'calcFunc-subst (symbol-function 'math-expr-subst))
+ (math-expr-subst-rec expr))
+
+(defalias 'calcFunc-subst 'math-expr-subst)
(defun math-expr-subst-rec (expr)
(cond ((equal expr old) new)
(math-expr-subst-rec (nth 2 expr)))))
(t
(cons (car expr)
- (mapcar 'math-expr-subst-rec (cdr expr)))))
-)
+ (mapcar 'math-expr-subst-rec (cdr expr))))))
;;; Various measures of the size of an expression.
(defun math-expr-weight (expr)
(let ((w 1))
(while (setq expr (cdr expr))
(setq w (+ w (math-expr-weight (car expr)))))
- w))
-)
+ w)))
(defun math-expr-height (expr)
(if (Math-primp expr)
(let ((h 0))
(while (setq expr (cdr expr))
(setq h (max h (math-expr-height (car expr)))))
- (1+ h)))
-)
+ (1+ h))))
(if (cdr p)
(math-normalize ; fix selection bug
(math-build-polynomial-expr p base))
- expr))
-)
+ expr)))
;;; If expr is of the form "a + bx + cx^2 + ...", return the list (a b c ...),
;;; else return nil if not in polynomial form. If "loose", coefficients
(poly (math-is-poly-rec expr math-poly-neg-powers)))
(and (or (null degree)
(<= (length poly) (1+ degree)))
- poly))
-)
+ poly)))
(defun math-is-poly-rec (expr negpow)
(math-poly-simplify
(and (or (not (math-poly-depends expr var))
loose)
(not (eq (car expr) 'vec))
- (list expr))))
-)
+ (list expr)))))
;;; Check if expr is a polynomial in var; if so, return its degree.
(defun math-polynomial-p (expr var)
(let ((p1 (math-polynomial-p (nth 1 expr) var)))
(and p1 (* p1 (nth 2 expr)))))
((math-poly-depends expr var) nil)
- (t 0))
-)
+ (t 0)))
(defun math-poly-depends (expr var)
(if math-poly-base-variable
(math-expr-contains expr math-poly-base-variable)
- (math-expr-depends expr var))
-)
+ (math-expr-depends expr var)))
;;; Find the variable (or sub-expression) which is the base of polynomial expr.
(defun math-polynomial-base (mpb-top-expr &optional mpb-pred)
(or (let ((const-ok nil))
(math-polynomial-base-rec mpb-top-expr))
(let ((const-ok t))
- (math-polynomial-base-rec mpb-top-expr)))
-)
+ (math-polynomial-base-rec mpb-top-expr))))
(defun math-polynomial-base-rec (mpb-expr)
(and (not (Math-objvecp mpb-expr))
(math-polynomial-base-rec '(var e var-e)))
(and (or const-ok (math-expr-contains-vars mpb-expr))
(funcall mpb-pred mpb-expr)
- mpb-expr)))
-)
+ mpb-expr))))
;;; Return non-nil if expr refers to any variables.
(defun math-expr-contains-vars (expr)
(progn
(while (and (setq expr (cdr expr))
(not (math-expr-contains-vars (car expr)))))
- expr)))
-)
+ expr))))
;;; Simplify a polynomial in list form by stripping off high-end zeros.
;;; This always leaves the constant part, i.e., nil->nil and nonnil->nonnil.
(Math-zerop (nth (1- (length pp)) pp)))
(setcdr (nthcdr (- (length pp) 2) pp) nil))
pp)
- p))
-)
+ p)))
;;; Compute ac*a + bc*b for polynomials in list form a, b and
;;; coefficients ac, bc. Result may be unsimplified.
(and (or a b)
(cons (math-add (math-mul (or (car a) 0) ac)
(math-mul (or (car b) 0) bc))
- (math-poly-mix (cdr a) ac (cdr b) bc)))
-)
+ (math-poly-mix (cdr a) ac (cdr b) bc))))
(defun math-poly-zerop (a)
(or (null a)
- (and (null (cdr a)) (Math-zerop (car a))))
-)
+ (and (null (cdr a)) (Math-zerop (car a)))))
;;; Multiply two polynomials in list form.
(defun math-poly-mul (a b)
(and a b
(math-poly-mix b (car a)
- (math-poly-mul (cdr a) (cons 0 b)) 1))
-)
+ (math-poly-mul (cdr a) (cons 0 b)) 1)))
;;; Build an expression from a polynomial list.
(defun math-build-polynomial-expr (p var)
(car rp))
(math-pow var n))))))
accum))
- 0)
-)
+ 0))
(defun math-to-simple-fraction (f)
(< (nth 1 f) 1000)
(math-make-frac (nth 1 f)
(math-scale-int 1 (- (nth 2 f)))))))
- f)
-)
+ f))
+;;; calc-alg.el ends here