0.12. (Implements POSIX draft P10003.2/D11.2, except for
internationalization features.)
- Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
+ Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
- USA. */
+ USA. */
/* AIX requires this to be the first thing in the file. */
#if defined (_AIX) && !defined (REGEX_MALLOC)
#undef _GNU_SOURCE
#define _GNU_SOURCE
+/* Converts the pointer to the char to BEG-based offset from the start. */
+#define PTR_TO_OFFSET(d) \
+ POS_AS_IN_BUFFER (MATCHING_IN_FIRST_STRING \
+ ? (d) - string1 : (d) - (string2 - size1))
+#define POS_AS_IN_BUFFER(p) ((p) + 1)
+
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
-/* We need this for `regex.h', and perhaps for the Emacs include files. */
+/* We need this for `regex.h', and perhaps for the Emacs include files. */
#include <sys/types.h>
-/* This is for other GNU distributions with internationalized messages. */
+/* This is for other GNU distributions with internationalized messages. */
#if HAVE_LIBINTL_H || defined (_LIBC)
# include <libintl.h>
#else
#include "lisp.h"
#include "buffer.h"
+
+/* Make syntax table lookup grant data in gl_state. */
+#define SYNTAX_ENTRY_VIA_PROPERTY
+
#include "syntax.h"
+#include "charset.h"
+#include "category.h"
#define malloc xmalloc
#define free xfree
#endif
/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
- If nothing else has been done, use the method below. */
+ If nothing else has been done, use the method below. */
#ifdef INHIBIT_STRING_HEADER
#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
#if !defined (bzero) && !defined (bcopy)
#define SYNTAX(c) re_syntax_table[c]
+/* Dummy macro for non emacs environments. */
+#define BASE_LEADING_CODE_P(c) (0)
+#define WORD_BOUNDARY_P(c1, c2) (0)
+#define CHAR_HEAD_P(p) (1)
+#define SINGLE_BYTE_CHAR_P(c) (1)
+#define SAME_CHARSET_P(c1, c2) (1)
+#define MULTIBYTE_FORM_LENGTH(p, s) (1)
+#define STRING_CHAR(p, s) (*(p))
+#define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
+#define GET_CHAR_AFTER_2(c, p, str1, end1, str2, end2) \
+ (c = ((p) == (end1) ? *(str2) : *(p)))
+#define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
+ (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
#endif /* not emacs */
\f
/* Get the interface, including the syntax bits. */
"... Some ctype macros are valid only for character codes that
isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
using /bin/cc or gcc but without giving an ansi option). So, all
- ctype uses should be through macros like ISPRINT... If
+ ctype uses should be through macros like ISPRINT... If
STDC_HEADERS is defined, then autoconf has verified that the ctype
macros don't need to be guarded with references to isascii. ...
Defining isascii to 1 should let any compiler worth its salt
- eliminate the && through constant folding." */
+ eliminate the && through constant folding." */
#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
#define ISASCII(c) 1
/* We remove any previous definition of `SIGN_EXTEND_CHAR',
since ours (we hope) works properly with all combinations of
machines, compilers, `char' and `unsigned char' argument types.
- (Per Bothner suggested the basic approach.) */
+ (Per Bothner suggested the basic approach.) */
#undef SIGN_EXTEND_CHAR
#if __STDC__
#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
#include <alloca.h>
#else /* not __GNUC__ or HAVE_ALLOCA_H */
#if 0 /* It is a bad idea to declare alloca. We always cast the result. */
-#ifndef _AIX /* Already did AIX, up at the top. */
+#ifndef _AIX /* Already did AIX, up at the top. */
char *alloca ();
#endif /* not _AIX */
#endif
#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
REGEX_REALLOCATE (source, osize, nsize)
-/* No need to explicitly free anything. */
+/* No need to explicitly free anything. */
#define REGEX_FREE_STACK(arg)
#endif /* not REGEX_MALLOC */
/* True if `size1' is non-NULL and PTR is pointing anywhere inside
`string1' or just past its end. This works if PTR is NULL, which is
a good thing. */
-#define FIRST_STRING_P(ptr) \
+#define FIRST_STRING_P(ptr) \
(size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
/* (Re)Allocate N items of type T using malloc, or fail. */
if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
-#define BYTEWIDTH 8 /* In bits. */
+#define BYTEWIDTH 8 /* In bits. */
#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
static int re_match_2_internal ();
\f
/* These are the command codes that appear in compiled regular
- expressions. Some opcodes are followed by argument bytes. A
+ expressions. Some opcodes are followed by argument bytes. A
command code can specify any interpretation whatsoever for its
arguments. Zero bytes may appear in the compiled regular expression. */
{
no_op = 0,
- /* Succeed right away--no more backtracking. */
+ /* Succeed right away--no more backtracking. */
succeed,
- /* Followed by one byte giving n, then by n literal bytes. */
+ /* Followed by one byte giving n, then by n literal bytes. */
exactn,
- /* Matches any (more or less) character. */
+ /* Matches any (more or less) character. */
anychar,
- /* Matches any one char belonging to specified set. First
- following byte is number of bitmap bytes. Then come bytes
- for a bitmap saying which chars are in. Bits in each byte
- are ordered low-bit-first. A character is in the set if its
- bit is 1. A character too large to have a bit in the map is
- automatically not in the set. */
+ /* Matches any one char belonging to specified set. First
+ following byte is number of bitmap bytes. Then come bytes
+ for a bitmap saying which chars are in. Bits in each byte
+ are ordered low-bit-first. A character is in the set if its
+ bit is 1. A character too large to have a bit in the map is
+ automatically not in the set. */
charset,
- /* Same parameters as charset, but match any character that is
- not one of those specified. */
+ /* Same parameters as charset, but match any character that is
+ not one of those specified. */
charset_not,
- /* Start remembering the text that is matched, for storing in a
- register. Followed by one byte with the register number, in
- the range 0 to one less than the pattern buffer's re_nsub
- field. Then followed by one byte with the number of groups
- inner to this one. (This last has to be part of the
- start_memory only because we need it in the on_failure_jump
- of re_match_2.) */
+ /* Start remembering the text that is matched, for storing in a
+ register. Followed by one byte with the register number, in
+ the range 0 to one less than the pattern buffer's re_nsub
+ field. Then followed by one byte with the number of groups
+ inner to this one. (This last has to be part of the
+ start_memory only because we need it in the on_failure_jump
+ of re_match_2.) */
start_memory,
- /* Stop remembering the text that is matched and store it in a
- memory register. Followed by one byte with the register
- number, in the range 0 to one less than `re_nsub' in the
- pattern buffer, and one byte with the number of inner groups,
- just like `start_memory'. (We need the number of inner
- groups here because we don't have any easy way of finding the
- corresponding start_memory when we're at a stop_memory.) */
+ /* Stop remembering the text that is matched and store it in a
+ memory register. Followed by one byte with the register
+ number, in the range 0 to one less than `re_nsub' in the
+ pattern buffer, and one byte with the number of inner groups,
+ just like `start_memory'. (We need the number of inner
+ groups here because we don't have any easy way of finding the
+ corresponding start_memory when we're at a stop_memory.) */
stop_memory,
- /* Match a duplicate of something remembered. Followed by one
- byte containing the register number. */
+ /* Match a duplicate of something remembered. Followed by one
+ byte containing the register number. */
duplicate,
- /* Fail unless at beginning of line. */
+ /* Fail unless at beginning of line. */
begline,
- /* Fail unless at end of line. */
+ /* Fail unless at end of line. */
endline,
- /* Succeeds if at beginning of buffer (if emacs) or at beginning
- of string to be matched (if not). */
+ /* Succeeds if at beginning of buffer (if emacs) or at beginning
+ of string to be matched (if not). */
begbuf,
- /* Analogously, for end of buffer/string. */
+ /* Analogously, for end of buffer/string. */
endbuf,
- /* Followed by two byte relative address to which to jump. */
+ /* Followed by two byte relative address to which to jump. */
jump,
/* Same as jump, but marks the end of an alternative. */
jump_past_alt,
- /* Followed by two-byte relative address of place to resume at
- in case of failure. */
+ /* Followed by two-byte relative address of place to resume at
+ in case of failure. */
on_failure_jump,
- /* Like on_failure_jump, but pushes a placeholder instead of the
- current string position when executed. */
+ /* Like on_failure_jump, but pushes a placeholder instead of the
+ current string position when executed. */
on_failure_keep_string_jump,
- /* Throw away latest failure point and then jump to following
- two-byte relative address. */
+ /* Throw away latest failure point and then jump to following
+ two-byte relative address. */
pop_failure_jump,
- /* Change to pop_failure_jump if know won't have to backtrack to
- match; otherwise change to jump. This is used to jump
- back to the beginning of a repeat. If what follows this jump
- clearly won't match what the repeat does, such that we can be
- sure that there is no use backtracking out of repetitions
- already matched, then we change it to a pop_failure_jump.
- Followed by two-byte address. */
+ /* Change to pop_failure_jump if know won't have to backtrack to
+ match; otherwise change to jump. This is used to jump
+ back to the beginning of a repeat. If what follows this jump
+ clearly won't match what the repeat does, such that we can be
+ sure that there is no use backtracking out of repetitions
+ already matched, then we change it to a pop_failure_jump.
+ Followed by two-byte address. */
maybe_pop_jump,
- /* Jump to following two-byte address, and push a dummy failure
- point. This failure point will be thrown away if an attempt
- is made to use it for a failure. A `+' construct makes this
- before the first repeat. Also used as an intermediary kind
- of jump when compiling an alternative. */
+ /* Jump to following two-byte address, and push a dummy failure
+ point. This failure point will be thrown away if an attempt
+ is made to use it for a failure. A `+' construct makes this
+ before the first repeat. Also used as an intermediary kind
+ of jump when compiling an alternative. */
dummy_failure_jump,
/* Push a dummy failure point and continue. Used at the end of
alternatives. */
push_dummy_failure,
- /* Followed by two-byte relative address and two-byte number n.
- After matching N times, jump to the address upon failure. */
+ /* Followed by two-byte relative address and two-byte number n.
+ After matching N times, jump to the address upon failure. */
succeed_n,
- /* Followed by two-byte relative address, and two-byte number n.
- Jump to the address N times, then fail. */
+ /* Followed by two-byte relative address, and two-byte number n.
+ Jump to the address N times, then fail. */
jump_n,
- /* Set the following two-byte relative address to the
- subsequent two-byte number. The address *includes* the two
- bytes of number. */
+ /* Set the following two-byte relative address to the
+ subsequent two-byte number. The address *includes* the two
+ bytes of number. */
set_number_at,
wordchar, /* Matches any word-constituent character. */
wordend, /* Succeeds if at word end. */
wordbound, /* Succeeds if at a word boundary. */
- notwordbound /* Succeeds if not at a word boundary. */
+ notwordbound /* Succeeds if not at a word boundary. */
#ifdef emacs
,before_dot, /* Succeeds if before point. */
after_dot, /* Succeeds if after point. */
/* Matches any character whose syntax is specified. Followed by
- a byte which contains a syntax code, e.g., Sword. */
+ a byte which contains a syntax code, e.g., Sword. */
syntaxspec,
/* Matches any character whose syntax is not that specified. */
- notsyntaxspec
+ notsyntaxspec,
+
+ /* Matches any character whose category-set contains the specified
+ category. The operator is followed by a byte which contains a
+ category code (mnemonic ASCII character). */
+ categoryspec,
+
+ /* Matches any character whose category-set does not contain the
+ specified category. The operator is followed by a byte which
+ contains the category code (mnemonic ASCII character). */
+ notcategoryspec
#endif /* emacs */
} re_opcode_t;
\f
*dest += temp << 8;
}
-#ifndef EXTRACT_MACROS /* To debug the macros. */
+#ifndef EXTRACT_MACROS /* To debug the macros. */
#undef EXTRACT_NUMBER
#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
#endif /* not EXTRACT_MACROS */
#define EXTRACT_NUMBER_AND_INCR(destination, source) \
do { \
EXTRACT_NUMBER (destination, source); \
- (source) += 2; \
+ (source) += 2; \
} while (0)
#ifdef DEBUG
#endif /* DEBUG */
\f
+/* Store a multibyte character in three contiguous bytes starting
+ DESTINATION, and increment DESTINATION to the byte after where the
+ character is stored. Therefore, DESTINATION must be an lvalue. */
+
+#define STORE_CHARACTER_AND_INCR(destination, character) \
+ do { \
+ (destination)[0] = (character) & 0377; \
+ (destination)[1] = ((character) >> 8) & 0377; \
+ (destination)[2] = (character) >> 16; \
+ (destination) += 3; \
+ } while (0)
+
+/* Put into DESTINATION a character stored in three contiguous bytes
+ starting at SOURCE. */
+
+#define EXTRACT_CHARACTER(destination, source) \
+ do { \
+ (destination) = ((source)[0] \
+ | ((source)[1] << 8) \
+ | ((source)[2] << 16)); \
+ } while (0)
+
+
+/* Macros for charset. */
+
+/* Size of bitmap of charset P in bytes. P is a start of charset,
+ i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
+#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
+
+/* Nonzero if charset P has range table. */
+#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
+
+/* Return the address of range table of charset P. But not the start
+ of table itself, but the before where the number of ranges is
+ stored. `2 +' means to skip re_opcode_t and size of bitmap. */
+#define CHARSET_RANGE_TABLE(p) (&(p)[2 + CHARSET_BITMAP_SIZE (p)])
+
+/* Test if C is listed in the bitmap of charset P. */
+#define CHARSET_LOOKUP_BITMAP(p, c) \
+ ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
+ && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
+
+/* Return the address of end of RANGE_TABLE. COUNT is number of
+ ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
+ is start of range and end of range. `* 3' is size of each start
+ and end. */
+#define CHARSET_RANGE_TABLE_END(range_table, count) \
+ ((range_table) + (count) * 2 * 3)
+
+/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
+ COUNT is number of ranges in RANGE_TABLE. */
+#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
+ do \
+ { \
+ int range_start, range_end; \
+ unsigned char *p; \
+ unsigned char *range_table_end \
+ = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
+ \
+ for (p = (range_table); p < range_table_end; p += 2 * 3) \
+ { \
+ EXTRACT_CHARACTER (range_start, p); \
+ EXTRACT_CHARACTER (range_end, p + 3); \
+ \
+ if (range_start <= (c) && (c) <= range_end) \
+ { \
+ (not) = !(not); \
+ break; \
+ } \
+ } \
+ } \
+ while (0)
+
+/* Test if C is in range table of CHARSET. The flag NOT is negated if
+ C is listed in it. */
+#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
+ do \
+ { \
+ /* Number of ranges in range table. */ \
+ int count; \
+ unsigned char *range_table = CHARSET_RANGE_TABLE (charset); \
+ \
+ EXTRACT_NUMBER_AND_INCR (count, range_table); \
+ CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
+ } \
+ while (0)
+\f
/* If DEBUG is defined, Regex prints many voluminous messages about what
it is doing (if the variable `debug' is nonzero). If linked with the
main program in `iregex.c', you can enter patterns and strings
interactively. And if linked with the main program in `main.c' and
- the other test files, you can run the already-written tests. */
+ the other test files, you can run the already-written tests. */
#ifdef DEBUG
#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
-#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
+#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
if (debug) print_partial_compiled_pattern (s, e)
#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
if (debug) print_double_string (w, s1, sz1, s2, sz2)
if (fastmap[i++])
{
was_a_range = 0;
- putchar (i - 1);
- while (i < (1 << BYTEWIDTH) && fastmap[i])
- {
- was_a_range = 1;
- i++;
- }
+ putchar (i - 1);
+ while (i < (1 << BYTEWIDTH) && fastmap[i])
+ {
+ was_a_range = 1;
+ i++;
+ }
if (was_a_range)
- {
- printf ("-");
- putchar (i - 1);
- }
- }
+ {
+ printf ("-");
+ putchar (i - 1);
+ }
+ }
}
putchar ('\n');
}
switch ((re_opcode_t) *p++)
{
- case no_op:
- printf ("/no_op");
- break;
+ case no_op:
+ printf ("/no_op");
+ break;
case exactn:
mcnt = *p++;
- printf ("/exactn/%d", mcnt);
- do
+ printf ("/exactn/%d", mcnt);
+ do
{
- putchar ('/');
+ putchar ('/');
putchar (*p++);
- }
- while (--mcnt);
- break;
+ }
+ while (--mcnt);
+ break;
case start_memory:
- mcnt = *p++;
- printf ("/start_memory/%d/%d", mcnt, *p++);
- break;
+ mcnt = *p++;
+ printf ("/start_memory/%d/%d", mcnt, *p++);
+ break;
case stop_memory:
- mcnt = *p++;
+ mcnt = *p++;
printf ("/stop_memory/%d/%d", mcnt, *p++);
- break;
+ break;
case duplicate:
printf ("/duplicate/%d", *p++);
break;
case charset:
- case charset_not:
- {
- register int c, last = -100;
+ case charset_not:
+ {
+ register int c, last = -100;
register int in_range = 0;
printf ("/charset [%s",
- (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
+ (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
- assert (p + *p < pend);
+ assert (p + *p < pend);
- for (c = 0; c < 256; c++)
+ for (c = 0; c < 256; c++)
if (c / 8 < *p
&& (p[1 + (c/8)] & (1 << (c % 8))))
{
}
/* Have we broken a range? */
else if (last + 1 != c && in_range)
- {
+ {
putchar (last);
in_range = 0;
}
putchar (c);
last = c;
- }
+ }
if (in_range)
putchar (last);
case begline:
printf ("/begline");
- break;
+ break;
case endline:
- printf ("/endline");
- break;
+ printf ("/endline");
+ break;
case on_failure_jump:
- extract_number_and_incr (&mcnt, &p);
- printf ("/on_failure_jump to %d", p + mcnt - start);
- break;
+ extract_number_and_incr (&mcnt, &p);
+ printf ("/on_failure_jump to %d", p + mcnt - start);
+ break;
case on_failure_keep_string_jump:
- extract_number_and_incr (&mcnt, &p);
- printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
- break;
+ extract_number_and_incr (&mcnt, &p);
+ printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
+ break;
case dummy_failure_jump:
- extract_number_and_incr (&mcnt, &p);
- printf ("/dummy_failure_jump to %d", p + mcnt - start);
- break;
+ extract_number_and_incr (&mcnt, &p);
+ printf ("/dummy_failure_jump to %d", p + mcnt - start);
+ break;
case push_dummy_failure:
- printf ("/push_dummy_failure");
- break;
+ printf ("/push_dummy_failure");
+ break;
- case maybe_pop_jump:
- extract_number_and_incr (&mcnt, &p);
- printf ("/maybe_pop_jump to %d", p + mcnt - start);
+ case maybe_pop_jump:
+ extract_number_and_incr (&mcnt, &p);
+ printf ("/maybe_pop_jump to %d", p + mcnt - start);
break;
- case pop_failure_jump:
+ case pop_failure_jump:
extract_number_and_incr (&mcnt, &p);
- printf ("/pop_failure_jump to %d", p + mcnt - start);
+ printf ("/pop_failure_jump to %d", p + mcnt - start);
break;
- case jump_past_alt:
+ case jump_past_alt:
extract_number_and_incr (&mcnt, &p);
- printf ("/jump_past_alt to %d", p + mcnt - start);
+ printf ("/jump_past_alt to %d", p + mcnt - start);
break;
- case jump:
+ case jump:
extract_number_and_incr (&mcnt, &p);
- printf ("/jump to %d", p + mcnt - start);
+ printf ("/jump to %d", p + mcnt - start);
break;
- case succeed_n:
- extract_number_and_incr (&mcnt, &p);
- extract_number_and_incr (&mcnt2, &p);
+ case succeed_n:
+ extract_number_and_incr (&mcnt, &p);
+ extract_number_and_incr (&mcnt2, &p);
printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
- break;
+ break;
- case jump_n:
- extract_number_and_incr (&mcnt, &p);
- extract_number_and_incr (&mcnt2, &p);
+ case jump_n:
+ extract_number_and_incr (&mcnt, &p);
+ extract_number_and_incr (&mcnt2, &p);
printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
- break;
+ break;
- case set_number_at:
- extract_number_and_incr (&mcnt, &p);
- extract_number_and_incr (&mcnt2, &p);
+ case set_number_at:
+ extract_number_and_incr (&mcnt, &p);
+ extract_number_and_incr (&mcnt2, &p);
printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
- break;
+ break;
- case wordbound:
+ case wordbound:
printf ("/wordbound");
break;
case notwordbound:
printf ("/notwordbound");
- break;
+ break;
case wordbeg:
printf ("/wordbeg");
#ifdef emacs
case before_dot:
printf ("/before_dot");
- break;
+ break;
case at_dot:
printf ("/at_dot");
- break;
+ break;
case after_dot:
printf ("/after_dot");
- break;
+ break;
case syntaxspec:
- printf ("/syntaxspec");
+ printf ("/syntaxspec");
mcnt = *p++;
printf ("/%d", mcnt);
- break;
+ break;
case notsyntaxspec:
- printf ("/notsyntaxspec");
+ printf ("/notsyntaxspec");
mcnt = *p++;
printf ("/%d", mcnt);
break;
case wordchar:
printf ("/wordchar");
- break;
+ break;
case notwordchar:
printf ("/notwordchar");
- break;
+ break;
case begbuf:
printf ("/begbuf");
- break;
+ break;
case endbuf:
printf ("/endbuf");
- break;
+ break;
- default:
- printf ("?%d", *(p-1));
+ default:
+ printf ("?%d", *(p-1));
}
putchar ('\n');
else
{
if (FIRST_STRING_P (where))
- {
- for (this_char = where - string1; this_char < size1; this_char++)
- putchar (string1[this_char]);
+ {
+ for (this_char = where - string1; this_char < size1; this_char++)
+ putchar (string1[this_char]);
- where = string2;
- }
+ where = string2;
+ }
for (this_char = where - string2; this_char < size2; this_char++)
- putchar (string2[this_char]);
+ putchar (string2[this_char]);
}
}
different, incompatible syntaxes.
