int tab_delete_first(\7f91,1638
int tab_count_words(\7f103,1820
\f
-c-src/dostorture.c,198
-(*tag1 \7ftag1\ 118,468
-#define notag2 \7f26,577
-(*tag2 \7ftag2\ 129,657
-(*tag3 \7ftag3\ 139,809
-#define notag4 \7f45,904
-(*tag4 \7ftag4\ 148,1001
-tag5 \7f57,1136
-tag6 \7f66,1272
-int pp1(\7f74,1389
-pp2\7f87,1504
-pp3(\7f100,1616
-\f
c-src/emacs/src/gmalloc.c,7311
#define USE_PTHREAD\7f25,1002
#undef get_current_dir_name\7f33,1126
class AU { T x;\7fAU::x\ 153,1716
class B<\7fB\ 154,1735
class B<int> { void f(\7fB::f\ 154,1735
-const A::B::T& abt \7f55,1766
-class A \7f56,1792
-class A { class B \7fA::B\ 156,1792
-class A { class B { int f(\7fA::B::f\ 156,1792
-class A \7f57,1827
- int get_data(\7fA::get_data\ 158,1837
- A operator+(\7fA::operator+\ 159,1861
-is_muldiv_operation(\7f61,1888
-domain foo \7f68,1956
- void f(\7ffoo::f\ 169,1969
-void A::A(\7f72,1990
-struct A \7f73,2005
-struct A { A(\7fA::A\ 173,2005
-struct B \7f74,2023
-struct B { B(\7fB::B\ 174,2023
-void B::B(\7f75,2042
-void BE_Node::BE_Node(\7f76,2057
-class BE_Node \7f77,2084
-struct foo \7f79,2103
- int x;\7ffoo::x\ 180,2116
-class test \7f86,2157
- int f(\7ftest::f\ 187,2170
- int ff(\7ftest::ff\ 189,2232
- int g(\7ftest::g\ 190,2255
-class AST_Root \7f92,2279
-class AST_Root;\7f96,2328
-AST_ConcreteType::AST_ConcreteType(\7f99,2394
-AST_Array::AST_Array(\7f107,2533
- void f(\7f::f\ 1115,2734
-struct A \7f117,2754
- ~A(\7fA::~A\ 1118,2765
-A::~A(\7f120,2778
-struct B \7f122,2790
- ~B(\7fB::~B\ 1123,2801
-enum {dog,\7f::dog\ 1126,2818
-enum {dog, cat}\7f::cat\ 1126,2818
-enum {dog, cat} animals;\7f126,2818
-struct {int teats;\7f::teats\ 1127,2843
-struct {int teats;} cow;\7f127,2843
-class Boo \7f129,2869
- enum {dog,\7fBoo::dog\ 1130,2881
- enum {dog, cat}\7fBoo::cat\ 1130,2881
- enum {dog, cat} animals;\7fBoo::animals\ 1130,2881
- struct {int treats;\7fBoo::treats\ 1131,2910
- struct {int treats;} cow;\7fBoo::cow\ 1131,2910
- int i,\7fBoo::i\ 1132,2940
- int i,a,\7fBoo::a\ 1132,2940
- int i,a,b;\7fBoo::b\ 1132,2940
- foo(\7fBoo::foo\ 1133,2955
- Boo(\7fBoo::Boo\ 1137,2996
- Boo(\7fBoo::Boo\ 1138,3053
-Boo::Boo(\7f141,3071
-typedef int should_see_this_one_enclosed_in_extern_C;\7f149,3156
-typedef int (*should_see_this_function_pointer)\7fshould_see_this_function_pointer\ 1153,3229
-typedef int should_see_this_array_type[\7fshould_see_this_array_type\ 1156,3311
+const A::B::T& abt \7f55,1765
+class A \7f56,1791
+class A { class B \7fA::B\ 156,1791
+class A { class B { int f(\7fA::B::f\ 156,1791
+class A \7f57,1826
+ int get_data(\7fA::get_data\ 158,1836
+ A operator+(\7fA::operator+\ 159,1860
+is_muldiv_operation(\7f61,1887
+domain foo \7f68,1955
+ void f(\7ffoo::f\ 169,1968
+void A::A(\7f72,1989
+struct A \7f73,2004
+struct A { A(\7fA::A\ 173,2004
+struct B \7f74,2022
+struct B { B(\7fB::B\ 174,2022
+void B::B(\7f75,2041
+void BE_Node::BE_Node(\7f76,2056
+class BE_Node \7f77,2083
+struct foo \7f79,2102
+ int x;\7ffoo::x\ 180,2115
+class test \7f86,2156
+ int f(\7ftest::f\ 187,2169
+ int ff(\7ftest::ff\ 189,2231
+ int g(\7ftest::g\ 190,2254
+class AST_Root \7f92,2278
+class AST_Root;\7f96,2327
+AST_ConcreteType::AST_ConcreteType(\7f99,2393
+AST_Array::AST_Array(\7f107,2532
+ void f(\7f::f\ 1115,2733
+struct A \7f117,2753
+ ~A(\7fA::~A\ 1118,2764
+A::~A(\7f120,2777
+struct B \7f122,2789
+ ~B(\7fB::~B\ 1123,2800
+enum {dog,\7f::dog\ 1126,2817
+enum {dog, cat}\7f::cat\ 1126,2817
+enum {dog, cat} animals;\7f126,2817
+struct {int teats;\7f::teats\ 1127,2842
+struct {int teats;} cow;\7f127,2842
+class Boo \7f129,2868
+ enum {dog,\7fBoo::dog\ 1130,2880
+ enum {dog, cat}\7fBoo::cat\ 1130,2880
+ enum {dog, cat} animals;\7fBoo::animals\ 1130,2880
+ struct {int treats;\7fBoo::treats\ 1131,2909
+ struct {int treats;} cow;\7fBoo::cow\ 1131,2909
+ int i,\7fBoo::i\ 1132,2939
+ int i,a,\7fBoo::a\ 1132,2939
+ int i,a,b;\7fBoo::b\ 1132,2939
+ foo(\7fBoo::foo\ 1133,2954
+ Boo(\7fBoo::Boo\ 1137,2995
+ Boo(\7fBoo::Boo\ 1138,3052
+Boo::Boo(\7f141,3070
+typedef int should_see_this_one_enclosed_in_extern_C;\7f149,3155
+typedef int (*should_see_this_function_pointer)\7fshould_see_this_function_pointer\ 1153,3228
+typedef int should_see_this_array_type[\7fshould_see_this_array_type\ 1156,3310
\f
cp-src/burton.cpp,103
::dummy::dummy test::dummy1(\7f1,0
Ultime notizie dall'associazione\7f63,2030
\f
html-src/algrthms.html,467
-Tutorial on Convolutional Coding with Viterbi Decoding--Description of the Data Generation, Convolutional Encoding, Channel Mapping and AWGN, and Quantizing Algorithms\7f7,282
-Description\7falgorithms\ 110,486
-Generating the Data\7fgenalgorithm\ 148,2000
-Convolutionally\7fconalgorithm\ 155,2517
-Next\7fstatetable\ 1262,11592
-Output\7foutputtable\ 1350,13920
-Mapping the Channel Symbols\7fmapping\ 1433,16218
-Adding Noise to the\7faddnoise\ 1439,16612
-Quantizing the Received\7fquantizing\ 1469,19105
+Tutorial on Convolutional Coding with Viterbi Decoding--Description of the Data Generation, Convolutional Encoding, Channel Mapping and AWGN, and Quantizing Algorithms\7f7,271
+Description\7falgorithms\ 110,472
+Generating the Data\7fgenalgorithm\ 148,1948
+Convolutionally\7fconalgorithm\ 155,2458
+Next\7fstatetable\ 1262,11326
+Output\7foutputtable\ 1350,13566
+Mapping the Channel Symbols\7fmapping\ 1433,15781
+Adding Noise to the\7faddnoise\ 1439,16169
+Quantizing the Received\7fquantizing\ 1469,18632
\f
html-src/software.html,439
Francesco Potortì Software Page\7f9,280
-<!doctype html public "-//w3c//dtd html 4.0 transitional//en">\r
-<html>\r
-<head>\r
- <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">\r
- <meta name="Author" content="Chip Fleming">\r
- <meta name="GENERATOR" content="Mozilla/4.7 [en] (Win95; U) [Netscape]">\r
- <title>Tutorial on Convolutional Coding with Viterbi Decoding--Description of the Data Generation, Convolutional Encoding, Channel Mapping and AWGN, and Quantizing Algorithms</title>\r
-</head>\r
-<body>\r
-<a NAME="algorithms"></a><b><font face="Arial"><font size=+1>Description\r
-of the Algorithms (Part 1)</font></font></b>\r