The argument SYNTAX is a bit mask comprised of the various bits
- defined in regex.h. We return the old syntax. */
+ defined in regex.h. We return the old syntax. */
reg_syntax_t
re_set_syntax (syntax)
}
\f
/* This table gives an error message for each of the error codes listed
- in regex.h. Obviously the order here has to be same as there.
+ in regex.h. Obviously the order here has to be same as there.
POSIX doesn't require that we do anything for REG_NOERROR,
- but why not be nice? */
+ but why not be nice? */
static const char *re_error_msgid[] =
{
gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
};
\f
-/* Avoiding alloca during matching, to placate r_alloc. */
+/* Avoiding alloca during matching, to placate r_alloc. */
/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
searching and matching functions should not call alloca. On some
and (2) it's not safe for them to use malloc.
Note that if REL_ALLOC is defined, matching would not use malloc for the
failure stack, but we would still use it for the register vectors;
- so REL_ALLOC should not affect this. */
+ so REL_ALLOC should not affect this. */
#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
#undef MATCH_MAY_ALLOCATE
#endif
/* Roughly the maximum number of failure points on the stack. Would be
exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
This is a variable only so users of regex can assign to it; we never
- change it ourselves. */
+ change it ourselves. */
#if defined (MATCH_MAY_ALLOCATE)
/* 4400 was enough to cause a crash on Alpha OSF/1,
whose default stack limit is 2mb. */
Return 1 if succeeds, and 0 if either ran out of memory
allocating space for it or it was already too large.
- REGEX_REALLOCATE_STACK requires `destination' be declared. */
+ REGEX_REALLOCATE_STACK requires `destination' be declared. */
#define DOUBLE_FAIL_STACK(fail_stack) \
((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
? 0 \
: ((fail_stack).stack = (fail_stack_elt_t *) \
- REGEX_REALLOCATE_STACK ((fail_stack).stack, \
- (fail_stack).size * sizeof (fail_stack_elt_t), \
- ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
+ REGEX_REALLOCATE_STACK ((fail_stack).stack, \
+ (fail_stack).size * sizeof (fail_stack_elt_t), \
+ ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
\
(fail_stack).stack == NULL \
? 0 \
- : ((fail_stack).size <<= 1, \
- 1)))
+ : ((fail_stack).size <<= 1, \
+ 1)))
/* Push pointer POINTER on FAIL_STACK.
/* Push a pointer value onto the failure stack.
Assumes the variable `fail_stack'. Probably should only
- be called from within `PUSH_FAILURE_POINT'. */
+ be called from within `PUSH_FAILURE_POINT'. */
#define PUSH_FAILURE_POINTER(item) \
fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
/* This pushes an integer-valued item onto the failure stack.
Assumes the variable `fail_stack'. Probably should only
- be called from within `PUSH_FAILURE_POINT'. */
+ be called from within `PUSH_FAILURE_POINT'. */
#define PUSH_FAILURE_INT(item) \
fail_stack.stack[fail_stack.avail++].integer = (item)
/* Push a fail_stack_elt_t value onto the failure stack.
Assumes the variable `fail_stack'. Probably should only
- be called from within `PUSH_FAILURE_POINT'. */
+ be called from within `PUSH_FAILURE_POINT'. */
#define PUSH_FAILURE_ELT(item) \
fail_stack.stack[fail_stack.avail++] = (item)
/* Must be int, so when we don't save any registers, the arithmetic \
of 0 + -1 isn't done as unsigned. */ \
int this_reg; \
- \
+ \
DEBUG_STATEMENT (failure_id++); \
DEBUG_STATEMENT (nfailure_points_pushed++); \
DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
- DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
+ DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
\
DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
- DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
+ DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
\
/* Ensure we have enough space allocated for what we will push. */ \
while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
{ \
- if (!DOUBLE_FAIL_STACK (fail_stack)) \
- return failure_code; \
+ if (!DOUBLE_FAIL_STACK (fail_stack)) \
+ return failure_code; \
\
- DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
+ DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
(fail_stack).size); \
- DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
+ DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
} \
\
/* Push the info, starting with the registers. */ \
PUSH_FAILURE_POINTER (pattern_place); \
\
DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
- DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
+ DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
size2); \
DEBUG_PRINT1 ("'\n"); \
PUSH_FAILURE_POINTER (string_place); \
REG_INFO -- array of information about each subexpression.
Also assumes the variables `fail_stack' and (if debugging), `bufp',
- `pend', `string1', `size1', `string2', and `size2'. */
+ `pend', `string1', `size1', `string2', and `size2'. */
#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
{ \
/* Remove failure points and point to how many regs pushed. */ \
DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
- DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
+ DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
\
assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
\
if (1) \
for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
{ \
- DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
+ DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
\
reg_info[this_reg].word = POP_FAILURE_ELT (); \
- DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
+ DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
\
regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
- DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
+ DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
\
regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
- DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
+ DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
} \
else \
{ \
struct
{
/* This field is one if this group can match the empty string,
- zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
+ zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
#define MATCH_NULL_UNSET_VALUE 3
unsigned match_null_string_p : 2;
unsigned is_active : 1;
#endif
/* Fetch the next character in the uncompiled pattern, with no
- translation. */
+ translation. */
#define PATFETCH_RAW(c) \
do {if (p == pend) return REG_EEND; \
- c = (unsigned char) *p++; \
+ c = (unsigned char) *p++; \
} while (0)
/* Go backwards one character in the pattern. */
when we use a character as a subscript we must make it unsigned. */
#ifndef TRANSLATE
#define TRANSLATE(d) \
- (translate ? (char) translate[(unsigned char) (d)] : (d))
+ (translate ? (unsigned char) translate[(unsigned char) (d)] : (d))
#endif
/* If the buffer isn't allocated when it comes in, use this. */
#define INIT_BUF_SIZE 32
-/* Make sure we have at least N more bytes of space in buffer. */
+/* Make sure we have at least N more bytes of space in buffer. */
#define GET_BUFFER_SPACE(n) \
while (b - bufp->buffer + (n) > bufp->allocated) \
EXTEND_BUFFER ()
} while (0)
-/* As with BUF_PUSH_2, except for three bytes. */
+/* As with BUF_PUSH_2, except for three bytes. */
#define BUF_PUSH_3(c1, c2, c3) \
do { \
GET_BUFFER_SPACE (3); \
/* Store a jump with opcode OP at LOC to location TO. We store a
- relative address offset by the three bytes the jump itself occupies. */
+ relative address offset by the three bytes the jump itself occupies. */
#define STORE_JUMP(op, loc, to) \
store_op1 (op, loc, (to) - (loc) - 3)
#define STORE_JUMP2(op, loc, to, arg) \
store_op2 (op, loc, (to) - (loc) - 3, arg)
-/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
+/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
#define INSERT_JUMP(op, loc, to) \
insert_op1 (op, loc, (to) - (loc) - 3, b)
/* This is not an arbitrary limit: the arguments which represent offsets
- into the pattern are two bytes long. So if 2^16 bytes turns out to
+ into the pattern are two bytes long. So if 2^16 bytes turns out to
be too small, many things would have to change. */
#define MAX_BUF_SIZE (1L << 16)
/* Extend the buffer by twice its current size via realloc and
reset the pointers that pointed into the old block to point to the
correct places in the new one. If extending the buffer results in it
- being larger than MAX_BUF_SIZE, then flag memory exhausted. */
+ being larger than MAX_BUF_SIZE, then flag memory exhausted. */
#define EXTEND_BUFFER() \
- do { \
+ do { \
unsigned char *old_buffer = bufp->buffer; \
- if (bufp->allocated == MAX_BUF_SIZE) \
+ if (bufp->allocated == MAX_BUF_SIZE) \
return REG_ESIZE; \
bufp->allocated <<= 1; \
if (bufp->allocated > MAX_BUF_SIZE) \
- bufp->allocated = MAX_BUF_SIZE; \
+ bufp->allocated = MAX_BUF_SIZE; \
bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
if (bufp->buffer == NULL) \
return REG_ESPACE; \
/* If the buffer moved, move all the pointers into it. */ \
if (old_buffer != bufp->buffer) \
{ \
- b = (b - old_buffer) + bufp->buffer; \
- begalt = (begalt - old_buffer) + bufp->buffer; \
- if (fixup_alt_jump) \
- fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
- if (laststart) \
- laststart = (laststart - old_buffer) + bufp->buffer; \
- if (pending_exact) \
- pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
+ b = (b - old_buffer) + bufp->buffer; \
+ begalt = (begalt - old_buffer) + bufp->buffer; \
+ if (fixup_alt_jump) \
+ fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
+ if (laststart) \
+ laststart = (laststart - old_buffer) + bufp->buffer; \
+ if (pending_exact) \
+ pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
} \
} while (0)
/* Macros for the compile stack. */
/* Since offsets can go either forwards or backwards, this type needs to
- be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
+ be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
typedef int pattern_offset_t;
typedef struct
#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
-/* The next available element. */
+/* The next available element. */
#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
+/* Structure to manage work area for range table. */
+struct range_table_work_area
+{
+ int *table; /* actual work area. */
+ int allocated; /* allocated size for work area in bytes. */
+ int used; /* actually used size in words. */
+};
+
+/* Make sure that WORK_AREA can hold more N multibyte characters. */
+#define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
+ do { \
+ if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
+ { \
+ (work_area).allocated += 16 * sizeof (int); \
+ if ((work_area).table) \
+ (work_area).table \
+ = (int *) realloc ((work_area).table, (work_area).allocated); \
+ else \
+ (work_area).table \
+ = (int *) malloc ((work_area).allocated); \
+ if ((work_area).table == 0) \
+ FREE_STACK_RETURN (REG_ESPACE); \
+ } \
+ } while (0)
+
+/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
+#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
+ do { \
+ EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
+ (work_area).table[(work_area).used++] = (range_start); \
+ (work_area).table[(work_area).used++] = (range_end); \
+ } while (0)
+
+/* Free allocated memory for WORK_AREA. */
+#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
+ do { \
+ if ((work_area).table) \
+ free ((work_area).table); \
+ } while (0)
+
+#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0)
+#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
+#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
+
+
/* Set the bit for character C in a list. */
-#define SET_LIST_BIT(c) \
- (b[((unsigned char) (c)) / BYTEWIDTH] \
+#define SET_LIST_BIT(c) \
+ (b[((unsigned char) (c)) / BYTEWIDTH] \
|= 1 << (((unsigned char) c) % BYTEWIDTH))
/* Get the next unsigned number in the uncompiled pattern. */
-#define GET_UNSIGNED_NUMBER(num) \
+#define GET_UNSIGNED_NUMBER(num) \
{ if (p != pend) \
{ \
- PATFETCH (c); \
- while (ISDIGIT (c)) \
- { \
- if (num < 0) \
- num = 0; \
- num = num * 10 + c - '0'; \
- if (p == pend) \
- break; \
- PATFETCH (c); \
- } \
- } \
+ PATFETCH (c); \
+ while (ISDIGIT (c)) \
+ { \
+ if (num < 0) \
+ num = 0; \
+ num = num * 10 + c - '0'; \
+ if (p == pend) \
+ break; \
+ PATFETCH (c); \
+ } \
+ } \
}
#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
/* Size with which the following vectors are currently allocated.
That is so we can make them bigger as needed,
- but never make them smaller. */
+ but never make them smaller. */
static int regs_allocated_size;
-static const char ** regstart, ** regend;
+static const char ** regstart, ** regend;
static const char ** old_regstart, ** old_regend;
static const char **best_regstart, **best_regend;
static register_info_type *reg_info;
static register_info_type *reg_info_dummy;
/* Make the register vectors big enough for NUM_REGS registers,
- but don't make them smaller. */
+ but don't make them smaller. */
static
regex_grow_registers (num_regs)
/* Return, freeing storage we allocated. */
#define FREE_STACK_RETURN(value) \
- return (free (compile_stack.stack), value)
+ do { \
+ FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
+ free (compile_stack.stack); \
+ return value; \
+ } while (0)
static reg_errcode_t
regex_compile (pattern, size, syntax, bufp)
/* We fetch characters from PATTERN here. Even though PATTERN is
`char *' (i.e., signed), we declare these variables as unsigned, so
they can be reliably used as array indices. */
- register unsigned char c, c1;
+ register unsigned int c, c1;
/* A random temporary spot in PATTERN. */
const char *p1;
const char *beg_interval;
/* Address of the place where a forward jump should go to the end of
- the containing expression. Each alternative of an `or' -- except the
+ the containing expression. Each alternative of an `or' -- except the
last -- ends with a forward jump of this sort. */
unsigned char *fixup_alt_jump = 0;
number is put in the stop_memory as the start_memory. */
regnum_t regnum = 0;
+ /* Work area for range table of charset. */
+ struct range_table_work_area range_table_work;
+
#ifdef DEBUG
DEBUG_PRINT1 ("\nCompiling pattern: ");
if (debug)
unsigned debug_count;
for (debug_count = 0; debug_count < size; debug_count++)
- putchar (pattern[debug_count]);
+ putchar (pattern[debug_count]);
putchar ('\n');
}
#endif /* DEBUG */
compile_stack.size = INIT_COMPILE_STACK_SIZE;
compile_stack.avail = 0;
+ range_table_work.table = 0;
+ range_table_work.allocated = 0;
+
/* Initialize the pattern buffer. */
bufp->syntax = syntax;
bufp->fastmap_accurate = 0;
/* Always count groups, whether or not bufp->no_sub is set. */
bufp->re_nsub = 0;
+#ifdef emacs
+ /* bufp->multibyte is set before regex_compile is called, so don't alter
+ it. */
+#else /* not emacs */
+ /* Nothing is recognized as a multibyte character. */
+ bufp->multibyte = 0;
+#endif
+
#if !defined (emacs) && !defined (SYNTAX_TABLE)
/* Initialize the syntax table. */
init_syntax_once ();
{
if (bufp->buffer)
{ /* If zero allocated, but buffer is non-null, try to realloc
- enough space. This loses if buffer's address is bogus, but
- that is the user's responsibility. */
- RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
- }
+ enough space. This loses if buffer's address is bogus, but
+ that is the user's responsibility. */
+ RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
+ }
else
- { /* Caller did not allocate a buffer. Do it for them. */
- bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
- }
+ { /* Caller did not allocate a buffer. Do it for them. */
+ bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
+ }
if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
bufp->allocated = INIT_BUF_SIZE;
PATFETCH (c);
switch (c)
- {
- case '^':
- {
- if ( /* If at start of pattern, it's an operator. */
- p == pattern + 1
- /* If context independent, it's an operator. */
- || syntax & RE_CONTEXT_INDEP_ANCHORS
- /* Otherwise, depends on what's come before. */
- || at_begline_loc_p (pattern, p, syntax))
- BUF_PUSH (begline);
- else
- goto normal_char;
- }
- break;
-
-
- case '$':
- {
- if ( /* If at end of pattern, it's an operator. */
- p == pend
- /* If context independent, it's an operator. */
- || syntax & RE_CONTEXT_INDEP_ANCHORS
- /* Otherwise, depends on what's next. */
- || at_endline_loc_p (p, pend, syntax))
- BUF_PUSH (endline);
- else
- goto normal_char;
- }
- break;
+ {
+ case '^':
+ {
+ if ( /* If at start of pattern, it's an operator. */
+ p == pattern + 1
+ /* If context independent, it's an operator. */
+ || syntax & RE_CONTEXT_INDEP_ANCHORS
+ /* Otherwise, depends on what's come before. */
+ || at_begline_loc_p (pattern, p, syntax))
+ BUF_PUSH (begline);
+ else
+ goto normal_char;
+ }
+ break;
+
+
+ case '$':
+ {
+ if ( /* If at end of pattern, it's an operator. */
+ p == pend
+ /* If context independent, it's an operator. */
+ || syntax & RE_CONTEXT_INDEP_ANCHORS
+ /* Otherwise, depends on what's next. */
+ || at_endline_loc_p (p, pend, syntax))
+ BUF_PUSH (endline);
+ else
+ goto normal_char;
+ }
+ break;
case '+':
- case '?':
- if ((syntax & RE_BK_PLUS_QM)
- || (syntax & RE_LIMITED_OPS))
- goto normal_char;
- handle_plus:
- case '*':
- /* If there is no previous pattern... */
- if (!laststart)
- {
- if (syntax & RE_CONTEXT_INVALID_OPS)
- FREE_STACK_RETURN (REG_BADRPT);
- else if (!(syntax & RE_CONTEXT_INDEP_OPS))
- goto normal_char;
- }
-
- {
- /* Are we optimizing this jump? */
- boolean keep_string_p = false;
-
- /* 1 means zero (many) matches is allowed. */
- char zero_times_ok = 0, many_times_ok = 0;
-
- /* If there is a sequence of repetition chars, collapse it
- down to just one (the right one). We can't combine
- interval operators with these because of, e.g., `a{2}*',
- which should only match an even number of `a's. */
-
- for (;;)
- {
- zero_times_ok |= c != '+';
- many_times_ok |= c != '?';
-
- if (p == pend)
- break;
-
- PATFETCH (c);
-
- if (c == '*'
- || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
- ;
-
- else if (syntax & RE_BK_PLUS_QM && c == '\\')
- {
- if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
-
- PATFETCH (c1);
- if (!(c1 == '+' || c1 == '?'))
- {
- PATUNFETCH;
- PATUNFETCH;
- break;
- }
-
- c = c1;
- }
- else
- {
- PATUNFETCH;
- break;
- }
-
- /* If we get here, we found another repeat character. */
- }
-
- /* Star, etc. applied to an empty pattern is equivalent
- to an empty pattern. */
- if (!laststart)
- break;
-
- /* Now we know whether or not zero matches is allowed
- and also whether or not two or more matches is allowed. */
- if (many_times_ok)
- { /* More than one repetition is allowed, so put in at the
- end a backward relative jump from `b' to before the next
- jump we're going to put in below (which jumps from
- laststart to after this jump).
-
- But if we are at the `*' in the exact sequence `.*\n',
- insert an unconditional jump backwards to the .,
- instead of the beginning of the loop. This way we only
- push a failure point once, instead of every time
- through the loop. */
- assert (p - 1 > pattern);
-
- /* Allocate the space for the jump. */
- GET_BUFFER_SPACE (3);
-
- /* We know we are not at the first character of the pattern,
- because laststart was nonzero. And we've already
- incremented `p', by the way, to be the character after
- the `*'. Do we have to do something analogous here
- for null bytes, because of RE_DOT_NOT_NULL? */
- if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
+ case '?':
+ if ((syntax & RE_BK_PLUS_QM)
+ || (syntax & RE_LIMITED_OPS))
+ goto normal_char;
+ handle_plus:
+ case '*':
+ /* If there is no previous pattern... */
+ if (!laststart)
+ {
+ if (syntax & RE_CONTEXT_INVALID_OPS)
+ FREE_STACK_RETURN (REG_BADRPT);
+ else if (!(syntax & RE_CONTEXT_INDEP_OPS))
+ goto normal_char;
+ }
+
+ {
+ /* Are we optimizing this jump? */
+ boolean keep_string_p = false;
+
+ /* 1 means zero (many) matches is allowed. */
+ char zero_times_ok = 0, many_times_ok = 0;
+
+ /* If there is a sequence of repetition chars, collapse it
+ down to just one (the right one). We can't combine
+ interval operators with these because of, e.g., `a{2}*',
+ which should only match an even number of `a's. */
+
+ for (;;)
+ {
+ zero_times_ok |= c != '+';
+ many_times_ok |= c != '?';
+
+ if (p == pend)
+ break;
+
+ PATFETCH (c);
+
+ if (c == '*'
+ || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
+ ;
+
+ else if (syntax & RE_BK_PLUS_QM && c == '\\')
+ {
+ if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
+
+ PATFETCH (c1);
+ if (!(c1 == '+' || c1 == '?'))
+ {
+ PATUNFETCH;
+ PATUNFETCH;
+ break;
+ }
+
+ c = c1;
+ }
+ else
+ {
+ PATUNFETCH;
+ break;
+ }
+
+ /* If we get here, we found another repeat character. */
+ }
+
+ /* Star, etc. applied to an empty pattern is equivalent
+ to an empty pattern. */
+ if (!laststart)
+ break;
+
+ /* Now we know whether or not zero matches is allowed
+ and also whether or not two or more matches is allowed. */
+ if (many_times_ok)
+ { /* More than one repetition is allowed, so put in at the
+ end a backward relative jump from `b' to before the next
+ jump we're going to put in below (which jumps from
+ laststart to after this jump).
+
+ But if we are at the `*' in the exact sequence `.*\n',
+ insert an unconditional jump backwards to the .,
+ instead of the beginning of the loop. This way we only
+ push a failure point once, instead of every time
+ through the loop. */
+ assert (p - 1 > pattern);
+
+ /* Allocate the space for the jump. */
+ GET_BUFFER_SPACE (3);
+
+ /* We know we are not at the first character of the pattern,
+ because laststart was nonzero. And we've already
+ incremented `p', by the way, to be the character after
+ the `*'. Do we have to do something analogous here
+ for null bytes, because of RE_DOT_NOT_NULL? */
+ if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
&& zero_times_ok
- && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
- && !(syntax & RE_DOT_NEWLINE))
- { /* We have .*\n. */
- STORE_JUMP (jump, b, laststart);
- keep_string_p = true;
- }
- else
- /* Anything else. */
- STORE_JUMP (maybe_pop_jump, b, laststart - 3);
-
- /* We've added more stuff to the buffer. */
- b += 3;
- }
-
- /* On failure, jump from laststart to b + 3, which will be the
- end of the buffer after this jump is inserted. */
- GET_BUFFER_SPACE (3);
- INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
- : on_failure_jump,
- laststart, b + 3);
- pending_exact = 0;
- b += 3;
-
- if (!zero_times_ok)
- {
- /* At least one repetition is required, so insert a
- `dummy_failure_jump' before the initial
- `on_failure_jump' instruction of the loop. This
- effects a skip over that instruction the first time
- we hit that loop. */
- GET_BUFFER_SPACE (3);
- INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
- b += 3;
- }
- }
+ && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
+ && !(syntax & RE_DOT_NEWLINE))
+ { /* We have .*\n. */
+ STORE_JUMP (jump, b, laststart);
+ keep_string_p = true;
+ }
+ else
+ /* Anything else. */
+ STORE_JUMP (maybe_pop_jump, b, laststart - 3);
+
+ /* We've added more stuff to the buffer. */
+ b += 3;
+ }
+
+ /* On failure, jump from laststart to b + 3, which will be the
+ end of the buffer after this jump is inserted. */
+ GET_BUFFER_SPACE (3);
+ INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
+ : on_failure_jump,
+ laststart, b + 3);
+ pending_exact = 0;
+ b += 3;
+
+ if (!zero_times_ok)
+ {
+ /* At least one repetition is required, so insert a
+ `dummy_failure_jump' before the initial
+ `on_failure_jump' instruction of the loop. This
+ effects a skip over that instruction the first time
+ we hit that loop. */
+ GET_BUFFER_SPACE (3);
+ INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
+ b += 3;
+ }
+ }
break;
case '.':
- laststart = b;
- BUF_PUSH (anychar);
- break;
+ laststart = b;
+ BUF_PUSH (anychar);
+ break;
- case '[':
- {
- boolean had_char_class = false;
+ case '[':
+ {
+ CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
- if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+ if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
- /* Ensure that we have enough space to push a charset: the
- opcode, the length count, and the bitset; 34 bytes in all. */
+ /* Ensure that we have enough space to push a charset: the
+ opcode, the length count, and the bitset; 34 bytes in all. */
GET_BUFFER_SPACE (34);
- laststart = b;
-
- /* We test `*p == '^' twice, instead of using an if
- statement, so we only need one BUF_PUSH. */
- BUF_PUSH (*p == '^' ? charset_not : charset);
- if (*p == '^')
- p++;
-
- /* Remember the first position in the bracket expression. */
- p1 = p;
-
- /* Push the number of bytes in the bitmap. */
- BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
-
- /* Clear the whole map. */
- bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
-
- /* charset_not matches newline according to a syntax bit. */
- if ((re_opcode_t) b[-2] == charset_not
- && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
- SET_LIST_BIT ('\n');
-
- /* Read in characters and ranges, setting map bits. */
- for (;;)
- {
- if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+ laststart = b;
- PATFETCH (c);
-
- /* \ might escape characters inside [...] and [^...]. */
- if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
- {
- if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
+ /* We test `*p == '^' twice, instead of using an if
+ statement, so we only need one BUF_PUSH. */
+ BUF_PUSH (*p == '^' ? charset_not : charset);
+ if (*p == '^')
+ p++;
- PATFETCH (c1);
- SET_LIST_BIT (c1);
- continue;
- }
+ /* Remember the first position in the bracket expression. */
+ p1 = p;
- /* Could be the end of the bracket expression. If it's
- not (i.e., when the bracket expression is `[]' so
- far), the ']' character bit gets set way below. */
- if (c == ']' && p != p1 + 1)
- break;
+ /* Push the number of bytes in the bitmap. */
+ BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
- /* Look ahead to see if it's a range when the last thing
- was a character class. */
- if (had_char_class && c == '-' && *p != ']')
- FREE_STACK_RETURN (REG_ERANGE);
-
- /* Look ahead to see if it's a range when the last thing
- was a character: if this is a hyphen not at the
- beginning or the end of a list, then it's the range
- operator. */
- if (c == '-'
- && !(p - 2 >= pattern && p[-2] == '[')
- && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
- && *p != ']')
- {
- reg_errcode_t ret
- = compile_range (&p, pend, translate, syntax, b);
- if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
- }
+ /* Clear the whole map. */
+ bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
- else if (p[0] == '-' && p[1] != ']')
- { /* This handles ranges made up of characters only. */
- reg_errcode_t ret;
+ /* charset_not matches newline according to a syntax bit. */
+ if ((re_opcode_t) b[-2] == charset_not
+ && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
+ SET_LIST_BIT ('\n');
- /* Move past the `-'. */
- PATFETCH (c1);
+ /* Read in characters and ranges, setting map bits. */
+ for (;;)
+ {
+ int len;
+ boolean escaped_char = false;
- ret = compile_range (&p, pend, translate, syntax, b);
- if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
- }
+ if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
- /* See if we're at the beginning of a possible character
- class. */
+ PATFETCH (c);
- else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
- { /* Leave room for the null. */
- char str[CHAR_CLASS_MAX_LENGTH + 1];
+ /* \ might escape characters inside [...] and [^...]. */
+ if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
+ {
+ if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
PATFETCH (c);
- c1 = 0;
-
- /* If pattern is `[[:'. */
- if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
-
- for (;;)
- {
- PATFETCH (c);
- if (c == ':' || c == ']' || p == pend
- || c1 == CHAR_CLASS_MAX_LENGTH)
- break;
- str[c1++] = c;
- }
- str[c1] = '\0';
-
- /* If isn't a word bracketed by `[:' and:`]':
- undo the ending character, the letters, and leave
- the leading `:' and `[' (but set bits for them). */
- if (c == ':' && *p == ']')
- {
- int ch;
- boolean is_alnum = STREQ (str, "alnum");
- boolean is_alpha = STREQ (str, "alpha");
- boolean is_blank = STREQ (str, "blank");
- boolean is_cntrl = STREQ (str, "cntrl");
- boolean is_digit = STREQ (str, "digit");
- boolean is_graph = STREQ (str, "graph");
- boolean is_lower = STREQ (str, "lower");
- boolean is_print = STREQ (str, "print");
- boolean is_punct = STREQ (str, "punct");
- boolean is_space = STREQ (str, "space");
- boolean is_upper = STREQ (str, "upper");
- boolean is_xdigit = STREQ (str, "xdigit");
-
- if (!IS_CHAR_CLASS (str))
+ escaped_char = true;
+ }
+ else
+ {
+ /* Could be the end of the bracket expression. If it's
+ not (i.e., when the bracket expression is `[]' so
+ far), the ']' character bit gets set way below. */
+ if (c == ']' && p != p1 + 1)
+ break;
+ }
+
+ /* If C indicates start of multibyte char, get the
+ actual character code in C, and set the pattern
+ pointer P to the next character boundary. */
+ if (bufp->multibyte && BASE_LEADING_CODE_P (c))
+ {
+ PATUNFETCH;
+ c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
+ p += len;
+ }
+ /* What should we do for the character which is
+ greater than 0x7F, but not BASE_LEADING_CODE_P?
+ XXX */
+
+ /* See if we're at the beginning of a possible character
+ class. */
+
+ else if (!escaped_char &&
+ syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
+ { /* Leave room for the null. */
+ char str[CHAR_CLASS_MAX_LENGTH + 1];
+
+ PATFETCH (c);
+ c1 = 0;
+
+ /* If pattern is `[[:'. */
+ if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+
+ for (;;)
+ {
+ PATFETCH (c);
+ if (c == ':' || c == ']' || p == pend
+ || c1 == CHAR_CLASS_MAX_LENGTH)
+ break;
+ str[c1++] = c;
+ }
+ str[c1] = '\0';
+
+ /* If isn't a word bracketed by `[:' and `:]':
+ undo the ending character, the letters, and
+ leave the leading `:' and `[' (but set bits for
+ them). */
+ if (c == ':' && *p == ']')
+ {
+ int ch;
+ boolean is_alnum = STREQ (str, "alnum");
+ boolean is_alpha = STREQ (str, "alpha");
+ boolean is_blank = STREQ (str, "blank");
+ boolean is_cntrl = STREQ (str, "cntrl");
+ boolean is_digit = STREQ (str, "digit");
+ boolean is_graph = STREQ (str, "graph");
+ boolean is_lower = STREQ (str, "lower");
+ boolean is_print = STREQ (str, "print");
+ boolean is_punct = STREQ (str, "punct");
+ boolean is_space = STREQ (str, "space");
+ boolean is_upper = STREQ (str, "upper");
+ boolean is_xdigit = STREQ (str, "xdigit");
+
+ if (!IS_CHAR_CLASS (str))
FREE_STACK_RETURN (REG_ECTYPE);
- /* Throw away the ] at the end of the character
- class. */
- PATFETCH (c);
+ /* Throw away the ] at the end of the character
+ class. */
+ PATFETCH (c);
- if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+ if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
- for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
- {
+ for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
+ {
int translated = TRANSLATE (ch);
/* This was split into 3 if's to
avoid an arbitrary limit in some compiler. */
- if ( (is_alnum && ISALNUM (ch))
- || (is_alpha && ISALPHA (ch))
- || (is_blank && ISBLANK (ch))
- || (is_cntrl && ISCNTRL (ch)))
+ if ( (is_alnum && ISALNUM (ch))
+ || (is_alpha && ISALPHA (ch))
+ || (is_blank && ISBLANK (ch))
+ || (is_cntrl && ISCNTRL (ch)))
SET_LIST_BIT (translated);
if ( (is_digit && ISDIGIT (ch))
- || (is_graph && ISGRAPH (ch))
- || (is_lower && ISLOWER (ch))
- || (is_print && ISPRINT (ch)))
+ || (is_graph && ISGRAPH (ch))
+ || (is_lower && ISLOWER (ch))
+ || (is_print && ISPRINT (ch)))
SET_LIST_BIT (translated);
if ( (is_punct && ISPUNCT (ch))
- || (is_space && ISSPACE (ch))
- || (is_upper && ISUPPER (ch))
- || (is_xdigit && ISXDIGIT (ch)))
+ || (is_space && ISSPACE (ch))
+ || (is_upper && ISUPPER (ch))
+ || (is_xdigit && ISXDIGIT (ch)))
SET_LIST_BIT (translated);
- }
- had_char_class = true;
- }
- else
+ }
+
+ /* Repeat the loop. */
+ continue;
+ }
+ else
+ {
+ c1++;
+ while (c1--)
+ PATUNFETCH;
+ SET_LIST_BIT ('[');
+
+ /* Because the `:' may starts the range, we
+ can't simply set bit and repeat the loop.
+ Instead, just set it to C and handle below. */
+ c = ':';
+ }
+ }
+
+ if (p < pend && p[0] == '-' && p[1] != ']')
+ {
+
+ /* Discard the `-'. */
+ PATFETCH (c1);
+
+ /* Fetch the character which ends the range. */
+ PATFETCH (c1);
+ if (bufp->multibyte && BASE_LEADING_CODE_P (c1))
{
- c1++;
- while (c1--)
- PATUNFETCH;
- SET_LIST_BIT ('[');
- SET_LIST_BIT (':');
- had_char_class = false;
+ PATUNFETCH;
+ c1 = STRING_CHAR_AND_LENGTH (p, pend - p, len);
+ p += len;
}
+
+ if (!SAME_CHARSET_P (c, c1))
+ FREE_STACK_RETURN (REG_ERANGE);
}
+ else
+ /* Range from C to C. */
+ c1 = c;
+
+ /* Set the range ... */
+ if (SINGLE_BYTE_CHAR_P (c))
+ /* ... into bitmap. */
+ {
+ unsigned this_char;
+ int range_start = c, range_end = c1;
+
+ /* If the start is after the end, the range is empty. */
+ if (range_start > range_end)
+ {
+ if (syntax & RE_NO_EMPTY_RANGES)
+ FREE_STACK_RETURN (REG_ERANGE);
+ /* Else, repeat the loop. */
+ }
+ else
+ {
+ for (this_char = range_start; this_char <= range_end;
+ this_char++)
+ SET_LIST_BIT (TRANSLATE (this_char));
+ }
+ }
else
- {
- had_char_class = false;
- SET_LIST_BIT (c);
- }
+ /* ... into range table. */
+ SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
}
- /* Discard any (non)matching list bytes that are all 0 at the
- end of the map. Decrease the map-length byte too. */
- while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
- b[-1]--;
- b += b[-1];
- }
- break;
+ /* Discard any (non)matching list bytes that are all 0 at the
+ end of the map. Decrease the map-length byte too. */
+ while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
+ b[-1]--;
+ b += b[-1];
+ /* Build real range table from work area. */
+ if (RANGE_TABLE_WORK_USED (range_table_work))
+ {
+ int i;
+ int used = RANGE_TABLE_WORK_USED (range_table_work);
- case '(':
- if (syntax & RE_NO_BK_PARENS)
- goto handle_open;
- else
- goto normal_char;
+ /* Allocate space for COUNT + RANGE_TABLE. Needs two
+ bytes for COUNT and three bytes for each character. */
+ GET_BUFFER_SPACE (2 + used * 3);
+ /* Indicate the existence of range table. */
+ laststart[1] |= 0x80;
- case ')':
- if (syntax & RE_NO_BK_PARENS)
- goto handle_close;
- else
- goto normal_char;
+ STORE_NUMBER_AND_INCR (b, used / 2);
+ for (i = 0; i < used; i++)
+ STORE_CHARACTER_AND_INCR
+ (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
+ }
+ }
+ break;
- case '\n':
- if (syntax & RE_NEWLINE_ALT)
- goto handle_alt;
- else
- goto normal_char;
+ case '(':
+ if (syntax & RE_NO_BK_PARENS)
+ goto handle_open;
+ else
+ goto normal_char;
- case '|':
- if (syntax & RE_NO_BK_VBAR)
- goto handle_alt;
- else
- goto normal_char;
+ case ')':
+ if (syntax & RE_NO_BK_PARENS)
+ goto handle_close;
+ else
+ goto normal_char;
- case '{':
- if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
- goto handle_interval;
- else
- goto normal_char;
+ case '\n':
+ if (syntax & RE_NEWLINE_ALT)
+ goto handle_alt;
+ else
+ goto normal_char;
- case '\\':
- if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
+ case '|':
+ if (syntax & RE_NO_BK_VBAR)
+ goto handle_alt;
+ else
+ goto normal_char;
+
+
+ case '{':
+ if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
+ goto handle_interval;
+ else
+ goto normal_char;
+
+
+ case '\\':
+ if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
+
+ /* Do not translate the character after the \, so that we can
+ distinguish, e.g., \B from \b, even if we normally would
+ translate, e.g., B to b. */
+ PATFETCH_RAW (c);
+
+ switch (c)
+ {
+ case '(':
+ if (syntax & RE_NO_BK_PARENS)
+ goto normal_backslash;
+
+ handle_open:
+ bufp->re_nsub++;
+ regnum++;
+
+ if (COMPILE_STACK_FULL)
+ {
+ RETALLOC (compile_stack.stack, compile_stack.size << 1,
+ compile_stack_elt_t);
+ if (compile_stack.stack == NULL) return REG_ESPACE;
+
+ compile_stack.size <<= 1;
+ }
+
+ /* These are the values to restore when we hit end of this
+ group. They are all relative offsets, so that if the
+ whole pattern moves because of realloc, they will still
+ be valid. */
+ COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
+ COMPILE_STACK_TOP.fixup_alt_jump
+ = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
+ COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
+ COMPILE_STACK_TOP.regnum = regnum;
+
+ /* We will eventually replace the 0 with the number of
+ groups inner to this one. But do not push a
+ start_memory for groups beyond the last one we can
+ represent in the compiled pattern. */
+ if (regnum <= MAX_REGNUM)
+ {
+ COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
+ BUF_PUSH_3 (start_memory, regnum, 0);
+ }
+
+ compile_stack.avail++;
+
+ fixup_alt_jump = 0;
+ laststart = 0;
+ begalt = b;
+ /* If we've reached MAX_REGNUM groups, then this open
+ won't actually generate any code, so we'll have to
+ clear pending_exact explicitly. */
+ pending_exact = 0;
+ break;
+
+
+ case ')':
+ if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
+
+ if (COMPILE_STACK_EMPTY)
+ if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
+ goto normal_backslash;
+ else
+ FREE_STACK_RETURN (REG_ERPAREN);
+
+ handle_close:
+ if (fixup_alt_jump)
+ { /* Push a dummy failure point at the end of the
+ alternative for a possible future
+ `pop_failure_jump' to pop. See comments at
+ `push_dummy_failure' in `re_match_2'. */
+ BUF_PUSH (push_dummy_failure);
+
+ /* We allocated space for this jump when we assigned
+ to `fixup_alt_jump', in the `handle_alt' case below. */
+ STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
+ }
+
+ /* See similar code for backslashed left paren above. */
+ if (COMPILE_STACK_EMPTY)
+ if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
+ goto normal_char;
+ else
+ FREE_STACK_RETURN (REG_ERPAREN);
+
+ /* Since we just checked for an empty stack above, this
+ ``can't happen''. */
+ assert (compile_stack.avail != 0);
+ {
+ /* We don't just want to restore into `regnum', because
+ later groups should continue to be numbered higher,
+ as in `(ab)c(de)' -- the second group is #2. */
+ regnum_t this_group_regnum;
+
+ compile_stack.avail--;
+ begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
+ fixup_alt_jump
+ = COMPILE_STACK_TOP.fixup_alt_jump
+ ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
+ : 0;
+ laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
+ this_group_regnum = COMPILE_STACK_TOP.regnum;
+ /* If we've reached MAX_REGNUM groups, then this open
+ won't actually generate any code, so we'll have to
+ clear pending_exact explicitly. */
+ pending_exact = 0;
- /* Do not translate the character after the \, so that we can
- distinguish, e.g., \B from \b, even if we normally would
- translate, e.g., B to b. */
- PATFETCH_RAW (c);
+ /* We're at the end of the group, so now we know how many
+ groups were inside this one. */
+ if (this_group_regnum <= MAX_REGNUM)
+ {
+ unsigned char *inner_group_loc
+ = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
+
+ *inner_group_loc = regnum - this_group_regnum;
+ BUF_PUSH_3 (stop_memory, this_group_regnum,
+ regnum - this_group_regnum);
+ }
+ }
+ break;
+
+
+ case '|': /* `\|'. */
+ if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
+ goto normal_backslash;
+ handle_alt:
+ if (syntax & RE_LIMITED_OPS)
+ goto normal_char;
+
+ /* Insert before the previous alternative a jump which
+ jumps to this alternative if the former fails. */
+ GET_BUFFER_SPACE (3);
+ INSERT_JUMP (on_failure_jump, begalt, b + 6);
+ pending_exact = 0;
+ b += 3;
+
+ /* The alternative before this one has a jump after it
+ which gets executed if it gets matched. Adjust that
+ jump so it will jump to this alternative's analogous
+ jump (put in below, which in turn will jump to the next
+ (if any) alternative's such jump, etc.). The last such
+ jump jumps to the correct final destination. A picture:
+ _____ _____
+ | | | |
+ | v | v
+ a | b | c
+
+ If we are at `b', then fixup_alt_jump right now points to a
+ three-byte space after `a'. We'll put in the jump, set
+ fixup_alt_jump to right after `b', and leave behind three
+ bytes which we'll fill in when we get to after `c'. */
+
+ if (fixup_alt_jump)
+ STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
+
+ /* Mark and leave space for a jump after this alternative,
+ to be filled in later either by next alternative or
+ when know we're at the end of a series of alternatives. */
+ fixup_alt_jump = b;
+ GET_BUFFER_SPACE (3);
+ b += 3;
+
+ laststart = 0;
+ begalt = b;
+ break;
+
+
+ case '{':
+ /* If \{ is a literal. */
+ if (!(syntax & RE_INTERVALS)
+ /* If we're at `\{' and it's not the open-interval
+ operator. */
+ || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
+ || (p - 2 == pattern && p == pend))
+ goto normal_backslash;
+
+ handle_interval:
+ {
+ /* If got here, then the syntax allows intervals. */
+
+ /* At least (most) this many matches must be made. */
+ int lower_bound = -1, upper_bound = -1;
+
+ beg_interval = p - 1;
+
+ if (p == pend)
+ {
+ if (syntax & RE_NO_BK_BRACES)
+ goto unfetch_interval;
+ else
+ FREE_STACK_RETURN (REG_EBRACE);
+ }
+
+ GET_UNSIGNED_NUMBER (lower_bound);
+
+ if (c == ',')
+ {
+ GET_UNSIGNED_NUMBER (upper_bound);
+ if (upper_bound < 0) upper_bound = RE_DUP_MAX;
+ }
+ else
+ /* Interval such as `{1}' => match exactly once. */
+ upper_bound = lower_bound;
+
+ if (lower_bound < 0 || upper_bound > RE_DUP_MAX
+ || lower_bound > upper_bound)
+ {
+ if (syntax & RE_NO_BK_BRACES)
+ goto unfetch_interval;
+ else
+ FREE_STACK_RETURN (REG_BADBR);
+ }
+
+ if (!(syntax & RE_NO_BK_BRACES))
+ {
+ if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
+
+ PATFETCH (c);
+ }
+
+ if (c != '}')
+ {
+ if (syntax & RE_NO_BK_BRACES)
+ goto unfetch_interval;
+ else
+ FREE_STACK_RETURN (REG_BADBR);
+ }
+
+ /* We just parsed a valid interval. */
+
+ /* If it's invalid to have no preceding re. */
+ if (!laststart)
+ {
+ if (syntax & RE_CONTEXT_INVALID_OPS)
+ FREE_STACK_RETURN (REG_BADRPT);
+ else if (syntax & RE_CONTEXT_INDEP_OPS)
+ laststart = b;
+ else
+ goto unfetch_interval;
+ }
+
+ /* If the upper bound is zero, don't want to succeed at
+ all; jump from `laststart' to `b + 3', which will be
+ the end of the buffer after we insert the jump. */
+ if (upper_bound == 0)
+ {
+ GET_BUFFER_SPACE (3);
+ INSERT_JUMP (jump, laststart, b + 3);
+ b += 3;
+ }
+
+ /* Otherwise, we have a nontrivial interval. When
+ we're all done, the pattern will look like:
+ set_number_at <jump count> <upper bound>
+ set_number_at <succeed_n count> <lower bound>
+ succeed_n <after jump addr> <succeed_n count>
+ <body of loop>
+ jump_n <succeed_n addr> <jump count>
+ (The upper bound and `jump_n' are omitted if
+ `upper_bound' is 1, though.) */
+ else
+ { /* If the upper bound is > 1, we need to insert
+ more at the end of the loop. */
+ unsigned nbytes = 10 + (upper_bound > 1) * 10;
+
+ GET_BUFFER_SPACE (nbytes);
+
+ /* Initialize lower bound of the `succeed_n', even
+ though it will be set during matching by its
+ attendant `set_number_at' (inserted next),
+ because `re_compile_fastmap' needs to know.