-<p> The steps involved in simulating a communication channel using\r
-convolutional encoding and Viterbi decoding are as follows:\r
-<ul>\r
-<li>\r
-<a href="#genalgorithm">Generate the data</a> to be transmitted through\r
-the channel-result is binary data bits</li>\r
-\r
-<li>\r
-<a href="#conalgorithm">Convolutionally encode</a> the data-result is channel\r
-symbols</li>\r
-\r
-<li>\r
-<a href="#mapping">Map the one/zero channel symbols</a> onto an antipodal\r
-baseband signal, producing transmitted channel symbols</li>\r
-\r
-<li>\r
-<a href="#addnoise">Add noise</a> to the transmitted channel symbols-result\r
-is received channel symbols</li>\r
-\r
-<li>\r
-<a href="#quantizing">Quantize</a> the received channel levels-one bit\r
-quantization is called hard-decision, and two to n bit quantization is\r
-called soft-decision (n is usually three or four)</li>\r
-\r
-<li>\r
-<a href="algrthms2.html">Perform Viterbi decoding</a> on the quantized\r
-received channel symbols-result is again binary data bits</li>\r
-\r
-<li>\r
-Compare the decoded data bits to the transmitted data bits and count the\r
-number of errors.</li>\r
-</ul>\r
-<i>Many of you will notice that I left out the steps of modulating the\r
-channel symbols onto a transmitted carrier, and then demodulating the received\r
-carrier to recover the channel symbols. You're right, but we can accurately\r
-model the effects of AWGN even though we bypass those steps.</i>\r
-<p><a NAME="genalgorithm"></a><b><i><font face="Arial">Generating the Data</font></i></b>\r
-<p>Generating the data to be transmitted through the channel can be accomplished\r
-quite simply by using a random number generator. One that produces a uniform\r
-distribution of numbers on the interval 0 to a maximum value is provided\r
-in C: <tt>rand ()</tt>. Using this function, we can say that any value\r
-less than half of the maximum value is a zero; any value greater than or\r
-equal to half of the maximum value is a one.\r
-<p><a NAME="conalgorithm"></a><b><i><font face="Arial">Convolutionally\r
-Encoding the Data</font></i></b>\r
-<p>Convolutionally encoding the data is accomplished using a shift register\r
-and associated combinatorial logic that performs modulo-two addition. (A\r
-shift register is merely a chain of flip-flops wherein the output of the\r
-nth flip-flop is tied to the input of the (n+1)th flip-flop. Every time\r
-the active edge of the clock occurs, the input to the flip-flop is clocked\r
-through to the output, and thus the data are shifted over one stage.) The\r
-combinatorial logic is often in the form of cascaded exclusive-or gates.\r
-As a reminder, exclusive-or gates are two-input, one-output gates often\r
-represented by the logic symbol shown below,\r
-<center>\r
-<p><img SRC="figs/xor_gate.gif" ALT="exclusive-or gate symbol" height=64 width=93></center>\r
-\r
-<p>that implement the following truth-table:\r
-<br> \r
-<br> \r
-<center><table BORDER CELLPADDING=7 WIDTH="218" >\r
-<tr>\r
-<td VALIGN=TOP WIDTH="28%">\r
-<center><b><tt>Input A</tt></b></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="27%">\r
-<center><b><tt>Input B</tt></b></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="45%">\r
-<center><b><tt>Output</tt></b>\r
-<p><b><tt>(A xor B)</tt></b></center>\r
-</td>\r
-</tr>\r
-\r
-<tr>\r
-<td VALIGN=TOP WIDTH="28%">\r
-<center><tt>0</tt></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="27%">\r
-<center><tt>0</tt></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="45%">\r
-<center><tt>0</tt></center>\r
-</td>\r
-</tr>\r
-\r
-<tr>\r
-<td VALIGN=TOP WIDTH="28%">\r
-<center><tt>0</tt></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="27%">\r
-<center><tt>1</tt></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="45%">\r
-<center><tt>1</tt></center>\r
-</td>\r
-</tr>\r
-\r
-<tr>\r
-<td VALIGN=TOP WIDTH="28%">\r
-<center><tt>1</tt></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="27%">\r
-<center><tt>0</tt></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="45%">\r
-<center><tt>1</tt></center>\r
-</td>\r
-</tr>\r
-\r
-<tr>\r
-<td VALIGN=TOP WIDTH="28%">\r
-<center><tt>1</tt></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="27%">\r
-<center><tt>1</tt></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="45%">\r
-<center><tt>0</tt></center>\r
-</td>\r
-</tr>\r
-</table></center>\r
-\r
-<p>The exclusive-or gate performs modulo-two addition of its inputs. When\r
-you cascade q two-input exclusive-or gates, with the output of the first\r
-one feeding one of the inputs of the second one, the output of the second\r
-one feeding one of the inputs of the third one, etc., the output of the\r
-last one in the chain is the modulo-two sum of the q + 1 inputs.\r
-<p>Another way to illustrate the modulo-two adder, and the way that is\r
-most commonly used in textbooks, is as a circle with a + symbol inside,\r
-thus:\r
-<center>\r
-<p><img SRC="figs/ringsum.gif" ALT="modulo-two adder symbol" height=48 width=48></center>\r
-\r
-<p>Now that we have the two basic components of the convolutional encoder\r
-(flip-flops comprising the shift register and exclusive-or gates comprising\r
-the associated modulo-two adders) defined, let's look at a picture of a\r
-convolutional encoder for a rate 1/2, K = 3, m = 2 code:\r
-<br> \r
-<br> \r
-<br>\r
-<center>\r
-<p><img SRC="figs/ce_7_5_a.gif" ALT="rate 1/2 K = 3 (7, 5) convolutional encoder" height=232 width=600></center>\r
-\r
-<p>In this encoder, data bits are provided at a rate of k bits per second.\r
-Channel symbols are output at a rate of n = 2k symbols per second. The\r
-input bit is stable during the encoder cycle. The encoder cycle starts\r
-when an input clock edge occurs. When the input clock edge occurs, the\r
-output of the left-hand flip-flop is clocked into the right-hand flip-flop,\r
-the previous input bit is clocked into the left-hand flip-flop, and a new\r
-input bit becomes available. Then the outputs of the upper and lower modulo-two\r