+ Jump to the `jump_n' we might insert below. */
+ INSERT_JUMP2 (succeed_n, laststart,
+ b + 5 + (upper_bound > 1) * 5,
+ lower_bound);
+ b += 5;
+
+ /* Code to initialize the lower bound. Insert
+ before the `succeed_n'. The `5' is the last two
+ bytes of this `set_number_at', plus 3 bytes of
+ the following `succeed_n'. */
+ insert_op2 (set_number_at, laststart, 5, lower_bound, b);
+ b += 5;
+
+ if (upper_bound > 1)
+ { /* More than one repetition is allowed, so
+ append a backward jump to the `succeed_n'
+ that starts this interval.
+
+ When we've reached this during matching,
+ we'll have matched the interval once, so
+ jump back only `upper_bound - 1' times. */
+ STORE_JUMP2 (jump_n, b, laststart + 5,
+ upper_bound - 1);
+ b += 5;
+
+ /* The location we want to set is the second
+ parameter of the `jump_n'; that is `b-2' as
+ an absolute address. `laststart' will be
+ the `set_number_at' we're about to insert;
+ `laststart+3' the number to set, the source
+ for the relative address. But we are
+ inserting into the middle of the pattern --
+ so everything is getting moved up by 5.
+ Conclusion: (b - 2) - (laststart + 3) + 5,
+ i.e., b - laststart.
+
+ We insert this at the beginning of the loop
+ so that if we fail during matching, we'll
+ reinitialize the bounds. */
+ insert_op2 (set_number_at, laststart, b - laststart,
+ upper_bound - 1, b);
+ b += 5;
+ }
+ }
+ pending_exact = 0;
+ beg_interval = NULL;
+ }
+ break;
+
+ unfetch_interval:
+ /* If an invalid interval, match the characters as literals. */
+ assert (beg_interval);
+ p = beg_interval;
+ beg_interval = NULL;
+
+ /* normal_char and normal_backslash need `c'. */
+ PATFETCH (c);
+
+ if (!(syntax & RE_NO_BK_BRACES))
+ {
+ if (p > pattern && p[-1] == '\\')
+ goto normal_backslash;
+ }
+ goto normal_char;
- switch (c)
- {
- case '(':
- if (syntax & RE_NO_BK_PARENS)
- goto normal_backslash;
+#ifdef emacs
+ /* There is no way to specify the before_dot and after_dot
+ operators. rms says this is ok. --karl */
+ case '=':
+ BUF_PUSH (at_dot);
+ break;
+
+ case 's':
+ laststart = b;
+ PATFETCH (c);
+ BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
+ break;
+
+ case 'S':
+ laststart = b;
+ PATFETCH (c);
+ BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
+ break;
+
+ case 'c':
+ laststart = b;
+ PATFETCH_RAW (c);
+ BUF_PUSH_2 (categoryspec, c);
+ break;
- handle_open:
- bufp->re_nsub++;
- regnum++;
+ case 'C':
+ laststart = b;
+ PATFETCH_RAW (c);
+ BUF_PUSH_2 (notcategoryspec, c);
+ break;
+#endif /* emacs */
- if (COMPILE_STACK_FULL)
- {
- RETALLOC (compile_stack.stack, compile_stack.size << 1,
- compile_stack_elt_t);
- if (compile_stack.stack == NULL) return REG_ESPACE;
- compile_stack.size <<= 1;
- }
+ case 'w':
+ laststart = b;
+ BUF_PUSH (wordchar);
+ break;
- /* These are the values to restore when we hit end of this
- group. They are all relative offsets, so that if the
- whole pattern moves because of realloc, they will still
- be valid. */
- COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
- COMPILE_STACK_TOP.fixup_alt_jump
- = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
- COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
- COMPILE_STACK_TOP.regnum = regnum;
-
- /* We will eventually replace the 0 with the number of
- groups inner to this one. But do not push a
- start_memory for groups beyond the last one we can
- represent in the compiled pattern. */
- if (regnum <= MAX_REGNUM)
- {
- COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
- BUF_PUSH_3 (start_memory, regnum, 0);
- }
- compile_stack.avail++;
+ case 'W':
+ laststart = b;
+ BUF_PUSH (notwordchar);
+ break;
- fixup_alt_jump = 0;
- laststart = 0;
- begalt = b;
- /* If we've reached MAX_REGNUM groups, then this open
- won't actually generate any code, so we'll have to
- clear pending_exact explicitly. */
- pending_exact = 0;
- break;
+ case '<':
+ BUF_PUSH (wordbeg);
+ break;
- case ')':
- if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
+ case '>':
+ BUF_PUSH (wordend);
+ break;
- if (COMPILE_STACK_EMPTY)
- if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
- goto normal_backslash;
- else
- FREE_STACK_RETURN (REG_ERPAREN);
-
- handle_close:
- if (fixup_alt_jump)
- { /* Push a dummy failure point at the end of the
- alternative for a possible future
- `pop_failure_jump' to pop. See comments at
- `push_dummy_failure' in `re_match_2'. */
- BUF_PUSH (push_dummy_failure);
-
- /* We allocated space for this jump when we assigned
- to `fixup_alt_jump', in the `handle_alt' case below. */
- STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
- }
+ case 'b':
+ BUF_PUSH (wordbound);
+ break;
- /* See similar code for backslashed left paren above. */
- if (COMPILE_STACK_EMPTY)
- if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
- goto normal_char;
- else
- FREE_STACK_RETURN (REG_ERPAREN);
+ case 'B':
+ BUF_PUSH (notwordbound);
+ break;
- /* Since we just checked for an empty stack above, this
- ``can't happen''. */
- assert (compile_stack.avail != 0);
- {
- /* We don't just want to restore into `regnum', because
- later groups should continue to be numbered higher,
- as in `(ab)c(de)' -- the second group is #2. */
- regnum_t this_group_regnum;
-
- compile_stack.avail--;
- begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
- fixup_alt_jump
- = COMPILE_STACK_TOP.fixup_alt_jump
- ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
- : 0;
- laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
- this_group_regnum = COMPILE_STACK_TOP.regnum;
- /* If we've reached MAX_REGNUM groups, then this open
- won't actually generate any code, so we'll have to
- clear pending_exact explicitly. */
- pending_exact = 0;
+ case '`':
+ BUF_PUSH (begbuf);
+ break;
- /* We're at the end of the group, so now we know how many
- groups were inside this one. */
- if (this_group_regnum <= MAX_REGNUM)
- {
- unsigned char *inner_group_loc
- = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
+ case '\'':
+ BUF_PUSH (endbuf);
+ break;
- *inner_group_loc = regnum - this_group_regnum;
- BUF_PUSH_3 (stop_memory, this_group_regnum,
- regnum - this_group_regnum);
- }
- }
- break;
+ case '1': case '2': case '3': case '4': case '5':
+ case '6': case '7': case '8': case '9':
+ if (syntax & RE_NO_BK_REFS)
+ goto normal_char;
+ c1 = c - '0';
- case '|': /* `\|'. */
- if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
- goto normal_backslash;
- handle_alt:
- if (syntax & RE_LIMITED_OPS)
- goto normal_char;
+ if (c1 > regnum)
+ FREE_STACK_RETURN (REG_ESUBREG);
- /* Insert before the previous alternative a jump which
- jumps to this alternative if the former fails. */
- GET_BUFFER_SPACE (3);
- INSERT_JUMP (on_failure_jump, begalt, b + 6);
- pending_exact = 0;
- b += 3;
-
- /* The alternative before this one has a jump after it
- which gets executed if it gets matched. Adjust that
- jump so it will jump to this alternative's analogous
- jump (put in below, which in turn will jump to the next
- (if any) alternative's such jump, etc.). The last such
- jump jumps to the correct final destination. A picture:
- _____ _____
- | | | |
- | v | v
- a | b | c
-
- If we are at `b', then fixup_alt_jump right now points to a
- three-byte space after `a'. We'll put in the jump, set
- fixup_alt_jump to right after `b', and leave behind three
- bytes which we'll fill in when we get to after `c'. */
-
- if (fixup_alt_jump)
- STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
-
- /* Mark and leave space for a jump after this alternative,
- to be filled in later either by next alternative or
- when know we're at the end of a series of alternatives. */
- fixup_alt_jump = b;
- GET_BUFFER_SPACE (3);
- b += 3;
-
- laststart = 0;
- begalt = b;
- break;
+ /* Can't back reference to a subexpression if inside of it. */
+ if (group_in_compile_stack (compile_stack, c1))
+ goto normal_char;
+ laststart = b;
+ BUF_PUSH_2 (duplicate, c1);
+ break;
- case '{':
- /* If \{ is a literal. */
- if (!(syntax & RE_INTERVALS)
- /* If we're at `\{' and it's not the open-interval
- operator. */
- || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
- || (p - 2 == pattern && p == pend))
- goto normal_backslash;
- handle_interval:
- {
- /* If got here, then the syntax allows intervals. */
+ case '+':
+ case '?':
+ if (syntax & RE_BK_PLUS_QM)
+ goto handle_plus;
+ else
+ goto normal_backslash;
- /* At least (most) this many matches must be made. */
- int lower_bound = -1, upper_bound = -1;
-
- beg_interval = p - 1;
-
- if (p == pend)
- {
- if (syntax & RE_NO_BK_BRACES)
- goto unfetch_interval;
- else
- FREE_STACK_RETURN (REG_EBRACE);
- }
-
- GET_UNSIGNED_NUMBER (lower_bound);
-
- if (c == ',')
- {
- GET_UNSIGNED_NUMBER (upper_bound);
- if (upper_bound < 0) upper_bound = RE_DUP_MAX;
- }
- else
- /* Interval such as `{1}' => match exactly once. */
- upper_bound = lower_bound;
-
- if (lower_bound < 0 || upper_bound > RE_DUP_MAX
- || lower_bound > upper_bound)
- {
- if (syntax & RE_NO_BK_BRACES)
- goto unfetch_interval;
- else
- FREE_STACK_RETURN (REG_BADBR);
- }
-
- if (!(syntax & RE_NO_BK_BRACES))
- {
- if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
-
- PATFETCH (c);
- }
-
- if (c != '}')
- {
- if (syntax & RE_NO_BK_BRACES)
- goto unfetch_interval;
- else
- FREE_STACK_RETURN (REG_BADBR);
- }
-
- /* We just parsed a valid interval. */
-
- /* If it's invalid to have no preceding re. */
- if (!laststart)
- {
- if (syntax & RE_CONTEXT_INVALID_OPS)
- FREE_STACK_RETURN (REG_BADRPT);
- else if (syntax & RE_CONTEXT_INDEP_OPS)
- laststart = b;
- else
- goto unfetch_interval;
- }
-
- /* If the upper bound is zero, don't want to succeed at
- all; jump from `laststart' to `b + 3', which will be
- the end of the buffer after we insert the jump. */
- if (upper_bound == 0)
- {
- GET_BUFFER_SPACE (3);
- INSERT_JUMP (jump, laststart, b + 3);
- b += 3;
- }
-
- /* Otherwise, we have a nontrivial interval. When
- we're all done, the pattern will look like:
- set_number_at <jump count> <upper bound>
- set_number_at <succeed_n count> <lower bound>
- succeed_n <after jump addr> <succeed_n count>
- <body of loop>
- jump_n <succeed_n addr> <jump count>
- (The upper bound and `jump_n' are omitted if
- `upper_bound' is 1, though.) */
- else
- { /* If the upper bound is > 1, we need to insert
- more at the end of the loop. */
- unsigned nbytes = 10 + (upper_bound > 1) * 10;
-
- GET_BUFFER_SPACE (nbytes);
-
- /* Initialize lower bound of the `succeed_n', even
- though it will be set during matching by its
- attendant `set_number_at' (inserted next),
- because `re_compile_fastmap' needs to know.
- Jump to the `jump_n' we might insert below. */
- INSERT_JUMP2 (succeed_n, laststart,
- b + 5 + (upper_bound > 1) * 5,
- lower_bound);
- b += 5;
-
- /* Code to initialize the lower bound. Insert
- before the `succeed_n'. The `5' is the last two
- bytes of this `set_number_at', plus 3 bytes of
- the following `succeed_n'. */
- insert_op2 (set_number_at, laststart, 5, lower_bound, b);
- b += 5;
-
- if (upper_bound > 1)
- { /* More than one repetition is allowed, so
- append a backward jump to the `succeed_n'
- that starts this interval.
-
- When we've reached this during matching,
- we'll have matched the interval once, so
- jump back only `upper_bound - 1' times. */
- STORE_JUMP2 (jump_n, b, laststart + 5,
- upper_bound - 1);
- b += 5;
-
- /* The location we want to set is the second
- parameter of the `jump_n'; that is `b-2' as
- an absolute address. `laststart' will be
- the `set_number_at' we're about to insert;
- `laststart+3' the number to set, the source
- for the relative address. But we are
- inserting into the middle of the pattern --
- so everything is getting moved up by 5.
- Conclusion: (b - 2) - (laststart + 3) + 5,
- i.e., b - laststart.
-
- We insert this at the beginning of the loop
- so that if we fail during matching, we'll
- reinitialize the bounds. */
- insert_op2 (set_number_at, laststart, b - laststart,
- upper_bound - 1, b);
- b += 5;
- }
- }
- pending_exact = 0;
- beg_interval = NULL;
- }
- break;
-
- unfetch_interval:
- /* If an invalid interval, match the characters as literals. */
- assert (beg_interval);
- p = beg_interval;
- beg_interval = NULL;
-
- /* normal_char and normal_backslash need `c'. */
- PATFETCH (c);
-
- if (!(syntax & RE_NO_BK_BRACES))
- {
- if (p > pattern && p[-1] == '\\')
- goto normal_backslash;
- }
- goto normal_char;
-
-#ifdef emacs
- /* There is no way to specify the before_dot and after_dot
- operators. rms says this is ok. --karl */
- case '=':
- BUF_PUSH (at_dot);
- break;
-
- case 's':
- laststart = b;
- PATFETCH (c);
- BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
- break;
-
- case 'S':
- laststart = b;
- PATFETCH (c);
- BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
- break;
-#endif /* emacs */
-
-
- case 'w':
- laststart = b;
- BUF_PUSH (wordchar);
- break;
-
-
- case 'W':
- laststart = b;
- BUF_PUSH (notwordchar);
- break;
-
-
- case '<':
- BUF_PUSH (wordbeg);
- break;
-
- case '>':
- BUF_PUSH (wordend);
- break;
-
- case 'b':
- BUF_PUSH (wordbound);
- break;
-
- case 'B':
- BUF_PUSH (notwordbound);
- break;
-
- case '`':
- BUF_PUSH (begbuf);
- break;
-
- case '\'':
- BUF_PUSH (endbuf);
- break;
-
- case '1': case '2': case '3': case '4': case '5':
- case '6': case '7': case '8': case '9':
- if (syntax & RE_NO_BK_REFS)
- goto normal_char;
-
- c1 = c - '0';
-
- if (c1 > regnum)
- FREE_STACK_RETURN (REG_ESUBREG);
-
- /* Can't back reference to a subexpression if inside of it. */
- if (group_in_compile_stack (compile_stack, c1))
- goto normal_char;
-
- laststart = b;
- BUF_PUSH_2 (duplicate, c1);
- break;
-
-
- case '+':
- case '?':
- if (syntax & RE_BK_PLUS_QM)
- goto handle_plus;
- else
- goto normal_backslash;
-
- default:
- normal_backslash:
- /* You might think it would be useful for \ to mean
- not to translate; but if we don't translate it
- it will never match anything. */
- c = TRANSLATE (c);
- goto normal_char;
- }
- break;
+ default:
+ normal_backslash:
+ /* You might think it would be useful for \ to mean
+ not to translate; but if we don't translate it
+ it will never match anything. */
+ c = TRANSLATE (c);
+ goto normal_char;
+ }
+ break;
default:
- /* Expects the character in `c'. */
+ /* Expects the character in `c'. */
normal_char:
+ p1 = p - 1; /* P1 points the head of C. */
+#ifdef emacs
+ if (bufp->multibyte)
+ /* Set P to the next character boundary. */
+ p += MULTIBYTE_FORM_LENGTH (p1, pend - p1) - 1;
+#endif
/* If no exactn currently being built. */
- if (!pending_exact
+ if (!pending_exact
- /* If last exactn not at current position. */
- || pending_exact + *pending_exact + 1 != b
+ /* If last exactn not at current position. */
+ || pending_exact + *pending_exact + 1 != b
- /* We have only one byte following the exactn for the count. */
- || *pending_exact == (1 << BYTEWIDTH) - 1
+ /* We have only one byte following the exactn for the count. */
+ || *pending_exact >= (1 << BYTEWIDTH) - (p - p1)
- /* If followed by a repetition operator. */
- || *p == '*' || *p == '^'
+ /* If followed by a repetition operator. */
+ || *p == '*' || *p == '^'
|| ((syntax & RE_BK_PLUS_QM)
? *p == '\\' && (p[1] == '+' || p[1] == '?')
: (*p == '+' || *p == '?'))
|| ((syntax & RE_INTERVALS)
- && ((syntax & RE_NO_BK_BRACES)
+ && ((syntax & RE_NO_BK_BRACES)
? *p == '{'
- : (p[0] == '\\' && p[1] == '{'))))
+ : (p[0] == '\\' && p[1] == '{'))))
{
/* Start building a new exactn. */
- laststart = b;
+ laststart = b;
BUF_PUSH_2 (exactn, 0);
pending_exact = b - 1;
- }
+ }
+ /* Here, C may translated, therefore C may not equal to *P1. */
+ while (1)
+ {
BUF_PUSH (c);
- (*pending_exact)++;
+ (*pending_exact)++;
+ if (++p1 == p)
+ break;
+
+ /* Rest of multibyte form should be copied literally. */
+ c = *(unsigned char *)p1;
+ }
break;
- } /* switch (c) */
+ } /* switch (c) */
} /* while p != pend */
\f
/* Subroutines for `regex_compile'. */
-/* Store OP at LOC followed by two-byte integer parameter ARG. */
+/* Store OP at LOC followed by two-byte integer parameter ARG. */
static void
store_op1 (op, loc, arg)
return
/* After a subexpression? */
(*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
- /* After an alternative? */
+ /* After an alternative? */
|| (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
}
return
/* Before a subexpression? */
(syntax & RE_NO_BK_PARENS ? *next == ')'
- : next_backslash && next_next && *next_next == ')')
+ : next_backslash && next_next && *next_next == ')')
/* Before an alternative? */
|| (syntax & RE_NO_BK_VBAR ? *next == '|'
- : next_backslash && next_next && *next_next == '|');
+ : next_backslash && next_next && *next_next == '|');
}
caller isn't still at the ending character. */
(*p_ptr)++;
- /* If the start is after the end, the range is empty. */
+ /* If the start is after the end, the range is empty. */
if (range_start > range_end)
return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
re_compile_fastmap (bufp)
struct re_pattern_buffer *bufp;
{
- int j, k;
+ int i, j, k;
#ifdef MATCH_MAY_ALLOCATE
fail_stack_type fail_stack;
#endif
fail_stack_elt_t *failure_stack_ptr;
/* Assume that each path through the pattern can be null until
- proven otherwise. We set this false at the bottom of switch
+ proven otherwise. We set this false at the bottom of switch
statement, to which we get only if a particular path doesn't
match the empty string. */
boolean path_can_be_null = true;
/* We aren't doing a `succeed_n' to begin with. */
boolean succeed_n_p = false;
+ /* If all elements for base leading-codes in fastmap is set, this
+ flag is set true. */
+ boolean match_any_multibyte_characters = false;
+
+ /* Maximum code of simple (single byte) character. */
+ int simple_char_max;
+
assert (fastmap != NULL && p != NULL);
INIT_FAIL_STACK ();
- bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
+ bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
bufp->fastmap_accurate = 1; /* It will be when we're done. */
bufp->can_be_null = 0;
break;
}
- /* We should never be about to go beyond the end of the pattern. */
+ /* We should never be about to go beyond the end of the pattern. */
assert (p < pend);
switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
{
- /* I guess the idea here is to simply not bother with a fastmap
- if a backreference is used, since it's too hard to figure out
- the fastmap for the corresponding group. Setting
- `can_be_null' stops `re_search_2' from using the fastmap, so
- that is all we do. */
+ /* I guess the idea here is to simply not bother with a fastmap
+ if a backreference is used, since it's too hard to figure out
+ the fastmap for the corresponding group. Setting
+ `can_be_null' stops `re_search_2' from using the fastmap, so
+ that is all we do. */
case duplicate:
bufp->can_be_null = 1;
- goto done;
+ goto done;
/* Following are the cases which match a character. These end
- with `break'. */
+ with `break'. */
case exactn:
- fastmap[p[1]] = 1;
+ fastmap[p[1]] = 1;
break;
- case charset:
- for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
+#ifndef emacs
+ case charset:
+ for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
- fastmap[j] = 1;
+ fastmap[j] = 1;
break;
case charset_not:
/* Chars beyond end of map must be allowed. */
for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
- fastmap[j] = 1;
+ fastmap[j] = 1;
for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
- fastmap[j] = 1;
- break;
+ fastmap[j] = 1;
+ break;
case wordchar:
if (SYNTAX (j) != Sword)
fastmap[j] = 1;
break;
+#else /* emacs */
+ case charset:
+ for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
+ j >= 0; j--)
+ if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
+ fastmap[j] = 1;
+
+ if (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
+ && match_any_multibyte_characters == false)
+ {
+ /* Set fastmap[I] 1 where I is a base leading code of each
+ multibyte character in the range table. */
+ int c, count;
+
+ /* Make P points the range table. */
+ p += CHARSET_BITMAP_SIZE (&p[-2]);
+
+ /* Extract the number of ranges in range table into
+ COUNT. */
+ EXTRACT_NUMBER_AND_INCR (count, p);
+ for (; count > 0; count--, p += 2 * 3) /* XXX */
+ {
+ /* Extract the start of each range. */
+ EXTRACT_CHARACTER (c, p);
+ j = CHAR_CHARSET (c);
+ fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
+ }
+ }
+ break;
- case anychar:
+ case charset_not:
+ /* Chars beyond end of map must be allowed. End of map is
+ `127' if bufp->multibyte is nonzero. */
+ simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
+ for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
+ j < simple_char_max; j++)
+ fastmap[j] = 1;
+
+ for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
+ j >= 0; j--)
+ if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
+ fastmap[j] = 1;
+
+ if (bufp->multibyte)
+ /* Any character set can possibly contain a character
+ which doesn't match the specified set of characters. */
+ {
+ set_fastmap_for_multibyte_characters:
+ if (match_any_multibyte_characters == false)
+ {
+ for (j = 0x80; j < 0xA0; j++) /* XXX */
+ if (BASE_LEADING_CODE_P (j))
+ fastmap[j] = 1;
+ match_any_multibyte_characters = true;
+ }
+ }
+ break;
+
+
+ case wordchar:
+ simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
+ for (j = 0; j < simple_char_max; j++)
+ if (SYNTAX (j) == Sword)
+ fastmap[j] = 1;
+
+ if (bufp->multibyte)
+ /* Any character set can possibly contain a character
+ whose syntax is `Sword'. */
+ goto set_fastmap_for_multibyte_characters;
+ break;
+
+
+ case notwordchar:
+ simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
+ for (j = 0; j < simple_char_max; j++)
+ if (SYNTAX (j) != Sword)
+ fastmap[j] = 1;
+
+ if (bufp->multibyte)
+ /* Any character set can possibly contain a character
+ whose syntax is not `Sword'. */
+ goto set_fastmap_for_multibyte_characters;
+ break;
+#endif
+
+ case anychar:
{
int fastmap_newline = fastmap['\n'];
- /* `.' matches anything ... */
- for (j = 0; j < (1 << BYTEWIDTH); j++)
+ /* `.' matches anything (but if bufp->multibyte is
+ nonzero, matches `\000' .. `\127' and possible multibyte
+ character) ... */
+ if (bufp->multibyte)
+ {
+ simple_char_max = 0x80;
+
+ for (j = 0x80; j < 0xA0; j++)
+ if (BASE_LEADING_CODE_P (j))
+ fastmap[j] = 1;
+ match_any_multibyte_characters = true;
+ }
+ else
+ simple_char_max = (1 << BYTEWIDTH);
+
+ for (j = 0; j < simple_char_max; j++)
fastmap[j] = 1;
/* ... except perhaps newline. */
fastmap['\n'] = fastmap_newline;
/* Return if we have already set `can_be_null'; if we have,
- then the fastmap is irrelevant. Something's wrong here. */
+ then the fastmap is irrelevant. Something's wrong here. */
else if (bufp->can_be_null)
goto done;
}
#ifdef emacs
- case syntaxspec:
+ case wordbound:
+ case notwordbound:
+ case wordbeg:
+ case wordend:
+ case notsyntaxspec:
+ case syntaxspec:
+ /* This match depends on text properties. These end with
+ aborting optimizations. */
+ bufp->can_be_null = 1;
+ goto done;
+#if 0
k = *p++;
- for (j = 0; j < (1 << BYTEWIDTH); j++)
+ simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
+ for (j = 0; j < simple_char_max; j++)
if (SYNTAX (j) == (enum syntaxcode) k)
fastmap[j] = 1;
- break;
+ if (bufp->multibyte)
+ /* Any character set can possibly contain a character
+ whose syntax is K. */
+ goto set_fastmap_for_multibyte_characters;
+ break;
case notsyntaxspec:
k = *p++;
- for (j = 0; j < (1 << BYTEWIDTH); j++)
+ simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
+ for (j = 0; j < simple_char_max; j++)
if (SYNTAX (j) != (enum syntaxcode) k)
fastmap[j] = 1;
+
+ if (bufp->multibyte)
+ /* Any character set can possibly contain a character
+ whose syntax is not K. */
+ goto set_fastmap_for_multibyte_characters;
+ break;
+#endif
+
+
+ case categoryspec:
+ k = *p++;
+ simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
+ for (j = 0; j < simple_char_max; j++)
+ if (CHAR_HAS_CATEGORY (j, k))
+ fastmap[j] = 1;
+
+ if (bufp->multibyte)
+ /* Any character set can possibly contain a character
+ whose category is K. */
+ goto set_fastmap_for_multibyte_characters;
break;
+ case notcategoryspec:
+ k = *p++;
+ simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH);
+ for (j = 0; j < simple_char_max; j++)
+ if (!CHAR_HAS_CATEGORY (j, k))
+ fastmap[j] = 1;
+
+ if (bufp->multibyte)
+ /* Any character set can possibly contain a character
+ whose category is not K. */
+ goto set_fastmap_for_multibyte_characters;
+ break;
+
/* All cases after this match the empty string. These end with
- `continue'. */
+ `continue'. */
case before_dot:
case at_dot:
case after_dot:
- continue;
+ continue;
#endif /* emacs */
- case no_op:
- case begline:
- case endline:
+ case no_op:
+ case begline:
+ case endline:
case begbuf:
case endbuf:
+#ifndef emacs
case wordbound:
case notwordbound:
case wordbeg:
case wordend:
- case push_dummy_failure:
- continue;
+#endif
+ case push_dummy_failure:
+ continue;
case jump_n:
- case pop_failure_jump:
+ case pop_failure_jump:
case maybe_pop_jump:
case jump:
- case jump_past_alt:
+ case jump_past_alt:
case dummy_failure_jump:
- EXTRACT_NUMBER_AND_INCR (j, p);
+ EXTRACT_NUMBER_AND_INCR (j, p);
p += j;
if (j > 0)
continue;
- /* Jump backward implies we just went through the body of a
- loop and matched nothing. Opcode jumped to should be
- `on_failure_jump' or `succeed_n'. Just treat it like an
- ordinary jump. For a * loop, it has pushed its failure
- point already; if so, discard that as redundant. */
- if ((re_opcode_t) *p != on_failure_jump
+ /* Jump backward implies we just went through the body of a
+ loop and matched nothing. Opcode jumped to should be
+ `on_failure_jump' or `succeed_n'. Just treat it like an
+ ordinary jump. For a * loop, it has pushed its failure
+ point already; if so, discard that as redundant. */
+ if ((re_opcode_t) *p != on_failure_jump
&& (re_opcode_t) *p != succeed_n)
continue;
- p++;
- EXTRACT_NUMBER_AND_INCR (j, p);
- p += j;
+ p++;
+ EXTRACT_NUMBER_AND_INCR (j, p);
+ p += j;
- /* If what's on the stack is where we are now, pop it. */
- if (!FAIL_STACK_EMPTY ()
+ /* If what's on the stack is where we are now, pop it. */
+ if (!FAIL_STACK_EMPTY ()
&& fail_stack.stack[fail_stack.avail - 1].pointer == p)
- fail_stack.avail--;
+ fail_stack.avail--;
- continue;
+ continue;
- case on_failure_jump:
- case on_failure_keep_string_jump:
+ case on_failure_jump:
+ case on_failure_keep_string_jump:
handle_on_failure_jump:
- EXTRACT_NUMBER_AND_INCR (j, p);
-
- /* For some patterns, e.g., `(a?)?', `p+j' here points to the
- end of the pattern. We don't want to push such a point,
- since when we restore it above, entering the switch will
- increment `p' past the end of the pattern. We don't need
- to push such a point since we obviously won't find any more
- fastmap entries beyond `pend'. Such a pattern can match
- the null string, though. */
- if (p + j < pend)
- {
- if (!PUSH_PATTERN_OP (p + j, fail_stack))
+ EXTRACT_NUMBER_AND_INCR (j, p);
+
+ /* For some patterns, e.g., `(a?)?', `p+j' here points to the
+ end of the pattern. We don't want to push such a point,
+ since when we restore it above, entering the switch will
+ increment `p' past the end of the pattern. We don't need
+ to push such a point since we obviously won't find any more
+ fastmap entries beyond `pend'. Such a pattern can match
+ the null string, though. */
+ if (p + j < pend)
+ {
+ if (!PUSH_PATTERN_OP (p + j, fail_stack))
{
RESET_FAIL_STACK ();
return -2;
}
- }
- else
- bufp->can_be_null = 1;
-
- if (succeed_n_p)
- {
- EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
- succeed_n_p = false;
+ }
+ else
+ bufp->can_be_null = 1;
+
+ if (succeed_n_p)
+ {
+ EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
+ succeed_n_p = false;
}
- continue;
+ continue;
case succeed_n:
- /* Get to the number of times to succeed. */
- p += 2;
+ /* Get to the number of times to succeed. */
+ p += 2;
- /* Increment p past the n for when k != 0. */
- EXTRACT_NUMBER_AND_INCR (k, p);
- if (k == 0)
+ /* Increment p past the n for when k != 0. */
+ EXTRACT_NUMBER_AND_INCR (k, p);
+ if (k == 0)
{
- p -= 4;
- succeed_n_p = true; /* Spaghetti code alert. */
- goto handle_on_failure_jump;
- }
- continue;
+ p -= 4;
+ succeed_n_p = true; /* Spaghetti code alert. */
+ goto handle_on_failure_jump;
+ }
+ continue;
case set_number_at:
- p += 4;
- continue;
+ p += 4;
+ continue;
case start_memory:
- case stop_memory:
+ case stop_memory:
p += 2;
continue;
default:
- abort (); /* We have listed all the cases. */
- } /* switch *p++ */
+ abort (); /* We have listed all the cases. */
+ } /* switch *p++ */
/* Getting here means we have found the possible starting
- characters for one path of the pattern -- and that the empty
- string does not match. We need not follow this path further.
- Instead, look at the next alternative (remembered on the
- stack), or quit if no more. The test at the top of the loop
- does these things. */
+ characters for one path of the pattern -- and that the empty
+ string does not match. We need not follow this path further.
+ Instead, look at the next alternative (remembered on the
+ stack), or quit if no more. The test at the top of the loop
+ does these things. */
path_can_be_null = false;
p = pend;
} /* while p */
/* Set `can_be_null' for the last path (also the first path, if the
- pattern is empty). */
+ pattern is empty). */
bufp->can_be_null |= path_can_be_null;
done:
}
}
\f
-/* Searching routines. */
+/* Searching routines. */
/* Like re_search_2, below, but only one string is specified, and
doesn't let you say where to stop matching. */
regs, size);
}
+/* End address of virtual concatenation of string. */
+#define STOP_ADDR_VSTRING(P) \
+ (((P) >= size1 ? string2 + size2 : string1 + size1))
+
+/* Address of POS in the concatenation of virtual string. */
+#define POS_ADDR_VSTRING(POS) \
+ (((POS) >= size1 ? string2 - size1 : string1) + (POS))
/* Using the compiled pattern in BUFP->buffer, first tries to match the
virtual concatenation of STRING1 and STRING2, starting first at index
int endpos = startpos + range;
int anchored_start = 0;
+ /* Nonzero if we have to concern multibyte character. */
+ int multibyte = bufp->multibyte;
+
/* Check for out-of-range STARTPOS. */
if (startpos < 0 || startpos > total_size)
return -1;
if (bufp->buffer[0] == begline)
anchored_start = 1;
+#ifdef emacs
+ SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object,
+ POS_AS_IN_BUFFER (startpos > 0
+ ? startpos - 1 : startpos),
+ 1);
+#endif
+
/* Loop through the string, looking for a place to start matching. */
for (;;)
{
}
/* If a fastmap is supplied, skip quickly over characters that
- cannot be the start of a match. If the pattern can match the
- null string, however, we don't need to skip characters; we want
- the first null string. */
+ cannot be the start of a match. If the pattern can match the
+ null string, however, we don't need to skip characters; we want
+ the first null string. */
if (fastmap && startpos < total_size && !bufp->can_be_null)
{
- if (range > 0) /* Searching forwards. */
+ if (range > 0) /* Searching forwards. */
{
register const char *d;
register int lim = 0;
int irange = range;
- if (startpos < size1 && startpos + range >= size1)
- lim = range - (size1 - startpos);
+ if (startpos < size1 && startpos + range >= size1)
+ lim = range - (size1 - startpos);
- d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
+ d = POS_ADDR_VSTRING (startpos);
- /* Written out as an if-else to avoid testing `translate'
- inside the loop. */
+ /* Written out as an if-else to avoid testing `translate'
+ inside the loop. */
if (translate)
- while (range > lim
- && !fastmap[(unsigned char)
+ while (range > lim
+ && !fastmap[(unsigned char)
translate[(unsigned char) *d++]])
- range--;
+ range--;
else
- while (range > lim && !fastmap[(unsigned char) *d++])
- range--;
+ while (range > lim && !fastmap[(unsigned char) *d++])
+ range--;
startpos += irange - range;
}
- else /* Searching backwards. */
+ else /* Searching backwards. */
{
register char c = (size1 == 0 || startpos >= size1
- ? string2[startpos - size1]
- : string1[startpos]);
+ ? string2[startpos - size1]
+ : string1[startpos]);
if (!fastmap[(unsigned char) TRANSLATE (c)])
goto advance;
/* If can't match the null string, and that's all we have left, fail. */
if (range >= 0 && startpos == total_size && fastmap
- && !bufp->can_be_null)
+ && !bufp->can_be_null)
return -1;
val = re_match_2_internal (bufp, string1, size1, string2, size2,
advance:
if (!range)
- break;
+ break;
else if (range > 0)
- {
- range--;
- startpos++;
+ {
+ /* Update STARTPOS to the next character boundary. */
+ if (multibyte)
+ {
+ const unsigned char *p = POS_ADDR_VSTRING (startpos);
+ const unsigned char *pend = STOP_ADDR_VSTRING (startpos);
+ int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
+
+ range -= len;
+ if (range < 0)
+ break;
+ startpos += len;
+ }
+ else
+ {
+ range--;
+ startpos++;
+ }
}
else
- {
- range++;
- startpos--;
- }
+ {
+ range++;
+ startpos--;
+
+ /* Update STARTPOS to the previous character boundary. */
+ if (multibyte)
+ {
+ const unsigned char *p = POS_ADDR_VSTRING (startpos);
+ int len = 0;
+
+ /* Find the head of multibyte form. */
+ while (!CHAR_HEAD_P (p))
+ p--, len++;
+
+ /* Adjust it. */
+#if 0 /* XXX */
+ if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1))
+ ;
+ else
+#endif
+ {
+ range += len;
+ if (range > 0)
+ break;
+
+ startpos -= len;
+ }
+ }
+ }
}
return -1;
} /* re_search_2 */
static int bcmp_translate ();
static boolean alt_match_null_string_p (),
- common_op_match_null_string_p (),
- group_match_null_string_p ();
+ common_op_match_null_string_p (),
+ group_match_null_string_p ();
/* This converts PTR, a pointer into one of the search strings `string1'
and `string2' into an offset from the beginning of that string. */
/* Call before fetching a character with *d. This switches over to
string2 if necessary. */
#define PREFETCH() \
- while (d == dend) \
+ while (d == dend) \
{ \
/* End of string2 => fail. */ \
- if (dend == end_match_2) \
- goto fail; \
- /* End of string1 => advance to string2. */ \
- d = string2; \
+ if (dend == end_match_2) \
+ goto fail; \
+ /* End of string1 => advance to string2. */ \
+ d = string2; \
dend = end_match_2; \
}
/* Test if at very beginning or at very end of the virtual concatenation
- of `string1' and `string2'. If only one string, it's `string2'. */
+ of `string1' and `string2'. If only one string, it's `string2'. */
#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
#define AT_STRINGS_END(d) ((d) == end2)
string2, look at the last character in string1. */
#define WORDCHAR_P(d) \
(SYNTAX ((d) == end1 ? *string2 \
- : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
+ : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
== Sword)
/* Disabled due to a compiler bug -- see comment at case wordbound */
+
+/* The comment at case wordbound is following one, but we don't use
+ AT_WORD_BOUNDARY anymore to support multibyte form.
+
+ The DEC Alpha C compiler 3.x generates incorrect code for the
+ test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
+ AT_WORD_BOUNDARY, so this code is disabled. Expanding the
+ macro and introducing temporary variables works around the bug. */
+
#if 0
/* Test if the character before D and the one at D differ with respect
to being word-constituent. */
/* Free everything we malloc. */
#ifdef MATCH_MAY_ALLOCATE
-#define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
+#define FREE_VAR(var) if (var) then { REGEX_FREE (var); var = NULL; } else
#define FREE_VARIABLES() \
do { \
REGEX_FREE_STACK (fail_stack.stack); \
#define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
#endif /* not MATCH_MAY_ALLOCATE */
-/* These values must meet several constraints. They must not be valid
+/* These values must meet several constraints. They must not be valid
register values; since we have a limit of 255 registers (because
we use only one byte in the pattern for the register number), we can
- use numbers larger than 255. They must differ by 1, because of
+ use numbers larger than 255. They must differ by 1, because of
NUM_FAILURE_ITEMS above. And the value for the lowest register must
be larger than the value for the highest register, so we do not try
- to actually save any registers when none are active. */
+ to actually save any registers when none are active. */
#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
\f
/* Matching routines. */
-#ifndef emacs /* Emacs never uses this. */
+#ifndef emacs /* Emacs never uses this. */
/* re_match is like re_match_2 except it takes only a single string. */
int
}
#endif /* not emacs */
+#ifdef emacs
+/* In Emacs, this is the string or buffer in which we
+ are matching. It is used for looking up syntax properties. */
+Lisp_Object re_match_object;
+#endif
/* re_match_2 matches the compiled pattern in BUFP against the
the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
matching at STOP.
If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
- store offsets for the substring each group matched in REGS. See the
+ store offsets for the substring each group matched in REGS. See the
documentation for exactly how many groups we fill.
We return -1 if no match, -2 if an internal error (such as the
- failure stack overflowing). Otherwise, we return the length of the
+ failure stack overflowing). Otherwise, we return the length of the
matched substring. */
int
struct re_registers *regs;
int stop;
{
- int result = re_match_2_internal (bufp, string1, size1, string2, size2,
+ int result;
+
+#ifdef emacs
+ SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object,
+ POS_AS_IN_BUFFER (pos > 0 ? pos - 1 : pos),
+ 1);
+#endif
+
+ result = re_match_2_internal (bufp, string1, size1, string2, size2,
pos, regs, stop);
alloca (0);
return result;
}
/* This is a separate function so that we can force an alloca cleanup
- afterwards. */
+ afterwards. */
static int
re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
struct re_pattern_buffer *bufp;
const char *end1, *end2;
/* Pointers into string1 and string2, just past the last characters in
- each to consider matching. */
+ each to consider matching. */
const char *end_match_1, *end_match_2;
/* Where we are in the data, and the end of the current string. */
empty subpattern when we get to the stop_memory. */
unsigned char *just_past_start_mem = 0;
- /* We use this to map every character in the string. */
+ /* We use this to map every character in the string. */
RE_TRANSLATE_TYPE translate = bufp->translate;
+ /* Nonzero if we have to concern multibyte character. */
+ int multibyte = bufp->multibyte;
+
/* Failure point stack. Each place that can handle a failure further
down the line pushes a failure point on this stack. It consists of
restart, regend, and reg_info for all registers corresponding to
to resume scanning the pattern; the second one is where to resume
scanning the strings. If the latter is zero, the failure point is
a ``dummy''; if a failure happens and the failure point is a dummy,
- it gets discarded and the next next one is tried. */
-#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
+ it gets discarded and the next next one is tried. */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fail_stack_type fail_stack;
#endif
#ifdef DEBUG
fail_stack_elt_t *failure_stack_ptr;
/* We fill all the registers internally, independent of what we
- return, for use in backreferences. The number here includes
+ return, for use in backreferences. The number here includes
an element for register zero. */
unsigned num_regs = bufp->re_nsub + 1;
field of reg_info[reg_num] helps us tell whether or not we have
matched any of the pattern so far this time through the reg_num-th
subexpression. These two fields get reset each time through any
- loop their register is in. */
-#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
+ loop their register is in. */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
register_info_type *reg_info;
#endif
/* Logically, this is `best_regend[0]'. But we don't want to have to
allocate space for that if we're not allocating space for anything
- else (see below). Also, we never need info about register 0 for
+ else (see below). Also, we never need info about register 0 for
any of the other register vectors, and it seems rather a kludge to
treat `best_regend' differently than the rest. So we keep track of
the end of the best match so far in a separate variable. We
reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
if (!(regstart && regend && old_regstart && old_regend && reg_info
- && best_regstart && best_regend && reg_dummy && reg_info_dummy))
- {
- FREE_VARIABLES ();
- return -2;
- }
+ && best_regstart && best_regend && reg_dummy && reg_info_dummy))
+ {
+ FREE_VARIABLES ();
+ return -2;
+ }
}
else
{
/* We must initialize all our variables to NULL, so that
- `FREE_VARIABLES' doesn't try to free them. */
+ `FREE_VARIABLES' doesn't try to free them. */
regstart = regend = old_regstart = old_regend = best_regstart
- = best_regend = reg_dummy = NULL;
+ = best_regend = reg_dummy = NULL;
reg_info = reg_info_dummy = (register_info_type *) NULL;
}
#endif /* MATCH_MAY_ALLOCATE */
for (mcnt = 1; mcnt < num_regs; mcnt++)
{
regstart[mcnt] = regend[mcnt]
- = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
+ = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
IS_ACTIVE (reg_info[mcnt]) = 0;
}
/* We move `string1' into `string2' if the latter's empty -- but not if
- `string1' is null. */
+ `string1' is null. */
if (size2 == 0 && string1 != NULL)
{
string2 = string1;
DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
DEBUG_PRINT1 ("'\n");
- /* This loops over pattern commands. It exits by returning from the
+ /* This loops over pattern commands. It exits by returning from the
function if the match is complete, or it drops through if the match
fails at this starting point in the input data. */
for (;;)
if (p == pend)
{ /* End of pattern means we might have succeeded. */
- DEBUG_PRINT1 ("end of pattern ... ");
+ DEBUG_PRINT1 ("end of pattern ... ");
/* If we haven't matched the entire string, and we want the
- longest match, try backtracking. */
- if (d != end_match_2)
+ longest match, try backtracking. */
+ if (d != end_match_2)
{
/* 1 if this match ends in the same string (string1 or string2)
as the best previous match. */
boolean best_match_p;
/* AIX compiler got confused when this was combined
- with the previous declaration. */
+ with the previous declaration. */
if (same_str_p)
best_match_p = d > match_end;
else
best_match_p = !MATCHING_IN_FIRST_STRING;
- DEBUG_PRINT1 ("backtracking.\n");
-
- if (!FAIL_STACK_EMPTY ())
- { /* More failure points to try. */
-
- /* If exceeds best match so far, save it. */
- if (!best_regs_set || best_match_p)
- {
- best_regs_set = true;
- match_end = d;
-
- DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
-
- for (mcnt = 1; mcnt < num_regs; mcnt++)
- {
- best_regstart[mcnt] = regstart[mcnt];
- best_regend[mcnt] = regend[mcnt];
- }
- }
- goto fail;
- }
-
- /* If no failure points, don't restore garbage. And if
- last match is real best match, don't restore second
- best one. */
- else if (best_regs_set && !best_match_p)
- {
- restore_best_regs:
- /* Restore best match. It may happen that `dend ==
- end_match_1' while the restored d is in string2.