-adders become stable. The output selector (SEL A/B block) cycles through\r
-two states-in the first state, it selects and outputs the output of the\r
-upper modulo-two adder; in the second state, it selects and outputs the\r
-output of the lower modulo-two adder.\r
-<p>The encoder shown above encodes the K = 3, (7, 5) convolutional code.\r
-The octal numbers 7 and 5 represent the code generator polynomials, which\r
-when read in binary (111<sub>2</sub> and 101<sub>2</sub>) correspond to\r
-the shift register connections to the upper and lower modulo-two adders,\r
-respectively. This code has been determined to be the "best" code for rate\r
-1/2, K = 3. It is the code I will use for the remaining discussion and\r
-examples, for reasons that will become readily apparent when we get into\r
-the Viterbi decoder algorithm.\r
-<p>Let's look at an example input data stream, and the corresponding output\r
-data stream:\r
-<p>Let the input sequence be 010111001010001<sub>2</sub>.\r
-<p>Assume that the outputs of both of the flip-flops in the shift register\r
-are initially cleared, i.e. their outputs are zeroes. The first clock cycle\r
-makes the first input bit, a zero, available to the encoder. The flip-flop\r
-outputs are both zeroes. The inputs to the modulo-two adders are all zeroes,\r
-so the output of the encoder is 00<sub>2</sub>.\r
-<p>The second clock cycle makes the second input bit available to the encoder.\r
-The left-hand flip-flop clocks in the previous bit, which was a zero, and\r
-the right-hand flip-flop clocks in the zero output by the left-hand flip-flop.\r
-The inputs to the top modulo-two adder are 100<sub>2</sub>, so the output\r
-is a one. The inputs to the bottom modulo-two adder are 10<sub>2</sub>,\r
-so the output is also a one. So the encoder outputs 11<sub>2</sub> for\r
-the channel symbols.\r
-<p>The third clock cycle makes the third input bit, a zero, available to\r
-the encoder. The left-hand flip-flop clocks in the previous bit, which\r
-was a one, and the right-hand flip-flop clocks in the zero from two bit-times\r
-ago. The inputs to the top modulo-two adder are 010<sub>2</sub>, so the\r
-output is a one. The inputs to the bottom modulo-two adder are 00<sub>2</sub>,\r
-so the output is zero. So the encoder outputs 10<sub>2</sub> for the channel\r
-symbols.\r
-<p>And so on. The timing diagram shown below illustrates the process:\r
-<br> \r
-<br> \r
-<br>\r
-<center>\r
-<p><img SRC="figs/ce_td.gif" ALT="timing diagram for rate 1/2 convolutional encoder" height=322 width=600></center>\r
-\r
-<p><br>\r
-<br>\r
-<br>\r
-<p>After all of the inputs have been presented to the encoder, the output\r
-sequence will be:\r
-<p>00 11 10 00 01 10 01 11 11 10 00 10 11 00 11<sub>2</sub>.\r
-<p>Notice that I have paired the encoder outputs-the first bit in each\r
-pair is the output of the upper modulo-two adder; the second bit in each\r
-pair is the output of the lower modulo-two adder.\r
-<p>You can see from the structure of the rate 1/2 K = 3 convolutional encoder\r
-and from the example given above that each input bit has an effect on three\r
-successive pairs of output symbols. That is an extremely important point\r
-and that is what gives the convolutional code its error-correcting power.\r
-The reason why will become evident when we get into the Viterbi decoder\r
-algorithm.\r
-<p>Now if we are only going to send the 15 data bits given above, in order\r
-for the last bit to affect three pairs of output symbols, we need to output\r
-two more pairs of symbols. This is accomplished in our example encoder\r
-by clocking the convolutional encoder flip-flops two ( = m) more times,\r
-while holding the input at zero. This is called "flushing" the encoder,\r
-and results in two more pairs of output symbols. The final binary output\r
-of the encoder is thus 00 11 10 00 01 10 01 11 11 10 00 10 11 00 11 10\r
-11<sub>2</sub>. If we don't perform the flushing operation, the last m\r
-bits of the message have less error-correction capability than the first\r
-through (m - 1)th bits had. This is a pretty important thing to remember\r
-if you're going to use this FEC technique in a burst-mode environment.\r
-So's the step of clearing the shift register at the beginning of each burst.\r
-The encoder must start in a known state and end in a known state for the\r
-decoder to be able to reconstruct the input data sequence properly.\r
-<p>Now, let's look at the encoder from another perspective. You can think\r
-of the encoder as a simple state machine. The example encoder has two bits\r
-of memory, so there are four possible states. Let's give the left-hand\r
-flip-flop a binary weight of 2<sup>1</sup>, and the right-hand flip-flop\r
-a binary weight of 2<sup>0</sup>. Initially, the encoder is in the all-zeroes\r
-state. If the first input bit is a zero, the encoder stays in the all zeroes\r
-state at the next clock edge. But if the input bit is a one, the encoder\r
-transitions to the 10<sub>2</sub> state at the next clock edge. Then, if\r
-the next input bit is zero, the encoder transitions to the 01<sub>2</sub>\r
-state, otherwise, it transitions to the 11<sub>2</sub> state. The following\r
-table gives the next state given the current state and the input, with\r
-the states given in binary:\r
-<br> \r
-<br> \r
-<center><table BORDER CELLSPACING=2 CELLPADDING=7 WIDTH="282" >\r
-<tr>\r
-<td VALIGN=TOP WIDTH="33%"><font face="Arial"><font size=-1> </font></font></td>\r
-\r
-<td VALIGN=TOP COLSPAN="2" WIDTH="67%">\r
-<center><a NAME="statetable"></a><b><font face="Arial"><font size=-1>Next\r
-State, if </font></font></b></center>\r
-</td>\r
-</tr>\r
-\r
-<tr>\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><b><font face="Arial"><font size=-1>Current State</font></font></b></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><b><font face="Arial"><font size=-1>Input = 0:</font></font></b></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><b><font face="Arial"><font size=-1>Input = 1:</font></font></b></center>\r