- For example, the pattern `x.*y.*z' against the
- strings `x-' and `y-z-', if the two strings are
- not consecutive in memory. */
- DEBUG_PRINT1 ("Restoring best registers.\n");
-
- d = match_end;
- dend = ((d >= string1 && d <= end1)
- ? end_match_1 : end_match_2);
+ DEBUG_PRINT1 ("backtracking.\n");
+
+ if (!FAIL_STACK_EMPTY ())
+ { /* More failure points to try. */
+
+ /* If exceeds best match so far, save it. */
+ if (!best_regs_set || best_match_p)
+ {
+ best_regs_set = true;
+ match_end = d;
+
+ DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
+
+ for (mcnt = 1; mcnt < num_regs; mcnt++)
+ {
+ best_regstart[mcnt] = regstart[mcnt];
+ best_regend[mcnt] = regend[mcnt];
+ }
+ }
+ goto fail;
+ }
+
+ /* If no failure points, don't restore garbage. And if
+ last match is real best match, don't restore second
+ best one. */
+ else if (best_regs_set && !best_match_p)
+ {
+ restore_best_regs:
+ /* Restore best match. It may happen that `dend ==
+ end_match_1' while the restored d is in string2.
+ For example, the pattern `x.*y.*z' against the
+ strings `x-' and `y-z-', if the two strings are
+ not consecutive in memory. */
+ DEBUG_PRINT1 ("Restoring best registers.\n");
+
+ d = match_end;
+ dend = ((d >= string1 && d <= end1)
+ ? end_match_1 : end_match_2);
for (mcnt = 1; mcnt < num_regs; mcnt++)
{
regstart[mcnt] = best_regstart[mcnt];
regend[mcnt] = best_regend[mcnt];
}
- }
- } /* d != end_match_2 */
+ }
+ } /* d != end_match_2 */
succeed_label:
- DEBUG_PRINT1 ("Accepting match.\n");
+ DEBUG_PRINT1 ("Accepting match.\n");
- /* If caller wants register contents data back, do it. */
- if (regs && !bufp->no_sub)
+ /* If caller wants register contents data back, do it. */
+ if (regs && !bufp->no_sub)
{
- /* Have the register data arrays been allocated? */
- if (bufp->regs_allocated == REGS_UNALLOCATED)
- { /* No. So allocate them with malloc. We need one
- extra element beyond `num_regs' for the `-1' marker
- GNU code uses. */
- regs->num_regs = MAX (RE_NREGS, num_regs + 1);
- regs->start = TALLOC (regs->num_regs, regoff_t);
- regs->end = TALLOC (regs->num_regs, regoff_t);
- if (regs->start == NULL || regs->end == NULL)
+ /* Have the register data arrays been allocated? */
+ if (bufp->regs_allocated == REGS_UNALLOCATED)
+ { /* No. So allocate them with malloc. We need one
+ extra element beyond `num_regs' for the `-1' marker
+ GNU code uses. */
+ regs->num_regs = MAX (RE_NREGS, num_regs + 1);
+ regs->start = TALLOC (regs->num_regs, regoff_t);
+ regs->end = TALLOC (regs->num_regs, regoff_t);
+ if (regs->start == NULL || regs->end == NULL)
{
FREE_VARIABLES ();
return -2;
}
- bufp->regs_allocated = REGS_REALLOCATE;
- }
- else if (bufp->regs_allocated == REGS_REALLOCATE)
- { /* Yes. If we need more elements than were already
- allocated, reallocate them. If we need fewer, just
- leave it alone. */
- if (regs->num_regs < num_regs + 1)
- {
- regs->num_regs = num_regs + 1;
- RETALLOC (regs->start, regs->num_regs, regoff_t);
- RETALLOC (regs->end, regs->num_regs, regoff_t);
- if (regs->start == NULL || regs->end == NULL)
+ bufp->regs_allocated = REGS_REALLOCATE;
+ }
+ else if (bufp->regs_allocated == REGS_REALLOCATE)
+ { /* Yes. If we need more elements than were already
+ allocated, reallocate them. If we need fewer, just
+ leave it alone. */
+ if (regs->num_regs < num_regs + 1)
+ {
+ regs->num_regs = num_regs + 1;
+ RETALLOC (regs->start, regs->num_regs, regoff_t);
+ RETALLOC (regs->end, regs->num_regs, regoff_t);
+ if (regs->start == NULL || regs->end == NULL)
{
FREE_VARIABLES ();
return -2;
}
- }
- }
- else
+ }
+ }
+ else
{
/* These braces fend off a "empty body in an else-statement"
- warning under GCC when assert expands to nothing. */
+ warning under GCC when assert expands to nothing. */
assert (bufp->regs_allocated == REGS_FIXED);
}
- /* Convert the pointer data in `regstart' and `regend' to
- indices. Register zero has to be set differently,
- since we haven't kept track of any info for it. */
- if (regs->num_regs > 0)
- {
- regs->start[0] = pos;
- regs->end[0] = (MATCHING_IN_FIRST_STRING
+ /* Convert the pointer data in `regstart' and `regend' to
+ indices. Register zero has to be set differently,
+ since we haven't kept track of any info for it. */
+ if (regs->num_regs > 0)
+ {
+ regs->start[0] = pos;
+ regs->end[0] = (MATCHING_IN_FIRST_STRING
? ((regoff_t) (d - string1))
- : ((regoff_t) (d - string2 + size1)));
- }
+ : ((regoff_t) (d - string2 + size1)));
+ }
- /* Go through the first `min (num_regs, regs->num_regs)'
- registers, since that is all we initialized. */
+ /* Go through the first `min (num_regs, regs->num_regs)'
+ registers, since that is all we initialized. */
for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
{
- if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
- regs->start[mcnt] = regs->end[mcnt] = -1;
- else
- {
+ if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
+ regs->start[mcnt] = regs->end[mcnt] = -1;
+ else
+ {
regs->start[mcnt]
= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
- regs->end[mcnt]
+ regs->end[mcnt]
= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
- }
+ }
}
- /* If the regs structure we return has more elements than
- were in the pattern, set the extra elements to -1. If
- we (re)allocated the registers, this is the case,
- because we always allocate enough to have at least one
- -1 at the end. */
- for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
- regs->start[mcnt] = regs->end[mcnt] = -1;
+ /* If the regs structure we return has more elements than
+ were in the pattern, set the extra elements to -1. If
+ we (re)allocated the registers, this is the case,
+ because we always allocate enough to have at least one
+ -1 at the end. */
+ for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
+ regs->start[mcnt] = regs->end[mcnt] = -1;
} /* regs && !bufp->no_sub */
- DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
- nfailure_points_pushed, nfailure_points_popped,
- nfailure_points_pushed - nfailure_points_popped);
- DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
+ DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
+ nfailure_points_pushed, nfailure_points_popped,
+ nfailure_points_pushed - nfailure_points_popped);
+ DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
- mcnt = d - pos - (MATCHING_IN_FIRST_STRING
+ mcnt = d - pos - (MATCHING_IN_FIRST_STRING
? string1
: string2 - size1);
- DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
+ DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
- FREE_VARIABLES ();
- return mcnt;
- }
+ FREE_VARIABLES ();
+ return mcnt;
+ }
- /* Otherwise match next pattern command. */
+ /* Otherwise match next pattern command. */
switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
{
- /* Ignore these. Used to ignore the n of succeed_n's which
- currently have n == 0. */
- case no_op:
- DEBUG_PRINT1 ("EXECUTING no_op.\n");
- break;
+ /* Ignore these. Used to ignore the n of succeed_n's which
+ currently have n == 0. */
+ case no_op:
+ DEBUG_PRINT1 ("EXECUTING no_op.\n");
+ break;
case succeed:
- DEBUG_PRINT1 ("EXECUTING succeed.\n");
+ DEBUG_PRINT1 ("EXECUTING succeed.\n");
goto succeed_label;
- /* Match the next n pattern characters exactly. The following
- byte in the pattern defines n, and the n bytes after that
- are the characters to match. */
+ /* Match the next n pattern characters exactly. The following
+ byte in the pattern defines n, and the n bytes after that
+ are the characters to match. */
case exactn:
mcnt = *p++;
- DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
+ DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
- /* This is written out as an if-else so we don't waste time
- testing `translate' inside the loop. */
- if (translate)
+ /* This is written out as an if-else so we don't waste time
+ testing `translate' inside the loop. */
+ if (translate)
{
do
{
PREFETCH ();
if ((unsigned char) translate[(unsigned char) *d++]
!= (unsigned char) *p++)
- goto fail;
+ goto fail;
}
while (--mcnt);
}
while (--mcnt);
}
SET_REGS_MATCHED ();
- break;
+ break;
- /* Match any character except possibly a newline or a null. */
+ /* Match any character except possibly a newline or a null. */
case anychar:
- DEBUG_PRINT1 ("EXECUTING anychar.\n");
+ DEBUG_PRINT1 ("EXECUTING anychar.\n");
- PREFETCH ();
+ PREFETCH ();
- if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
- || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
+ if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
+ || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
goto fail;
- SET_REGS_MATCHED ();
- DEBUG_PRINT2 (" Matched `%d'.\n", *d);
- d++;
+ SET_REGS_MATCHED ();
+ DEBUG_PRINT2 (" Matched `%d'.\n", *d);
+ d += multibyte ? MULTIBYTE_FORM_LENGTH (d, dend - d) : 1;
break;
case charset:
case charset_not:
{
- register unsigned char c;
+ register unsigned int c;
boolean not = (re_opcode_t) *(p - 1) == charset_not;
+ int len;
+
+ /* Start of actual range_table, or end of bitmap if there is no
+ range table. */
+ unsigned char *range_table;
+
+ /* Nonzero if there is range table. */
+ int range_table_exists;
+
+ /* Number of ranges of range table. Not in bytes. */
+ int count;
- DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
+ DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
PREFETCH ();
- c = TRANSLATE (*d); /* The character to match. */
+ c = (unsigned char) *d;
- /* Cast to `unsigned' instead of `unsigned char' in case the
- bit list is a full 32 bytes long. */
- if (c < (unsigned) (*p * BYTEWIDTH)
+ range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
+ range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
+ if (range_table_exists)
+ EXTRACT_NUMBER_AND_INCR (count, range_table);
+ else
+ count = 0;
+
+ if (multibyte && BASE_LEADING_CODE_P (c))
+ c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
+
+ if (SINGLE_BYTE_CHAR_P (c))
+ { /* Lookup bitmap. */
+ c = TRANSLATE (c); /* The character to match. */
+ len = 1;
+
+ /* Cast to `unsigned' instead of `unsigned char' in
+ case the bit list is a full 32 bytes long. */
+ if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
not = !not;
+ }
+ else if (range_table_exists)
+ CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
- p += 1 + *p;
+ p = CHARSET_RANGE_TABLE_END (range_table, count);
if (!not) goto fail;
SET_REGS_MATCHED ();
- d++;
+ d += len;
break;
}
- /* The beginning of a group is represented by start_memory.
- The arguments are the register number in the next byte, and the
- number of groups inner to this one in the next. The text
- matched within the group is recorded (in the internal
- registers data structure) under the register number. */
- case start_memory:
+ /* The beginning of a group is represented by start_memory.
+ The arguments are the register number in the next byte, and the
+ number of groups inner to this one in the next. The text
+ matched within the group is recorded (in the internal
+ registers data structure) under the register number. */
+ case start_memory:
DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
- /* Find out if this group can match the empty string. */
+ /* Find out if this group can match the empty string. */
p1 = p; /* To send to group_match_null_string_p. */
- if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
- REG_MATCH_NULL_STRING_P (reg_info[*p])
- = group_match_null_string_p (&p1, pend, reg_info);
-
- /* Save the position in the string where we were the last time
- we were at this open-group operator in case the group is
- operated upon by a repetition operator, e.g., with `(a*)*b'
- against `ab'; then we want to ignore where we are now in
- the string in case this attempt to match fails. */
- old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
- ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
- : regstart[*p];
+ if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
+ REG_MATCH_NULL_STRING_P (reg_info[*p])
+ = group_match_null_string_p (&p1, pend, reg_info);
+
+ /* Save the position in the string where we were the last time
+ we were at this open-group operator in case the group is
+ operated upon by a repetition operator, e.g., with `(a*)*b'
+ against `ab'; then we want to ignore where we are now in
+ the string in case this attempt to match fails. */
+ old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
+ ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
+ : regstart[*p];
DEBUG_PRINT2 (" old_regstart: %d\n",
POINTER_TO_OFFSET (old_regstart[*p]));
- regstart[*p] = d;
+ regstart[*p] = d;
DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
- IS_ACTIVE (reg_info[*p]) = 1;
- MATCHED_SOMETHING (reg_info[*p]) = 0;
+ IS_ACTIVE (reg_info[*p]) = 1;
+ MATCHED_SOMETHING (reg_info[*p]) = 0;
/* Clear this whenever we change the register activity status. */
set_regs_matched_done = 0;
- /* This is the new highest active register. */
- highest_active_reg = *p;
+ /* This is the new highest active register. */
+ highest_active_reg = *p;
- /* If nothing was active before, this is the new lowest active
- register. */
- if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
- lowest_active_reg = *p;
+ /* If nothing was active before, this is the new lowest active
+ register. */
+ if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
+ lowest_active_reg = *p;
- /* Move past the register number and inner group count. */
- p += 2;
+ /* Move past the register number and inner group count. */
+ p += 2;
just_past_start_mem = p;
- break;
+ break;
- /* The stop_memory opcode represents the end of a group. Its
- arguments are the same as start_memory's: the register
- number, and the number of inner groups. */
+ /* The stop_memory opcode represents the end of a group. Its
+ arguments are the same as start_memory's: the register
+ number, and the number of inner groups. */
case stop_memory:
DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
- /* We need to save the string position the last time we were at
- this close-group operator in case the group is operated
- upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
- against `aba'; then we want to ignore where we are now in
- the string in case this attempt to match fails. */
- old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
- ? REG_UNSET (regend[*p]) ? d : regend[*p]
+ /* We need to save the string position the last time we were at
+ this close-group operator in case the group is operated
+ upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
+ against `aba'; then we want to ignore where we are now in
+ the string in case this attempt to match fails. */
+ old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
+ ? REG_UNSET (regend[*p]) ? d : regend[*p]
: regend[*p];
DEBUG_PRINT2 (" old_regend: %d\n",
POINTER_TO_OFFSET (old_regend[*p]));
- regend[*p] = d;
+ regend[*p] = d;
DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
- /* This register isn't active anymore. */
- IS_ACTIVE (reg_info[*p]) = 0;
+ /* This register isn't active anymore. */
+ IS_ACTIVE (reg_info[*p]) = 0;
/* Clear this whenever we change the register activity status. */
set_regs_matched_done = 0;
- /* If this was the only register active, nothing is active
- anymore. */
- if (lowest_active_reg == highest_active_reg)
- {
- lowest_active_reg = NO_LOWEST_ACTIVE_REG;
- highest_active_reg = NO_HIGHEST_ACTIVE_REG;
- }
- else
- { /* We must scan for the new highest active register, since
- it isn't necessarily one less than now: consider
- (a(b)c(d(e)f)g). When group 3 ends, after the f), the
- new highest active register is 1. */
- unsigned char r = *p - 1;
- while (r > 0 && !IS_ACTIVE (reg_info[r]))
- r--;
-
- /* If we end up at register zero, that means that we saved
- the registers as the result of an `on_failure_jump', not
- a `start_memory', and we jumped to past the innermost
- `stop_memory'. For example, in ((.)*) we save
- registers 1 and 2 as a result of the *, but when we pop
- back to the second ), we are at the stop_memory 1.
- Thus, nothing is active. */
+ /* If this was the only register active, nothing is active
+ anymore. */
+ if (lowest_active_reg == highest_active_reg)
+ {
+ lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+ highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+ }
+ else
+ { /* We must scan for the new highest active register, since
+ it isn't necessarily one less than now: consider
+ (a(b)c(d(e)f)g). When group 3 ends, after the f), the
+ new highest active register is 1. */
+ unsigned char r = *p - 1;
+ while (r > 0 && !IS_ACTIVE (reg_info[r]))
+ r--;
+
+ /* If we end up at register zero, that means that we saved
+ the registers as the result of an `on_failure_jump', not
+ a `start_memory', and we jumped to past the innermost
+ `stop_memory'. For example, in ((.)*) we save
+ registers 1 and 2 as a result of the *, but when we pop
+ back to the second ), we are at the stop_memory 1.
+ Thus, nothing is active. */
if (r == 0)
- {
- lowest_active_reg = NO_LOWEST_ACTIVE_REG;
- highest_active_reg = NO_HIGHEST_ACTIVE_REG;
- }
- else
- highest_active_reg = r;
- }
-
- /* If just failed to match something this time around with a
- group that's operated on by a repetition operator, try to
- force exit from the ``loop'', and restore the register
- information for this group that we had before trying this
- last match. */
- if ((!MATCHED_SOMETHING (reg_info[*p])
- || just_past_start_mem == p - 1)
+ {
+ lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+ highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+ }
+ else
+ highest_active_reg = r;
+ }
+
+ /* If just failed to match something this time around with a
+ group that's operated on by a repetition operator, try to
+ force exit from the ``loop'', and restore the register
+ information for this group that we had before trying this
+ last match. */
+ if ((!MATCHED_SOMETHING (reg_info[*p])
+ || just_past_start_mem == p - 1)
&& (p + 2) < pend)
- {
- boolean is_a_jump_n = false;
-
- p1 = p + 2;
- mcnt = 0;
- switch ((re_opcode_t) *p1++)
- {
- case jump_n:
+ {
+ boolean is_a_jump_n = false;
+
+ p1 = p + 2;
+ mcnt = 0;
+ switch ((re_opcode_t) *p1++)
+ {
+ case jump_n:
is_a_jump_n = true;
- case pop_failure_jump:
+ case pop_failure_jump:
case maybe_pop_jump:
case jump:
case dummy_failure_jump:
- EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
if (is_a_jump_n)
p1 += 2;
- break;
+ break;
- default:
- /* do nothing */ ;
- }
+ default:
+ /* do nothing */ ;
+ }
p1 += mcnt;
- /* If the next operation is a jump backwards in the pattern
- to an on_failure_jump right before the start_memory
- corresponding to this stop_memory, exit from the loop
- by forcing a failure after pushing on the stack the
- on_failure_jump's jump in the pattern, and d. */
- if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
- && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
+ /* If the next operation is a jump backwards in the pattern
+ to an on_failure_jump right before the start_memory
+ corresponding to this stop_memory, exit from the loop
+ by forcing a failure after pushing on the stack the
+ on_failure_jump's jump in the pattern, and d. */
+ if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
+ && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
{
- /* If this group ever matched anything, then restore
- what its registers were before trying this last
- failed match, e.g., with `(a*)*b' against `ab' for
- regstart[1], and, e.g., with `((a*)*(b*)*)*'
- against `aba' for regend[3].
+ /* If this group ever matched anything, then restore
+ what its registers were before trying this last
+ failed match, e.g., with `(a*)*b' against `ab' for
+ regstart[1], and, e.g., with `((a*)*(b*)*)*'
+ against `aba' for regend[3].