-</td>\r
-</tr>\r
-\r
-<tr>\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>00</font></font></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>00</font></font></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>10</font></font></center>\r
-</td>\r
-</tr>\r
-\r
-<tr>\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>01</font></font></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>00</font></font></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>10</font></font></center>\r
-</td>\r
-</tr>\r
-\r
-<tr>\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>10</font></font></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>01</font></font></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>11</font></font></center>\r
-</td>\r
-</tr>\r
-\r
-<tr>\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>11</font></font></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>01</font></font></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>11</font></font></center>\r
-</td>\r
-</tr>\r
-</table></center>\r
-\r
-<br> \r
-<p>The above table is often called a state transition table. We'll refer\r
-to it as the <tt>next state</tt> table.<tt> </tt>Now let us look at a table\r
-that lists the channel output symbols, given the current state and the\r
-input data, which we'll refer to as the <tt>output</tt> table:\r
-<br> \r
-<br> \r
-<center><table BORDER CELLSPACING=2 CELLPADDING=7 WIDTH="282" >\r
-<tr>\r
-<td VALIGN=TOP WIDTH="33%"></td>\r
-\r
-<td VALIGN=TOP COLSPAN="2" WIDTH="67%">\r
-<center><a NAME="outputtable"></a><b><font face="Arial"><font size=-1>Output\r
-Symbols, if</font></font></b></center>\r
-</td>\r
-</tr>\r
-\r
-<tr>\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><b><font face="Arial"><font size=-1>Current State</font></font></b></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><b><font face="Arial"><font size=-1>Input = 0:</font></font></b></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><b><font face="Arial"><font size=-1>Input = 1:</font></font></b></center>\r
-</td>\r
-</tr>\r
-\r
-<tr>\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>00</font></font></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>00</font></font></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>11</font></font></center>\r
-</td>\r
-</tr>\r
-\r
-<tr>\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>01</font></font></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>11</font></font></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>00</font></font></center>\r
-</td>\r
-</tr>\r
-\r
-<tr>\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>10</font></font></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>10</font></font></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>01</font></font></center>\r
-</td>\r
-</tr>\r
-\r
-<tr>\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>11</font></font></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>01</font></font></center>\r
-</td>\r
-\r
-<td VALIGN=TOP WIDTH="33%">\r
-<center><font face="Arial"><font size=-1>10</font></font></center>\r
-</td>\r
-</tr>\r
-</table></center>\r
-\r
-<br> \r
-<p>You should now see that with these two tables, you can completely describe\r
-the behavior of the example rate 1/2, K = 3 convolutional encoder. Note\r
-that both of these tables have 2<sup>(K - 1)</sup> rows, and 2<sup>k</sup>\r
-columns, where K is the constraint length and k is the number of bits input\r
-to the encoder for each cycle. These two tables will come in handy when\r
-we start discussing the Viterbi decoder algorithm.\r
-<p><a NAME="mapping"></a><b><i><font face="Arial">Mapping the Channel Symbols\r
-to Signal Levels</font></i></b>\r
-<p>Mapping the one/zero output of the convolutional encoder onto an antipodal\r
-baseband signaling scheme is simply a matter of translating zeroes to +1s\r
-and ones to -1s. This can be accomplished by performing the operation y\r
-= 1 - 2x on each convolutional encoder output symbol.\r
-<p><a NAME="addnoise"></a><b><i><font face="Arial">Adding Noise to the\r
-Transmitted Symbols</font></i></b>\r
-<p>Adding noise to the transmitted channel symbols produced by the convolutional\r
-encoder involves generating Gaussian random numbers, scaling the numbers\r
-according to the desired energy per symbol to noise density ratio, E<sub>s</sub>/N<sub>0</sub>,\r
-and adding the scaled Gaussian random numbers to the channel symbol values.\r
-<p>For the uncoded channel, E<sub>s</sub>/N<sub>0 </sub>= E<sub>b</sub>/N<sub>0</sub>,\r
-since there is one channel symbol per bit. However, for the coded\r
-channel, E<sub>s</sub>/N<sub>0 </sub>= E<sub>b</sub>/N<sub>0</sub> + 10log<sub>10</sub>(k/n). \r
-For example, for rate 1/2 coding, E<sub>s</sub>/N<sub>0 </sub>= E<sub>b</sub>/N<sub>0</sub>\r
-+ 10log<sub>10</sub>(1/2) = E<sub>b</sub>/N<sub>0</sub> - 3.01 dB. \r
-Similarly, for rate 2/3 coding, E<sub>s</sub>/N<sub>0 </sub>= E<sub>b</sub>/N<sub>0</sub>\r
-+ 10log<sub>10</sub>(2/3) = E<sub>b</sub>/N<sub>0</sub> - 1.76 dB.\r
-<p>The Gaussian random number generator is the only interesting part of\r
-this task. C only provides a uniform random number generator, <tt>rand()</tt>.\r
-In order to obtain Gaussian random numbers, we take advantage of relationships\r
-between uniform, Rayleigh, and Gaussian distributions:\r
-<p>Given a uniform random variable U, a Rayleigh random variable R can\r
-be obtained by:\r
-<p><img SRC="figs/eqn01.gif" ALT="equation for Rayleigh random deviate given uniform random deviate" height=30 width=297 align=ABSCENTER>\r
-<p>where <img SRC="figs/eqn02.gif" height=24 width=24 align=ABSCENTER>is\r
-the variance of the Rayleigh random variable, and given R and a second\r
-uniform random variable V, two Gaussian random variables G and H can be\r
-obtained by\r
-<p><i>G</i> = <i>R</i> cos <i>U</i> and <i>H</i> = <i>R</i> sin <i>V</i>.\r
-<p>In the AWGN channel, the signal is corrupted by additive noise, n(t),\r
-which has the power spectrum <i>No</i>/2 watts/Hz. The variance <img SRC="figs/eqn02.gif" ALT="variance" height=24 width=24 align=ABSBOTTOM>of\r
-this noise is equal to <img SRC="figs/eqn03.gif" ALT="noise density div by two" height=22 width=38 align=TEXTTOP>.\r
-If we set the energy per symbol <i>E<sub>s</sub></i> equal to 1, then <img SRC="figs/eqn04.gif" ALT="equation relating variance to SNR" height=28 width=110 align=ABSBOTTOM>.\r
-So <img SRC="figs/eqn05.gif" ALT="equation for AWGN st dev given SNR" height=28 width=139 align=ABSCENTER>.\r
-<p><a NAME="quantizing"></a><b><i><font face="Arial">Quantizing the Received\r
-Channel Symbols</font></i></b>\r
-<p>An ideal Viterbi decoder would work with infinite precision, or at least\r
-with floating-point numbers. In practical systems, we quantize the received\r
-channel symbols with one or a few bits of precision in order to reduce\r
-the complexity of the Viterbi decoder, not to mention the circuits that\r
-precede it. If the received channel symbols are quantized to one-bit precision\r
-(< 0V = 1, <u>></u> 0V = 0), the result is called hard-decision data.\r
-If the received channel symbols are quantized with more than one bit of\r
-precision, the result is called soft-decision data. A Viterbi decoder with\r
-soft decision data inputs quantized to three or four bits of precision\r
-can perform about 2 dB better than one working with hard-decision inputs.\r
-The usual quantization precision is three bits. More bits provide little\r
-additional improvement.\r
-<p>The selection of the quantizing levels is an important design decision\r
-because it can have a significant effect on the performance of the link.\r
-The following is a very brief explanation of one way to set those levels.\r
-Let's assume our received signal levels in the absence of noise are -1V\r
-= 1, +1V = 0. With noise, our received signal has mean +/- 1 and standard\r
-deviation <img SRC="figs/eqn05.gif" ALT="equation for AWGN st dev given SNR" height=28 width=139 align=ABSCENTER>.\r
-Let's use a uniform, three-bit quantizer having the input/output relationship\r
-shown in the figure below, where D is a decision level that we will calculate\r
-shortly:\r
-<center>\r
-<p><img SRC="figs/quantize.gif" ALT="8-level quantizer function plot" height=342 width=384></center>\r
-\r
-<p>The decision level, D, can be calculated according to the formula <img SRC="figs/eqn06.gif" ALT="equation for quantizer decision level" height=28 width=228 align=ABSCENTER>,\r
-where E<sub>s</sub>/N<sub>0</sub> is the energy per symbol to noise density\r
-ratio<i>. (The above figure was redrawn from Figure 2 of Advanced Hardware\r
-Architecture's ANRS07-0795, "Soft Decision Thresholds and Effects on Viterbi\r
-Performance". See the </i><a href="fecbiblio.html">bibliography</a><i> \r
-for a link to their web pages.)</i>\r
-<p>Click <a href="algrthms2.html">here</a> to proceed to the description\r
-of the Viterbi decoding algorithm itself...\r
-<p>Or click on one of the links below to go to the beginning of that section:\r
-<p> <a href="tutorial.html">Introduction</a>\r
-<br> <a href="algrthms2.html">Description of the Algorithms \r
-(Part 2)</a>\r
-<br> <a href="examples.html">Simulation Source Code Examples</a>\r
-<br> <a href="simrslts.html">Example Simulation Results</a>\r
-<br> <a href="fecbiblio.html">Bibliography</a>\r
-<br> <a href="tutorial.html#specapps">About Spectrum Applications...</a>\r
-<br> \r
-<br> \r
-<br>\r
-<br>\r
-<center>\r
-<p><img SRC="figs/stripe.gif" height=6 width=600></center>\r
-\r
-</body>\r
-</html>\r
+<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
+<html>
+<head>
+ <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+ <meta name="Author" content="Chip Fleming">
+ <meta name="GENERATOR" content="Mozilla/4.7 [en] (Win95; U) [Netscape]">
+ <title>Tutorial on Convolutional Coding with Viterbi Decoding--Description of the Data Generation, Convolutional Encoding, Channel Mapping and AWGN, and Quantizing Algorithms</title>
+</head>
+<body>
+<a NAME="algorithms"></a><b><font face="Arial"><font size=+1>Description
+of the Algorithms (Part 1)</font></font></b>
+<p> The steps involved in simulating a communication channel using
+convolutional encoding and Viterbi decoding are as follows:
+<ul>
+<li>
+<a href="#genalgorithm">Generate the data</a> to be transmitted through
+the channel-result is binary data bits</li>
+
+<li>
+<a href="#conalgorithm">Convolutionally encode</a> the data-result is channel
+symbols</li>
+
+<li>
+<a href="#mapping">Map the one/zero channel symbols</a> onto an antipodal
+baseband signal, producing transmitted channel symbols</li>
+
+<li>
+<a href="#addnoise">Add noise</a> to the transmitted channel symbols-result
+is received channel symbols</li>
+
+<li>
+<a href="#quantizing">Quantize</a> the received channel levels-one bit
+quantization is called hard-decision, and two to n bit quantization is
+called soft-decision (n is usually three or four)</li>
+
+<li>
+<a href="algrthms2.html">Perform Viterbi decoding</a> on the quantized
+received channel symbols-result is again binary data bits</li>
+
+<li>
+Compare the decoded data bits to the transmitted data bits and count the
+number of errors.</li>
+</ul>
+<i>Many of you will notice that I left out the steps of modulating the
+channel symbols onto a transmitted carrier, and then demodulating the received
+carrier to recover the channel symbols. You're right, but we can accurately
+model the effects of AWGN even though we bypass those steps.</i>
+<p><a NAME="genalgorithm"></a><b><i><font face="Arial">Generating the Data</font></i></b>
+<p>Generating the data to be transmitted through the channel can be accomplished
+quite simply by using a random number generator. One that produces a uniform
+distribution of numbers on the interval 0 to a maximum value is provided
+in C: <tt>rand ()</tt>. Using this function, we can say that any value
+less than half of the maximum value is a zero; any value greater than or
+equal to half of the maximum value is a one.