- Also restore the registers for inner groups for,
- e.g., `((a*)(b*))*' against `aba' (register 3 would
- otherwise get trashed). */
+ Also restore the registers for inner groups for,
+ e.g., `((a*)(b*))*' against `aba' (register 3 would
+ otherwise get trashed). */
- if (EVER_MATCHED_SOMETHING (reg_info[*p]))
+ if (EVER_MATCHED_SOMETHING (reg_info[*p]))
{
unsigned r;
- EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
+ EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
/* Restore this and inner groups' (if any) registers. */
- for (r = *p; r < *p + *(p + 1); r++)
- {
- regstart[r] = old_regstart[r];
-
- /* xx why this test? */
- if (old_regend[r] >= regstart[r])
- regend[r] = old_regend[r];
- }
- }
+ for (r = *p; r < *p + *(p + 1); r++)
+ {
+ regstart[r] = old_regstart[r];
+
+ /* xx why this test? */
+ if (old_regend[r] >= regstart[r])
+ regend[r] = old_regend[r];
+ }
+ }
p1++;
- EXTRACT_NUMBER_AND_INCR (mcnt, p1);
- PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
- goto fail;
- }
- }
+ goto fail;
+ }
+ }
- /* Move past the register number and the inner group count. */
- p += 2;
- break;
+ /* Move past the register number and the inner group count. */
+ p += 2;
+ break;
/* \<digit> has been turned into a `duplicate' command which is
- followed by the numeric value of <digit> as the register number. */
- case duplicate:
+ followed by the numeric value of <digit> as the register number. */
+ case duplicate:
{
register const char *d2, *dend2;
- int regno = *p++; /* Get which register to match against. */
+ int regno = *p++; /* Get which register to match against. */
DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
- /* Can't back reference a group which we've never matched. */
- if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
- goto fail;
+ /* Can't back reference a group which we've never matched. */
+ if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
+ goto fail;
- /* Where in input to try to start matching. */
- d2 = regstart[regno];
+ /* Where in input to try to start matching. */
+ d2 = regstart[regno];
- /* Where to stop matching; if both the place to start and
- the place to stop matching are in the same string, then
- set to the place to stop, otherwise, for now have to use
- the end of the first string. */
+ /* Where to stop matching; if both the place to start and
+ the place to stop matching are in the same string, then
+ set to the place to stop, otherwise, for now have to use
+ the end of the first string. */
- dend2 = ((FIRST_STRING_P (regstart[regno])
+ dend2 = ((FIRST_STRING_P (regstart[regno])
== FIRST_STRING_P (regend[regno]))
? regend[regno] : end_match_1);
for (;;)
{
/* If necessary, advance to next segment in register
- contents. */
+ contents. */
while (d2 == dend2)
{
if (dend2 == end_match_2) break;
if (dend2 == regend[regno]) break;
- /* End of string1 => advance to string2. */
- d2 = string2;
- dend2 = regend[regno];
+ /* End of string1 => advance to string2. */
+ d2 = string2;
+ dend2 = regend[regno];
}
/* At end of register contents => success */
if (d2 == dend2) break;
mcnt = dend - d;
/* Want how many consecutive characters we can match in
- one shot, so, if necessary, adjust the count. */
- if (mcnt > dend2 - d2)
+ one shot, so, if necessary, adjust the count. */
+ if (mcnt > dend2 - d2)
mcnt = dend2 - d2;
/* Compare that many; failure if mismatch, else move
- past them. */
+ past them. */
if (translate
- ? bcmp_translate (d, d2, mcnt, translate)
- : bcmp (d, d2, mcnt))
+ ? bcmp_translate (d, d2, mcnt, translate)
+ : bcmp (d, d2, mcnt))
goto fail;
d += mcnt, d2 += mcnt;
- /* Do this because we've match some characters. */
+ /* Do this because we've match some characters. */
SET_REGS_MATCHED ();
}
}
break;
- /* begline matches the empty string at the beginning of the string
- (unless `not_bol' is set in `bufp'), and, if
- `newline_anchor' is set, after newlines. */
+ /* begline matches the empty string at the beginning of the string
+ (unless `not_bol' is set in `bufp'), and, if
+ `newline_anchor' is set, after newlines. */
case begline:
- DEBUG_PRINT1 ("EXECUTING begline.\n");
+ DEBUG_PRINT1 ("EXECUTING begline.\n");
- if (AT_STRINGS_BEG (d))
- {
- if (!bufp->not_bol) break;
- }
- else if (d[-1] == '\n' && bufp->newline_anchor)
- {
- break;
- }
- /* In all other cases, we fail. */
- goto fail;
+ if (AT_STRINGS_BEG (d))
+ {
+ if (!bufp->not_bol) break;
+ }
+ else if (d[-1] == '\n' && bufp->newline_anchor)
+ {
+ break;
+ }
+ /* In all other cases, we fail. */
+ goto fail;
- /* endline is the dual of begline. */
+ /* endline is the dual of begline. */
case endline:
- DEBUG_PRINT1 ("EXECUTING endline.\n");
+ DEBUG_PRINT1 ("EXECUTING endline.\n");
- if (AT_STRINGS_END (d))
- {
- if (!bufp->not_eol) break;
- }
+ if (AT_STRINGS_END (d))
+ {
+ if (!bufp->not_eol) break;
+ }
- /* We have to ``prefetch'' the next character. */
- else if ((d == end1 ? *string2 : *d) == '\n'
- && bufp->newline_anchor)
- {
- break;
- }
- goto fail;
+ /* We have to ``prefetch'' the next character. */
+ else if ((d == end1 ? *string2 : *d) == '\n'
+ && bufp->newline_anchor)
+ {
+ break;
+ }
+ goto fail;
/* Match at the very beginning of the data. */
- case begbuf:
- DEBUG_PRINT1 ("EXECUTING begbuf.\n");
- if (AT_STRINGS_BEG (d))
- break;
- goto fail;
+ case begbuf:
+ DEBUG_PRINT1 ("EXECUTING begbuf.\n");
+ if (AT_STRINGS_BEG (d))
+ break;
+ goto fail;
/* Match at the very end of the data. */
- case endbuf:
- DEBUG_PRINT1 ("EXECUTING endbuf.\n");
+ case endbuf:
+ DEBUG_PRINT1 ("EXECUTING endbuf.\n");
if (AT_STRINGS_END (d))
break;
- goto fail;
+ goto fail;
- /* on_failure_keep_string_jump is used to optimize `.*\n'. It
- pushes NULL as the value for the string on the stack. Then
- `pop_failure_point' will keep the current value for the
- string, instead of restoring it. To see why, consider
- matching `foo\nbar' against `.*\n'. The .* matches the foo;
- then the . fails against the \n. But the next thing we want
- to do is match the \n against the \n; if we restored the
- string value, we would be back at the foo.
-
- Because this is used only in specific cases, we don't need to
- check all the things that `on_failure_jump' does, to make
- sure the right things get saved on the stack. Hence we don't
- share its code. The only reason to push anything on the
- stack at all is that otherwise we would have to change
- `anychar's code to do something besides goto fail in this
- case; that seems worse than this. */
- case on_failure_keep_string_jump:
- DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
+ /* on_failure_keep_string_jump is used to optimize `.*\n'. It
+ pushes NULL as the value for the string on the stack. Then
+ `pop_failure_point' will keep the current value for the
+ string, instead of restoring it. To see why, consider
+ matching `foo\nbar' against `.*\n'. The .* matches the foo;
+ then the . fails against the \n. But the next thing we want
+ to do is match the \n against the \n; if we restored the
+ string value, we would be back at the foo.
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
+ Because this is used only in specific cases, we don't need to
+ check all the things that `on_failure_jump' does, to make
+ sure the right things get saved on the stack. Hence we don't
+ share its code. The only reason to push anything on the
+ stack at all is that otherwise we would have to change
+ `anychar's code to do something besides goto fail in this
+ case; that seems worse than this. */
+ case on_failure_keep_string_jump:
+ DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
- PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
- break;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
+
+ PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
+ break;
/* Uses of on_failure_jump:
- Each alternative starts with an on_failure_jump that points
- to the beginning of the next alternative. Each alternative
- except the last ends with a jump that in effect jumps past
- the rest of the alternatives. (They really jump to the
- ending jump of the following alternative, because tensioning
- these jumps is a hassle.)
+ Each alternative starts with an on_failure_jump that points
+ to the beginning of the next alternative. Each alternative
+ except the last ends with a jump that in effect jumps past
+ the rest of the alternatives. (They really jump to the
+ ending jump of the following alternative, because tensioning
+ these jumps is a hassle.)
- Repeats start with an on_failure_jump that points past both
- the repetition text and either the following jump or
- pop_failure_jump back to this on_failure_jump. */
+ Repeats start with an on_failure_jump that points past both
+ the repetition text and either the following jump or
+ pop_failure_jump back to this on_failure_jump. */
case on_failure_jump:
- on_failure:
- DEBUG_PRINT1 ("EXECUTING on_failure_jump");
-
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
-
- /* If this on_failure_jump comes right before a group (i.e.,
- the original * applied to a group), save the information
- for that group and all inner ones, so that if we fail back
- to this point, the group's information will be correct.
- For example, in \(a*\)*\1, we need the preceding group,
- and in \(zz\(a*\)b*\)\2, we need the inner group. */
-
- /* We can't use `p' to check ahead because we push
- a failure point to `p + mcnt' after we do this. */
- p1 = p;
-
- /* We need to skip no_op's before we look for the
- start_memory in case this on_failure_jump is happening as
- the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
- against aba. */
- while (p1 < pend && (re_opcode_t) *p1 == no_op)
- p1++;
-
- if (p1 < pend && (re_opcode_t) *p1 == start_memory)
- {
- /* We have a new highest active register now. This will
- get reset at the start_memory we are about to get to,
- but we will have saved all the registers relevant to
- this repetition op, as described above. */
- highest_active_reg = *(p1 + 1) + *(p1 + 2);
- if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
- lowest_active_reg = *(p1 + 1);
- }
-
- DEBUG_PRINT1 (":\n");
- PUSH_FAILURE_POINT (p + mcnt, d, -2);
- break;
-
-
- /* A smart repeat ends with `maybe_pop_jump'.
- We change it to either `pop_failure_jump' or `jump'. */
- case maybe_pop_jump:
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
- {
+ on_failure:
+ DEBUG_PRINT1 ("EXECUTING on_failure_jump");
+
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
+
+ /* If this on_failure_jump comes right before a group (i.e.,
+ the original * applied to a group), save the information
+ for that group and all inner ones, so that if we fail back
+ to this point, the group's information will be correct.
+ For example, in \(a*\)*\1, we need the preceding group,
+ and in \(zz\(a*\)b*\)\2, we need the inner group. */
+
+ /* We can't use `p' to check ahead because we push
+ a failure point to `p + mcnt' after we do this. */
+ p1 = p;
+
+ /* We need to skip no_op's before we look for the
+ start_memory in case this on_failure_jump is happening as
+ the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
+ against aba. */
+ while (p1 < pend && (re_opcode_t) *p1 == no_op)
+ p1++;
+
+ if (p1 < pend && (re_opcode_t) *p1 == start_memory)
+ {
+ /* We have a new highest active register now. This will
+ get reset at the start_memory we are about to get to,
+ but we will have saved all the registers relevant to
+ this repetition op, as described above. */
+ highest_active_reg = *(p1 + 1) + *(p1 + 2);
+ if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
+ lowest_active_reg = *(p1 + 1);
+ }
+
+ DEBUG_PRINT1 (":\n");
+ PUSH_FAILURE_POINT (p + mcnt, d, -2);
+ break;
+
+
+ /* A smart repeat ends with `maybe_pop_jump'.
+ We change it to either `pop_failure_jump' or `jump'. */
+ case maybe_pop_jump:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
+ {
register unsigned char *p2 = p;
- /* Compare the beginning of the repeat with what in the
- pattern follows its end. If we can establish that there
- is nothing that they would both match, i.e., that we
- would have to backtrack because of (as in, e.g., `a*a')
- then we can change to pop_failure_jump, because we'll
- never have to backtrack.
+ /* Compare the beginning of the repeat with what in the
+ pattern follows its end. If we can establish that there
+ is nothing that they would both match, i.e., that we
+ would have to backtrack because of (as in, e.g., `a*a')
+ then we can change to pop_failure_jump, because we'll
+ never have to backtrack.
- This is not true in the case of alternatives: in
- `(a|ab)*' we do need to backtrack to the `ab' alternative
- (e.g., if the string was `ab'). But instead of trying to
- detect that here, the alternative has put on a dummy
- failure point which is what we will end up popping. */
+ This is not true in the case of alternatives: in
+ `(a|ab)*' we do need to backtrack to the `ab' alternative
+ (e.g., if the string was `ab'). But instead of trying to
+ detect that here, the alternative has put on a dummy
+ failure point which is what we will end up popping. */
/* Skip over open/close-group commands.
If what follows this loop is a ...+ construct,
p1 = p + mcnt;
/* p1[0] ... p1[2] are the `on_failure_jump' corresponding
to the `maybe_finalize_jump' of this case. Examine what
- follows. */
+ follows. */
- /* If we're at the end of the pattern, we can change. */
- if (p2 == pend)
+ /* If we're at the end of the pattern, we can change. */
+ if (p2 == pend)
{
/* Consider what happens when matching ":\(.*\)"
against ":/". I don't really understand this code
- yet. */
- p[-3] = (unsigned char) pop_failure_jump;
- DEBUG_PRINT1
- (" End of pattern: change to `pop_failure_jump'.\n");
- }
+ yet. */
+ p[-3] = (unsigned char) pop_failure_jump;
+ DEBUG_PRINT1
+ (" End of pattern: change to `pop_failure_jump'.\n");
+ }
- else if ((re_opcode_t) *p2 == exactn
+ else if ((re_opcode_t) *p2 == exactn
|| (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
{
- register unsigned char c
- = *p2 == (unsigned char) endline ? '\n' : p2[2];
+ register unsigned int c
+ = *p2 == (unsigned char) endline ? '\n' : p2[2];
- if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
+ if ((re_opcode_t) p1[3] == exactn)
{
- p[-3] = (unsigned char) pop_failure_jump;
- DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
- c, p1[5]);
+ if (!(multibyte /* && (c != '\n') */
+ && BASE_LEADING_CODE_P (c))
+ ? c != p1[5]
+ : (STRING_CHAR (&p2[2], pend - &p2[2])
+ != STRING_CHAR (&p1[5], pend - &p1[5])))
+ {
+ p[-3] = (unsigned char) pop_failure_jump;
+ DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
+ c, p1[5]);
+ }
}
else if ((re_opcode_t) p1[3] == charset
{
int not = (re_opcode_t) p1[3] == charset_not;
- if (c < (unsigned char) (p1[4] * BYTEWIDTH)
+ if (multibyte /* && (c != '\n') */
+ && BASE_LEADING_CODE_P (c))
+ c = STRING_CHAR (&p2[2], pend - &p2[2]);
+
+ /* Test if C is listed in charset (or charset_not)
+ at `&p1[3]'. */
+ if (SINGLE_BYTE_CHAR_P (c))
+ {
+ if (c < CHARSET_BITMAP_SIZE (&p1[3]) * BYTEWIDTH
&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
not = !not;
+ }
+ else if (CHARSET_RANGE_TABLE_EXISTS_P (&p1[3]))
+ CHARSET_LOOKUP_RANGE_TABLE (not, c, &p1[3]);
- /* `not' is equal to 1 if c would match, which means
- that we can't change to pop_failure_jump. */
+ /* `not' is equal to 1 if c would match, which means
+ that we can't change to pop_failure_jump. */
if (!not)
- {
- p[-3] = (unsigned char) pop_failure_jump;
- DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
- }
+ {
+ p[-3] = (unsigned char) pop_failure_jump;
+ DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
+ }
}
}
- else if ((re_opcode_t) *p2 == charset)
+ else if ((re_opcode_t) *p2 == charset)
{
-#ifdef DEBUG
- register unsigned char c
- = *p2 == (unsigned char) endline ? '\n' : p2[2];
-#endif
-
- if ((re_opcode_t) p1[3] == exactn
- && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
- && (p2[2 + p1[5] / BYTEWIDTH]
- & (1 << (p1[5] % BYTEWIDTH)))))
+ if ((re_opcode_t) p1[3] == exactn)
{
- p[-3] = (unsigned char) pop_failure_jump;
- DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
- c, p1[5]);
- }
+ register unsigned int c = p1[5];
+ int not = 0;
+
+ if (multibyte && BASE_LEADING_CODE_P (c))
+ c = STRING_CHAR (&p1[5], pend - &p1[5]);
+
+ /* Test if C is listed in charset at `p2'. */
+ if (SINGLE_BYTE_CHAR_P (c))
+ {
+ if (c < CHARSET_BITMAP_SIZE (p2) * BYTEWIDTH
+ && (p2[2 + c / BYTEWIDTH]
+ & (1 << (c % BYTEWIDTH))))
+ not = !not;
+ }
+ else if (CHARSET_RANGE_TABLE_EXISTS_P (p2))
+ CHARSET_LOOKUP_RANGE_TABLE (not, c, p2);
+
+ if (!not)
+ {
+ p[-3] = (unsigned char) pop_failure_jump;
+ DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
+ }
+ }
- else if ((re_opcode_t) p1[3] == charset_not)
+ /* It is hard to list up all the character in charset
+ P2 if it includes multibyte character. Give up in
+ such case. */
+ else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
+ {
+ /* Now, we are sure that P2 has no range table.
+ So, for the size of bitmap in P2, `p2[1]' is
+ enough. But P1 may have range table, so the
+ size of bitmap table of P1 is extracted by
+ using macro `CHARSET_BITMAP_SIZE'.
+
+ Since we know that all the character listed in
+ P2 is ASCII, it is enough to test only bitmap
+ table of P1. */
+
+ if ((re_opcode_t) p1[3] == charset_not)
{
int idx;
- /* We win if the charset_not inside the loop
- lists every character listed in the charset after. */
+ /* We win if the charset_not inside the loop lists
+ every character listed in the charset after. */
for (idx = 0; idx < (int) p2[1]; idx++)
if (! (p2[2 + idx] == 0
- || (idx < (int) p1[4]
+ || (idx < CHARSET_BITMAP_SIZE (&p1[3])
&& ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
break;
if (idx == p2[1])
- {
- p[-3] = (unsigned char) pop_failure_jump;
- DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
- }
+ {
+ p[-3] = (unsigned char) pop_failure_jump;
+ DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
+ }
}
else if ((re_opcode_t) p1[3] == charset)
{
/* We win if the charset inside the loop
has no overlap with the one after the loop. */
for (idx = 0;
- idx < (int) p2[1] && idx < (int) p1[4];
+ (idx < (int) p2[1]
+ && idx < CHARSET_BITMAP_SIZE (&p1[3]));
idx++)
if ((p2[2 + idx] & p1[5 + idx]) != 0)
break;
- if (idx == p2[1] || idx == p1[4])
- {
- p[-3] = (unsigned char) pop_failure_jump;
- DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
- }
+ if (idx == p2[1]
+ || idx == CHARSET_BITMAP_SIZE (&p1[3]))
+ {
+ p[-3] = (unsigned char) pop_failure_jump;
+ DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
+ }
}
}
}
+ }
p -= 2; /* Point at relative address again. */
if ((re_opcode_t) p[-1] != pop_failure_jump)
{
p[-1] = (unsigned char) jump;
- DEBUG_PRINT1 (" Match => jump.\n");
+ DEBUG_PRINT1 (" Match => jump.\n");
goto unconditional_jump;
}
- /* Note fall through. */
+ /* Note fall through. */
/* The end of a simple repeat has a pop_failure_jump back to
- its matching on_failure_jump, where the latter will push a
- failure point. The pop_failure_jump takes off failure
- points put on by this pop_failure_jump's matching
- on_failure_jump; we got through the pattern to here from the
- matching on_failure_jump, so didn't fail. */
- case pop_failure_jump:
- {
- /* We need to pass separate storage for the lowest and
- highest registers, even though we don't care about the
- actual values. Otherwise, we will restore only one
- register from the stack, since lowest will == highest in
- `pop_failure_point'. */
- unsigned dummy_low_reg, dummy_high_reg;
- unsigned char *pdummy;
- const char *sdummy;
-
- DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
- POP_FAILURE_POINT (sdummy, pdummy,
- dummy_low_reg, dummy_high_reg,
- reg_dummy, reg_dummy, reg_info_dummy);
- }
- /* Note fall through. */
-
-
- /* Unconditionally jump (without popping any failure points). */
- case jump:
+ its matching on_failure_jump, where the latter will push a
+ failure point. The pop_failure_jump takes off failure
+ points put on by this pop_failure_jump's matching
+ on_failure_jump; we got through the pattern to here from the
+ matching on_failure_jump, so didn't fail. */
+ case pop_failure_jump:
+ {
+ /* We need to pass separate storage for the lowest and
+ highest registers, even though we don't care about the
+ actual values. Otherwise, we will restore only one
+ register from the stack, since lowest will == highest in
+ `pop_failure_point'. */
+ unsigned dummy_low_reg, dummy_high_reg;
+ unsigned char *pdummy;
+ const char *sdummy;
+
+ DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
+ POP_FAILURE_POINT (sdummy, pdummy,
+ dummy_low_reg, dummy_high_reg,
+ reg_dummy, reg_dummy, reg_info_dummy);
+ }
+ /* Note fall through. */
+
+
+ /* Unconditionally jump (without popping any failure points). */
+ case jump:
unconditional_jump:
EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
- DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
- p += mcnt; /* Do the jump. */
- DEBUG_PRINT2 ("(to 0x%x).\n", p);
- break;
-
-
- /* We need this opcode so we can detect where alternatives end
- in `group_match_null_string_p' et al. */
- case jump_past_alt:
- DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
- goto unconditional_jump;
-
-
- /* Normally, the on_failure_jump pushes a failure point, which
- then gets popped at pop_failure_jump. We will end up at
- pop_failure_jump, also, and with a pattern of, say, `a+', we
- are skipping over the on_failure_jump, so we have to push
- something meaningless for pop_failure_jump to pop. */
- case dummy_failure_jump:
- DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
- /* It doesn't matter what we push for the string here. What
- the code at `fail' tests is the value for the pattern. */
- PUSH_FAILURE_POINT (0, 0, -2);
- goto unconditional_jump;
-
-
- /* At the end of an alternative, we need to push a dummy failure
- point in case we are followed by a `pop_failure_jump', because
- we don't want the failure point for the alternative to be
- popped. For example, matching `(a|ab)*' against `aab'
- requires that we match the `ab' alternative. */
- case push_dummy_failure:
- DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
- /* See comments just above at `dummy_failure_jump' about the
- two zeroes. */
- PUSH_FAILURE_POINT (0, 0, -2);
+ DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
+ p += mcnt; /* Do the jump. */
+ DEBUG_PRINT2 ("(to 0x%x).\n", p);
break;
- /* Have to succeed matching what follows at least n times.