+<p><a NAME="conalgorithm"></a><b><i><font face="Arial">Convolutionally
+Encoding the Data</font></i></b>
+<p>Convolutionally encoding the data is accomplished using a shift register
+and associated combinatorial logic that performs modulo-two addition. (A
+shift register is merely a chain of flip-flops wherein the output of the
+nth flip-flop is tied to the input of the (n+1)th flip-flop. Every time
+the active edge of the clock occurs, the input to the flip-flop is clocked
+through to the output, and thus the data are shifted over one stage.) The
+combinatorial logic is often in the form of cascaded exclusive-or gates.
+As a reminder, exclusive-or gates are two-input, one-output gates often
+represented by the logic symbol shown below,
+<center>
+<p><img SRC="figs/xor_gate.gif" ALT="exclusive-or gate symbol" height=64 width=93></center>
+
+<p>that implement the following truth-table:
+<br>
+<br>
+<center><table BORDER CELLPADDING=7 WIDTH="218" >
+<tr>
+<td VALIGN=TOP WIDTH="28%">
+<center><b><tt>Input A</tt></b></center>
+</td>
+
+<td VALIGN=TOP WIDTH="27%">
+<center><b><tt>Input B</tt></b></center>
+</td>
+
+<td VALIGN=TOP WIDTH="45%">
+<center><b><tt>Output</tt></b>
+<p><b><tt>(A xor B)</tt></b></center>
+</td>
+</tr>
+
+<tr>
+<td VALIGN=TOP WIDTH="28%">
+<center><tt>0</tt></center>
+</td>
+
+<td VALIGN=TOP WIDTH="27%">
+<center><tt>0</tt></center>
+</td>
+
+<td VALIGN=TOP WIDTH="45%">
+<center><tt>0</tt></center>
+</td>
+</tr>
+
+<tr>
+<td VALIGN=TOP WIDTH="28%">
+<center><tt>0</tt></center>
+</td>
+
+<td VALIGN=TOP WIDTH="27%">
+<center><tt>1</tt></center>
+</td>
+
+<td VALIGN=TOP WIDTH="45%">
+<center><tt>1</tt></center>
+</td>
+</tr>
+
+<tr>
+<td VALIGN=TOP WIDTH="28%">
+<center><tt>1</tt></center>
+</td>
+
+<td VALIGN=TOP WIDTH="27%">
+<center><tt>0</tt></center>
+</td>
+
+<td VALIGN=TOP WIDTH="45%">
+<center><tt>1</tt></center>
+</td>
+</tr>
+
+<tr>
+<td VALIGN=TOP WIDTH="28%">
+<center><tt>1</tt></center>
+</td>
+
+<td VALIGN=TOP WIDTH="27%">
+<center><tt>1</tt></center>
+</td>
+
+<td VALIGN=TOP WIDTH="45%">
+<center><tt>0</tt></center>
+</td>
+</tr>
+</table></center>
+
+<p>The exclusive-or gate performs modulo-two addition of its inputs. When
+you cascade q two-input exclusive-or gates, with the output of the first
+one feeding one of the inputs of the second one, the output of the second
+one feeding one of the inputs of the third one, etc., the output of the
+last one in the chain is the modulo-two sum of the q + 1 inputs.
+<p>Another way to illustrate the modulo-two adder, and the way that is
+most commonly used in textbooks, is as a circle with a + symbol inside,
+thus:
+<center>
+<p><img SRC="figs/ringsum.gif" ALT="modulo-two adder symbol" height=48 width=48></center>
+
+<p>Now that we have the two basic components of the convolutional encoder
+(flip-flops comprising the shift register and exclusive-or gates comprising
+the associated modulo-two adders) defined, let's look at a picture of a
+convolutional encoder for a rate 1/2, K = 3, m = 2 code:
+<br>
+<br>
+<br>
+<center>
+<p><img SRC="figs/ce_7_5_a.gif" ALT="rate 1/2 K = 3 (7, 5) convolutional encoder" height=232 width=600></center>
+
+<p>In this encoder, data bits are provided at a rate of k bits per second.
+Channel symbols are output at a rate of n = 2k symbols per second. The
+input bit is stable during the encoder cycle. The encoder cycle starts
+when an input clock edge occurs. When the input clock edge occurs, the
+output of the left-hand flip-flop is clocked into the right-hand flip-flop,
+the previous input bit is clocked into the left-hand flip-flop, and a new
+input bit becomes available. Then the outputs of the upper and lower modulo-two
+adders become stable. The output selector (SEL A/B block) cycles through
+two states-in the first state, it selects and outputs the output of the
+upper modulo-two adder; in the second state, it selects and outputs the
+output of the lower modulo-two adder.
+<p>The encoder shown above encodes the K = 3, (7, 5) convolutional code.
+The octal numbers 7 and 5 represent the code generator polynomials, which
+when read in binary (111<sub>2</sub> and 101<sub>2</sub>) correspond to
+the shift register connections to the upper and lower modulo-two adders,
+respectively. This code has been determined to be the "best" code for rate
+1/2, K = 3. It is the code I will use for the remaining discussion and
+examples, for reasons that will become readily apparent when we get into
+the Viterbi decoder algorithm.
+<p>Let's look at an example input data stream, and the corresponding output
+data stream:
+<p>Let the input sequence be 010111001010001<sub>2</sub>.
+<p>Assume that the outputs of both of the flip-flops in the shift register
+are initially cleared, i.e. their outputs are zeroes. The first clock cycle
+makes the first input bit, a zero, available to the encoder. The flip-flop
+outputs are both zeroes. The inputs to the modulo-two adders are all zeroes,
+so the output of the encoder is 00<sub>2</sub>.
+<p>The second clock cycle makes the second input bit available to the encoder.
+The left-hand flip-flop clocks in the previous bit, which was a zero, and
+the right-hand flip-flop clocks in the zero output by the left-hand flip-flop.
+The inputs to the top modulo-two adder are 100<sub>2</sub>, so the output
+is a one. The inputs to the bottom modulo-two adder are 10<sub>2</sub>,
+so the output is also a one. So the encoder outputs 11<sub>2</sub> for
+the channel symbols.
+<p>The third clock cycle makes the third input bit, a zero, available to
+the encoder. The left-hand flip-flop clocks in the previous bit, which
+was a one, and the right-hand flip-flop clocks in the zero from two bit-times
+ago. The inputs to the top modulo-two adder are 010<sub>2</sub>, so the
+output is a one. The inputs to the bottom modulo-two adder are 00<sub>2</sub>,
+so the output is zero. So the encoder outputs 10<sub>2</sub> for the channel
+symbols.
+<p>And so on. The timing diagram shown below illustrates the process:
+<br>
+<br>
+<br>
+<center>
+<p><img SRC="figs/ce_td.gif" ALT="timing diagram for rate 1/2 convolutional encoder" height=322 width=600></center>
+
+<p><br>
+<br>
+<br>
+<p>After all of the inputs have been presented to the encoder, the output
+sequence will be:
+<p>00 11 10 00 01 10 01 11 11 10 00 10 11 00 11<sub>2</sub>.
+<p>Notice that I have paired the encoder outputs-the first bit in each
+pair is the output of the upper modulo-two adder; the second bit in each
+pair is the output of the lower modulo-two adder.
+<p>You can see from the structure of the rate 1/2 K = 3 convolutional encoder
+and from the example given above that each input bit has an effect on three
+successive pairs of output symbols. That is an extremely important point
+and that is what gives the convolutional code its error-correcting power.
+The reason why will become evident when we get into the Viterbi decoder
+algorithm.
+<p>Now if we are only going to send the 15 data bits given above, in order
+for the last bit to affect three pairs of output symbols, we need to output
+two more pairs of symbols. This is accomplished in our example encoder
+by clocking the convolutional encoder flip-flops two ( = m) more times,
+while holding the input at zero. This is called "flushing" the encoder,
+and results in two more pairs of output symbols. The final binary output
+of the encoder is thus 00 11 10 00 01 10 01 11 11 10 00 10 11 00 11 10
+11<sub>2</sub>. If we don't perform the flushing operation, the last m
+bits of the message have less error-correction capability than the first
+through (m - 1)th bits had. This is a pretty important thing to remember
+if you're going to use this FEC technique in a burst-mode environment.
+So's the step of clearing the shift register at the beginning of each burst.
+The encoder must start in a known state and end in a known state for the
+decoder to be able to reconstruct the input data sequence properly.
+<p>Now, let's look at the encoder from another perspective. You can think
+of the encoder as a simple state machine. The example encoder has two bits
+of memory, so there are four possible states. Let's give the left-hand
+flip-flop a binary weight of 2<sup>1</sup>, and the right-hand flip-flop
+a binary weight of 2<sup>0</sup>. Initially, the encoder is in the all-zeroes
+state. If the first input bit is a zero, the encoder stays in the all zeroes
+state at the next clock edge. But if the input bit is a one, the encoder
+transitions to the 10<sub>2</sub> state at the next clock edge. Then, if
+the next input bit is zero, the encoder transitions to the 01<sub>2</sub>
+state, otherwise, it transitions to the 11<sub>2</sub> state. The following
+table gives the next state given the current state and the input, with
+the states given in binary:
+<br>
+<br>
+<center><table BORDER CELLSPACING=2 CELLPADDING=7 WIDTH="282" >
+<tr>
+<td VALIGN=TOP WIDTH="33%"><font face="Arial"><font size=-1> </font></font></td>
+
+<td VALIGN=TOP COLSPAN="2" WIDTH="67%">
+<center><a NAME="statetable"></a><b><font face="Arial"><font size=-1>Next
+State, if </font></font></b></center>
+</td>
+</tr>
+
+<tr>
+<td VALIGN=TOP WIDTH="33%">
+<center><b><font face="Arial"><font size=-1>Current State</font></font></b></center>
+</td>
+
+<td VALIGN=TOP WIDTH="33%">
+<center><b><font face="Arial"><font size=-1>Input = 0:</font></font></b></center>
+</td>
+
+<td VALIGN=TOP WIDTH="33%">
+<center><b><font face="Arial"><font size=-1>Input = 1:</font></font></b></center>
+</td>
+</tr>
+
+<tr>
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>00</font></font></center>
+</td>
+
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>00</font></font></center>
+</td>
+
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>10</font></font></center>
+</td>
+</tr>
+
+<tr>
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>01</font></font></center>
+</td>
+
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>00</font></font></center>
+</td>
+
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>10</font></font></center>
+</td>
+</tr>
+
+<tr>
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>10</font></font></center>
+</td>
+
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>01</font></font></center>
+</td>
+
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>11</font></font></center>
+</td>
+</tr>
+
+<tr>
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>11</font></font></center>
+</td>
+
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>01</font></font></center>
+</td>
+
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>11</font></font></center>
+</td>
+</tr>
+</table></center>
+
+<br>
+<p>The above table is often called a state transition table. We'll refer
+to it as the <tt>next state</tt> table.<tt> </tt>Now let us look at a table
+that lists the channel output symbols, given the current state and the
+input data, which we'll refer to as the <tt>output</tt> table:
+<br>
+<br>
+<center><table BORDER CELLSPACING=2 CELLPADDING=7 WIDTH="282" >
+<tr>
+<td VALIGN=TOP WIDTH="33%"></td>
+
+<td VALIGN=TOP COLSPAN="2" WIDTH="67%">
+<center><a NAME="outputtable"></a><b><font face="Arial"><font size=-1>Output
+Symbols, if</font></font></b></center>
+</td>
+</tr>
+
+<tr>
+<td VALIGN=TOP WIDTH="33%">
+<center><b><font face="Arial"><font size=-1>Current State</font></font></b></center>
+</td>
+
+<td VALIGN=TOP WIDTH="33%">
+<center><b><font face="Arial"><font size=-1>Input = 0:</font></font></b></center>
+</td>
+
+<td VALIGN=TOP WIDTH="33%">
+<center><b><font face="Arial"><font size=-1>Input = 1:</font></font></b></center>
+</td>
+</tr>
+
+<tr>
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>00</font></font></center>
+</td>
+
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>00</font></font></center>
+</td>
+
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>11</font></font></center>
+</td>
+</tr>
+
+<tr>
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>01</font></font></center>
+</td>
+
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>11</font></font></center>
+</td>
+
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>00</font></font></center>
+</td>
+</tr>
+
+<tr>
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>10</font></font></center>
+</td>
+
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>10</font></font></center>
+</td>
+
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>01</font></font></center>
+</td>
+</tr>
+
+<tr>
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>11</font></font></center>
+</td>
+
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>01</font></font></center>
+</td>
+
+<td VALIGN=TOP WIDTH="33%">
+<center><font face="Arial"><font size=-1>10</font></font></center>
+</td>
+</tr>
+</table></center>
+
+<br>
+<p>You should now see that with these two tables, you can completely describe
+the behavior of the example rate 1/2, K = 3 convolutional encoder. Note
+that both of these tables have 2<sup>(K - 1)</sup> rows, and 2<sup>k</sup>
+columns, where K is the constraint length and k is the number of bits input
+to the encoder for each cycle. These two tables will come in handy when
+we start discussing the Viterbi decoder algorithm.
+<p><a NAME="mapping"></a><b><i><font face="Arial">Mapping the Channel Symbols
+to Signal Levels</font></i></b>
+<p>Mapping the one/zero output of the convolutional encoder onto an antipodal
+baseband signaling scheme is simply a matter of translating zeroes to +1s
+and ones to -1s. This can be accomplished by performing the operation y
+= 1 - 2x on each convolutional encoder output symbol.
+<p><a NAME="addnoise"></a><b><i><font face="Arial">Adding Noise to the
+Transmitted Symbols</font></i></b>
+<p>Adding noise to the transmitted channel symbols produced by the convolutional
+encoder involves generating Gaussian random numbers, scaling the numbers
+according to the desired energy per symbol to noise density ratio, E<sub>s</sub>/N<sub>0</sub>,
+and adding the scaled Gaussian random numbers to the channel symbol values.
+<p>For the uncoded channel, E<sub>s</sub>/N<sub>0 </sub>= E<sub>b</sub>/N<sub>0</sub>,
+since there is one channel symbol per bit. However, for the coded
+channel, E<sub>s</sub>/N<sub>0 </sub>= E<sub>b</sub>/N<sub>0</sub> + 10log<sub>10</sub>(k/n).
+For example, for rate 1/2 coding, E<sub>s</sub>/N<sub>0 </sub>= E<sub>b</sub>/N<sub>0</sub>
++ 10log<sub>10</sub>(1/2) = E<sub>b</sub>/N<sub>0</sub> - 3.01 dB.
+Similarly, for rate 2/3 coding, E<sub>s</sub>/N<sub>0 </sub>= E<sub>b</sub>/N<sub>0</sub>
++ 10log<sub>10</sub>(2/3) = E<sub>b</sub>/N<sub>0</sub> - 1.76 dB.
+<p>The Gaussian random number generator is the only interesting part of
+this task. C only provides a uniform random number generator, <tt>rand()</tt>.
+In order to obtain Gaussian random numbers, we take advantage of relationships
+between uniform, Rayleigh, and Gaussian distributions:
+<p>Given a uniform random variable U, a Rayleigh random variable R can
+be obtained by:
+<p><img SRC="figs/eqn01.gif" ALT="equation for Rayleigh random deviate given uniform random deviate" height=30 width=297 align=ABSCENTER>
+<p>where <img SRC="figs/eqn02.gif" height=24 width=24 align=ABSCENTER>is
+the variance of the Rayleigh random variable, and given R and a second
+uniform random variable V, two Gaussian random variables G and H can be
+obtained by
+<p><i>G</i> = <i>R</i> cos <i>U</i> and <i>H</i> = <i>R</i> sin <i>V</i>.
+<p>In the AWGN channel, the signal is corrupted by additive noise, n(t),
+which has the power spectrum <i>No</i>/2 watts/Hz. The variance <img SRC="figs/eqn02.gif" ALT="variance" height=24 width=24 align=ABSBOTTOM>of
+this noise is equal to <img SRC="figs/eqn03.gif" ALT="noise density div by two" height=22 width=38 align=TEXTTOP>.
+If we set the energy per symbol <i>E<sub>s</sub></i> equal to 1, then <img SRC="figs/eqn04.gif" ALT="equation relating variance to SNR" height=28 width=110 align=ABSBOTTOM>.
+So <img SRC="figs/eqn05.gif" ALT="equation for AWGN st dev given SNR" height=28 width=139 align=ABSCENTER>.
+<p><a NAME="quantizing"></a><b><i><font face="Arial">Quantizing the Received
+Channel Symbols</font></i></b>
+<p>An ideal Viterbi decoder would work with infinite precision, or at least
+with floating-point numbers. In practical systems, we quantize the received
+channel symbols with one or a few bits of precision in order to reduce
+the complexity of the Viterbi decoder, not to mention the circuits that
+precede it. If the received channel symbols are quantized to one-bit precision
+(< 0V = 1, <u>></u> 0V = 0), the result is called hard-decision data.
+If the received channel symbols are quantized with more than one bit of
+precision, the result is called soft-decision data. A Viterbi decoder with
+soft decision data inputs quantized to three or four bits of precision
+can perform about 2 dB better than one working with hard-decision inputs.
+The usual quantization precision is three bits. More bits provide little
+additional improvement.
+<p>The selection of the quantizing levels is an important design decision
+because it can have a significant effect on the performance of the link.
+The following is a very brief explanation of one way to set those levels.
+Let's assume our received signal levels in the absence of noise are -1V
+= 1, +1V = 0. With noise, our received signal has mean +/- 1 and standard
+deviation <img SRC="figs/eqn05.gif" ALT="equation for AWGN st dev given SNR" height=28 width=139 align=ABSCENTER>.
+Let's use a uniform, three-bit quantizer having the input/output relationship
+shown in the figure below, where D is a decision level that we will calculate
+shortly:
+<center>
+<p><img SRC="figs/quantize.gif" ALT="8-level quantizer function plot" height=342 width=384></center>
+
+<p>The decision level, D, can be calculated according to the formula <img SRC="figs/eqn06.gif" ALT="equation for quantizer decision level" height=28 width=228 align=ABSCENTER>,
+where E<sub>s</sub>/N<sub>0</sub> is the energy per symbol to noise density
+ratio<i>. (The above figure was redrawn from Figure 2 of Advanced Hardware
+Architecture's ANRS07-0795, "Soft Decision Thresholds and Effects on Viterbi
+Performance". See the </i><a href="fecbiblio.html">bibliography</a><i>
+for a link to their web pages.)</i>
+<p>Click <a href="algrthms2.html">here</a> to proceed to the description
+of the Viterbi decoding algorithm itself...
+<p>Or click on one of the links below to go to the beginning of that section:
+<p> <a href="tutorial.html">Introduction</a>
+<br> <a href="algrthms2.html">Description of the Algorithms
+(Part 2)</a>
+<br> <a href="examples.html">Simulation Source Code Examples</a>
+<br> <a href="simrslts.html">Example Simulation Results</a>
+<br> <a href="fecbiblio.html">Bibliography</a>
+<br> <a href="tutorial.html#specapps">About Spectrum Applications...</a>
+<br>
+<br>
+<br>
+<br>
+<center>
+<p><img SRC="figs/stripe.gif" height=6 width=600></center>
+
+</body>
+</html>