- After that, handle like `on_failure_jump'. */
- case succeed_n:
- EXTRACT_NUMBER (mcnt, p + 2);
- DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
- assert (mcnt >= 0);
- /* Originally, this is how many times we HAVE to succeed. */
- if (mcnt > 0)
- {
- mcnt--;
+ /* We need this opcode so we can detect where alternatives end
+ in `group_match_null_string_p' et al. */
+ case jump_past_alt:
+ DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
+ goto unconditional_jump;
+
+
+ /* Normally, the on_failure_jump pushes a failure point, which
+ then gets popped at pop_failure_jump. We will end up at
+ pop_failure_jump, also, and with a pattern of, say, `a+', we
+ are skipping over the on_failure_jump, so we have to push
+ something meaningless for pop_failure_jump to pop. */
+ case dummy_failure_jump:
+ DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
+ /* It doesn't matter what we push for the string here. What
+ the code at `fail' tests is the value for the pattern. */
+ PUSH_FAILURE_POINT (0, 0, -2);
+ goto unconditional_jump;
+
+
+ /* At the end of an alternative, we need to push a dummy failure
+ point in case we are followed by a `pop_failure_jump', because
+ we don't want the failure point for the alternative to be
+ popped. For example, matching `(a|ab)*' against `aab'
+ requires that we match the `ab' alternative. */
+ case push_dummy_failure:
+ DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
+ /* See comments just above at `dummy_failure_jump' about the
+ two zeroes. */
+ PUSH_FAILURE_POINT (0, 0, -2);
+ break;
+
+ /* Have to succeed matching what follows at least n times.
+ After that, handle like `on_failure_jump'. */
+ case succeed_n:
+ EXTRACT_NUMBER (mcnt, p + 2);
+ DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
+
+ assert (mcnt >= 0);
+ /* Originally, this is how many times we HAVE to succeed. */
+ if (mcnt > 0)
+ {
+ mcnt--;
p += 2;
- STORE_NUMBER_AND_INCR (p, mcnt);
- DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
- }
+ STORE_NUMBER_AND_INCR (p, mcnt);
+ DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
+ }
else if (mcnt == 0)
- {
- DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
+ {
+ DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
p[2] = (unsigned char) no_op;
- p[3] = (unsigned char) no_op;
- goto on_failure;
- }
- break;
-
- case jump_n:
- EXTRACT_NUMBER (mcnt, p + 2);
- DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
-
- /* Originally, this is how many times we CAN jump. */
- if (mcnt)
- {
- mcnt--;
- STORE_NUMBER (p + 2, mcnt);
+ p[3] = (unsigned char) no_op;
+ goto on_failure;
+ }
+ break;
+
+ case jump_n:
+ EXTRACT_NUMBER (mcnt, p + 2);
+ DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
+
+ /* Originally, this is how many times we CAN jump. */
+ if (mcnt)
+ {
+ mcnt--;
+ STORE_NUMBER (p + 2, mcnt);
goto unconditional_jump;
- }
- /* If don't have to jump any more, skip over the rest of command. */
+ }
+ /* If don't have to jump any more, skip over the rest of command. */
else
p += 4;
- break;
+ break;
case set_number_at:
{
- DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
+ DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- p1 = p + mcnt;
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ p1 = p + mcnt;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
STORE_NUMBER (p1, mcnt);
- break;
- }
-
-#if 0
- /* The DEC Alpha C compiler 3.x generates incorrect code for the
- test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
- AT_WORD_BOUNDARY, so this code is disabled. Expanding the
- macro and introducing temporary variables works around the bug. */
+ break;
+ }
case wordbound:
DEBUG_PRINT1 ("EXECUTING wordbound.\n");
- if (AT_WORD_BOUNDARY (d))
- break;
- goto fail;
- case notwordbound:
- DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
- if (AT_WORD_BOUNDARY (d))
- goto fail;
- break;
-#else
- case wordbound:
- {
- boolean prevchar, thischar;
+ /* We SUCCEED in one of the following cases: */
- DEBUG_PRINT1 ("EXECUTING wordbound.\n");
+ /* Case 1: D is at the beginning or the end of string. */
if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
break;
+ else
+ {
+ /* C1 is the character before D, S1 is the syntax of C1, C2
+ is the character at D, and S2 is the syntax of C2. */
+ int c1, c2, s1, s2;
+ int pos1 = PTR_TO_OFFSET (d - 1);
- prevchar = WORDCHAR_P (d - 1);
- thischar = WORDCHAR_P (d);
- if (prevchar != thischar)
+ GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
+ GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
+#ifdef emacs
+ UPDATE_SYNTAX_TABLE (pos1 ? pos1 : 1);
+#endif
+ s1 = SYNTAX (c1);
+#ifdef emacs
+ UPDATE_SYNTAX_TABLE_FORWARD (pos1 + 1);
+#endif
+ s2 = SYNTAX (c2);
+
+ if (/* Case 2: Only one of S1 and S2 is Sword. */
+ ((s1 == Sword) != (s2 == Sword))
+ /* Case 3: Both of S1 and S2 are Sword, and macro
+ WORD_BOUNDARY_P (C1, C2) returns nonzero. */
+ || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
break;
- goto fail;
}
+ goto fail;
case notwordbound:
- {
- boolean prevchar, thischar;
-
DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
+
+ /* We FAIL in one of the following cases: */
+
+ /* Case 1: D is at the beginning or the end of string. */
if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
goto fail;
+ else
+ {
+ /* C1 is the character before D, S1 is the syntax of C1, C2
+ is the character at D, and S2 is the syntax of C2. */
+ int c1, c2, s1, s2;
+ int pos1 = PTR_TO_OFFSET (d - 1);
- prevchar = WORDCHAR_P (d - 1);
- thischar = WORDCHAR_P (d);
- if (prevchar != thischar)
+ GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
+ GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
+#ifdef emacs
+ UPDATE_SYNTAX_TABLE (pos1);
+#endif
+ s1 = SYNTAX (c1);
+#ifdef emacs
+ UPDATE_SYNTAX_TABLE_FORWARD (pos1 + 1);
+#endif
+ s2 = SYNTAX (c2);
+
+ if (/* Case 2: Only one of S1 and S2 is Sword. */
+ ((s1 == Sword) != (s2 == Sword))
+ /* Case 3: Both of S1 and S2 are Sword, and macro
+ WORD_BOUNDARY_P (C1, C2) returns nonzero. */
+ || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
goto fail;
- break;
}
-#endif
+ break;
case wordbeg:
- DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
- if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
- break;
- goto fail;
+ DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
- case wordend:
- DEBUG_PRINT1 ("EXECUTING wordend.\n");
- if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
- && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
- break;
- goto fail;
+ /* We FAIL in one of the following cases: */
+
+ /* Case 1: D is at the end of string. */
+ if (AT_STRINGS_END (d))
+ goto fail;
+ else
+ {
+ /* C1 is the character before D, S1 is the syntax of C1, C2
+ is the character at D, and S2 is the syntax of C2. */
+ int c1, c2, s1, s2;
+ int pos1 = PTR_TO_OFFSET (d);
+ GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
#ifdef emacs
- case before_dot:
- DEBUG_PRINT1 ("EXECUTING before_dot.\n");
- if (PTR_CHAR_POS ((unsigned char *) d) >= PT)
- goto fail;
+ UPDATE_SYNTAX_TABLE (pos1);
+#endif
+ s2 = SYNTAX (c2);
+
+ /* Case 2: S2 is not Sword. */
+ if (s2 != Sword)
+ goto fail;
+
+ /* Case 3: D is not at the beginning of string ... */
+ if (!AT_STRINGS_BEG (d))
+ {
+ GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
+#ifdef emacs
+ UPDATE_SYNTAX_TABLE_BACKWARD (pos1 - 1);
+#endif
+ s1 = SYNTAX (c1);
+
+ /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
+ returns 0. */
+ if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
+ goto fail;
+ }
+ }
break;
- case at_dot:
- DEBUG_PRINT1 ("EXECUTING at_dot.\n");
- if (PTR_CHAR_POS ((unsigned char *) d) != PT)
+ case wordend:
+ DEBUG_PRINT1 ("EXECUTING wordend.\n");
+
+ /* We FAIL in one of the following cases: */
+
+ /* Case 1: D is at the beginning of string. */
+ if (AT_STRINGS_BEG (d))
goto fail;
+ else
+ {
+ /* C1 is the character before D, S1 is the syntax of C1, C2
+ is the character at D, and S2 is the syntax of C2. */
+ int c1, c2, s1, s2;
+
+ GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
+ s1 = SYNTAX (c1);
+
+ /* Case 2: S1 is not Sword. */
+ if (s1 != Sword)
+ goto fail;
+
+ /* Case 3: D is not at the end of string ... */
+ if (!AT_STRINGS_END (d))
+ {
+ GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2);
+ s2 = SYNTAX (c2);
+
+ /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
+ returns 0. */
+ if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
+ goto fail;
+ }
+ }
break;
- case after_dot:
- DEBUG_PRINT1 ("EXECUTING after_dot.\n");
+#ifdef emacs
+ case before_dot:
+ DEBUG_PRINT1 ("EXECUTING before_dot.\n");
+ if (PTR_CHAR_POS ((unsigned char *) d) >= PT)
+ goto fail;
+ break;
+
+ case at_dot:
+ DEBUG_PRINT1 ("EXECUTING at_dot.\n");
+ if (PTR_CHAR_POS ((unsigned char *) d) != PT)
+ goto fail;
+ break;
+
+ case after_dot:
+ DEBUG_PRINT1 ("EXECUTING after_dot.\n");
if (PTR_CHAR_POS ((unsigned char *) d) <= PT)
- goto fail;
- break;
+ goto fail;
+ break;
case syntaxspec:
- DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
+ DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
mcnt = *p++;
goto matchsyntax;
- case wordchar:
- DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
+ case wordchar:
+ DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
mcnt = (int) Sword;
- matchsyntax:
+ matchsyntax:
PREFETCH ();
- /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
- d++;
- if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
+#ifdef emacs
+ {
+ int pos1 = PTR_TO_OFFSET (d);
+ UPDATE_SYNTAX_TABLE (pos1);
+ }
+#endif
+ {
+ int c, len;
+
+ if (multibyte)
+ /* we must concern about multibyte form, ... */
+ c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
+ else
+ /* everything should be handled as ASCII, even though it
+ looks like multibyte form. */
+ c = *d, len = 1;
+
+ if (SYNTAX (c) != (enum syntaxcode) mcnt)
goto fail;
- SET_REGS_MATCHED ();
+ d += len;
+ }
+ SET_REGS_MATCHED ();
break;
case notsyntaxspec:
- DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
+ DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
mcnt = *p++;
goto matchnotsyntax;
- case notwordchar:
- DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
+ case notwordchar:
+ DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
mcnt = (int) Sword;
- matchnotsyntax:
+ matchnotsyntax:
PREFETCH ();
- /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
- d++;
- if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
+#ifdef emacs
+ {
+ int pos1 = PTR_TO_OFFSET (d);
+ UPDATE_SYNTAX_TABLE (pos1);
+ }
+#endif
+ {
+ int c, len;
+
+ if (multibyte)
+ c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
+ else
+ c = *d, len = 1;
+
+ if (SYNTAX (c) == (enum syntaxcode) mcnt)
goto fail;
+ d += len;
+ }
+ SET_REGS_MATCHED ();
+ break;
+
+ case categoryspec:
+ DEBUG_PRINT2 ("EXECUTING categoryspec %d.\n", *p);
+ mcnt = *p++;
+ PREFETCH ();
+ {
+ int c, len;
+
+ if (multibyte)
+ c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
+ else
+ c = *d, len = 1;
+
+ if (!CHAR_HAS_CATEGORY (c, mcnt))
+ goto fail;
+ d += len;
+ }
SET_REGS_MATCHED ();
break;
+ case notcategoryspec:
+ DEBUG_PRINT2 ("EXECUTING notcategoryspec %d.\n", *p);
+ mcnt = *p++;
+ PREFETCH ();
+ {
+ int c, len;
+
+ if (multibyte)
+ c = STRING_CHAR_AND_LENGTH (d, dend - d, len);
+ else
+ c = *d, len = 1;
+
+ if (CHAR_HAS_CATEGORY (c, mcnt))
+ goto fail;
+ d += len;
+ }
+ SET_REGS_MATCHED ();
+ break;
+
#else /* not emacs */
case wordchar:
- DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
+ DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
PREFETCH ();
- if (!WORDCHAR_P (d))
- goto fail;
+ if (!WORDCHAR_P (d))
+ goto fail;
SET_REGS_MATCHED ();
- d++;
+ d++;
break;
case notwordchar:
- DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
+ DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
PREFETCH ();
if (WORDCHAR_P (d))
- goto fail;
- SET_REGS_MATCHED ();
- d++;
+ goto fail;
+ SET_REGS_MATCHED ();
+ d++;
break;
#endif /* not emacs */
- default:
- abort ();
+ default:
+ abort ();
}
- continue; /* Successfully executed one pattern command; keep going. */
+ continue; /* Successfully executed one pattern command; keep going. */
/* We goto here if a matching operation fails. */
fail:
if (!FAIL_STACK_EMPTY ())
- { /* A restart point is known. Restore to that state. */
- DEBUG_PRINT1 ("\nFAIL:\n");
- POP_FAILURE_POINT (d, p,
- lowest_active_reg, highest_active_reg,
- regstart, regend, reg_info);
-
- /* If this failure point is a dummy, try the next one. */
- if (!p)
+ { /* A restart point is known. Restore to that state. */
+ DEBUG_PRINT1 ("\nFAIL:\n");
+ POP_FAILURE_POINT (d, p,
+ lowest_active_reg, highest_active_reg,
+ regstart, regend, reg_info);
+
+ /* If this failure point is a dummy, try the next one. */
+ if (!p)
goto fail;
- /* If we failed to the end of the pattern, don't examine *p. */
+ /* If we failed to the end of the pattern, don't examine *p. */
assert (p <= pend);
- if (p < pend)
- {
- boolean is_a_jump_n = false;
-
- /* If failed to a backwards jump that's part of a repetition
- loop, need to pop this failure point and use the next one. */
- switch ((re_opcode_t) *p)
- {
- case jump_n:
- is_a_jump_n = true;
- case maybe_pop_jump:
- case pop_failure_jump:
- case jump:
- p1 = p + 1;
- EXTRACT_NUMBER_AND_INCR (mcnt, p1);
- p1 += mcnt;
-
- if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
- || (!is_a_jump_n
- && (re_opcode_t) *p1 == on_failure_jump))
- goto fail;
- break;
- default:
- /* do nothing */ ;
- }
- }
-
- if (d >= string1 && d <= end1)
+ if (p < pend)
+ {
+ boolean is_a_jump_n = false;
+
+ /* If failed to a backwards jump that's part of a repetition
+ loop, need to pop this failure point and use the next one. */
+ switch ((re_opcode_t) *p)
+ {
+ case jump_n:
+ is_a_jump_n = true;
+ case maybe_pop_jump:
+ case pop_failure_jump:
+ case jump:
+ p1 = p + 1;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ p1 += mcnt;
+
+ if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
+ || (!is_a_jump_n
+ && (re_opcode_t) *p1 == on_failure_jump))
+ goto fail;
+ break;
+ default:
+ /* do nothing */ ;
+ }
+ }
+
+ if (d >= string1 && d <= end1)
dend = end_match_1;
- }
+ }
else
- break; /* Matching at this starting point really fails. */
+ break; /* Matching at this starting point really fails. */
} /* for (;;) */
if (best_regs_set)
FREE_VARIABLES ();
- return -1; /* Failure to match. */
+ return -1; /* Failure to match. */
} /* re_match_2 */
\f
/* Subroutine definitions for re_match_2. */
{
/* Skip over opcodes that can match nothing, and return true or
false, as appropriate, when we get to one that can't, or to the
- matching stop_memory. */
+ matching stop_memory. */
switch ((re_opcode_t) *p1)
- {
- /* Could be either a loop or a series of alternatives. */
- case on_failure_jump:
- p1++;
- EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ {
+ /* Could be either a loop or a series of alternatives. */
+ case on_failure_jump:
+ p1++;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
- /* If the next operation is not a jump backwards in the
+ /* If the next operation is not a jump backwards in the
pattern. */
if (mcnt >= 0)
{
- /* Go through the on_failure_jumps of the alternatives,
- seeing if any of the alternatives cannot match nothing.
- The last alternative starts with only a jump,
- whereas the rest start with on_failure_jump and end
- with a jump, e.g., here is the pattern for `a|b|c':
+ /* Go through the on_failure_jumps of the alternatives,
+ seeing if any of the alternatives cannot match nothing.
+ The last alternative starts with only a jump,
+ whereas the rest start with on_failure_jump and end
+ with a jump, e.g., here is the pattern for `a|b|c':
- /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
- /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
- /exactn/1/c
+ /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
+ /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
+ /exactn/1/c
- So, we have to first go through the first (n-1)
- alternatives and then deal with the last one separately. */
+ So, we have to first go through the first (n-1)
+ alternatives and then deal with the last one separately. */
- /* Deal with the first (n-1) alternatives, which start
- with an on_failure_jump (see above) that jumps to right
- past a jump_past_alt. */
+ /* Deal with the first (n-1) alternatives, which start
+ with an on_failure_jump (see above) that jumps to right
+ past a jump_past_alt. */
- while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
- {
- /* `mcnt' holds how many bytes long the alternative
- is, including the ending `jump_past_alt' and
- its number. */
+ while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
+ {
+ /* `mcnt' holds how many bytes long the alternative
+ is, including the ending `jump_past_alt' and
+ its number. */
- if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
- reg_info))
- return false;
+ if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
+ reg_info))
+ return false;
- /* Move to right after this alternative, including the
+ /* Move to right after this alternative, including the
jump_past_alt. */
- p1 += mcnt;
+ p1 += mcnt;
- /* Break if it's the beginning of an n-th alternative
- that doesn't begin with an on_failure_jump. */
- if ((re_opcode_t) *p1 != on_failure_jump)
- break;
+ /* Break if it's the beginning of an n-th alternative
+ that doesn't begin with an on_failure_jump. */
+ if ((re_opcode_t) *p1 != on_failure_jump)
+ break;
/* Still have to check that it's not an n-th
alternative that starts with an on_failure_jump. */
p1++;
- EXTRACT_NUMBER_AND_INCR (mcnt, p1);
- if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
- {
- /* Get to the beginning of the n-th alternative. */
- p1 -= 3;
- break;
- }
- }
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
+ {
+ /* Get to the beginning of the n-th alternative. */
+ p1 -= 3;
+ break;
+ }
+ }
- /* Deal with the last alternative: go back and get number
- of the `jump_past_alt' just before it. `mcnt' contains
- the length of the alternative. */
- EXTRACT_NUMBER (mcnt, p1 - 2);
+ /* Deal with the last alternative: go back and get number
+ of the `jump_past_alt' just before it. `mcnt' contains
+ the length of the alternative. */
+ EXTRACT_NUMBER (mcnt, p1 - 2);
- if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
- return false;
+ if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
+ return false;
- p1 += mcnt; /* Get past the n-th alternative. */
- } /* if mcnt > 0 */
- break;
+ p1 += mcnt; /* Get past the n-th alternative. */
+ } /* if mcnt > 0 */
+ break;
- case stop_memory:
+ case stop_memory:
assert (p1[1] == **p);
- *p = p1 + 2;
- return true;
+ *p = p1 + 2;
+ return true;
- default:
- if (!common_op_match_null_string_p (&p1, end, reg_info))
- return false;
- }
+ default:
+ if (!common_op_match_null_string_p (&p1, end, reg_info))
+ return false;
+ }
} /* while p1 < end */
return false;
while (p1 < end)
{
/* Skip over opcodes that can match nothing, and break when we get
- to one that can't. */
+ to one that can't. */
switch ((re_opcode_t) *p1)
- {
- /* It's a loop. */
- case on_failure_jump:
- p1++;
- EXTRACT_NUMBER_AND_INCR (mcnt, p1);
- p1 += mcnt;
- break;
+ {
+ /* It's a loop. */
+ case on_failure_jump:
+ p1++;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ p1 += mcnt;
+ break;
default:
- if (!common_op_match_null_string_p (&p1, end, reg_info))
- return false;
- }
+ if (!common_op_match_null_string_p (&p1, end, reg_info))
+ return false;
+ }
} /* while p1 < end */
return true;
ret = group_match_null_string_p (&p1, end, reg_info);
/* Have to set this here in case we're checking a group which
- contains a group and a back reference to it. */
+ contains a group and a back reference to it. */
if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
- REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
+ REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
if (!ret)
- return false;
+ return false;
break;
- /* If this is an optimized succeed_n for zero times, make the jump. */
+ /* If this is an optimized succeed_n for zero times, make the jump. */
case jump:
EXTRACT_NUMBER_AND_INCR (mcnt, p1);
if (mcnt >= 0)
- p1 += mcnt;
+ p1 += mcnt;
else
- return false;
+ return false;
break;
case succeed_n:
- /* Get to the number of times to succeed. */
+ /* Get to the number of times to succeed. */
p1 += 2;
EXTRACT_NUMBER_AND_INCR (mcnt, p1);
if (mcnt == 0)
- {
- p1 -= 4;
- EXTRACT_NUMBER_AND_INCR (mcnt, p1);
- p1 += mcnt;
- }
+ {
+ p1 -= 4;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ p1 += mcnt;
+ }
else
- return false;
+ return false;
break;
case duplicate:
if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
- return false;
+ return false;
break;
case set_number_at:
Assumes the `allocated' (and perhaps `buffer') and `translate' fields
are set in BUFP on entry.
- We call regex_compile to do the actual compilation. */
+ We call regex_compile to do the actual compilation. */
const char *
re_compile_pattern (pattern, length, bufp)
setting no_sub. */
bufp->no_sub = 0;
- /* Match anchors at newline. */
+ /* Match anchors at newline. */
bufp->newline_anchor = 1;
ret = regex_compile (pattern, length, re_syntax_options, bufp);
return gettext (re_error_msgid[(int) ret]);
}
\f
-/* Entry points compatible with 4.2 BSD regex library. We don't define
- them unless specifically requested. */
+/* Entry points compatible with 4.2 BSD regex library. We don't define
+ them unless specifically requested. */
#if defined (_REGEX_RE_COMP) || defined (_LIBC)
{
re_comp_buf.buffer = (unsigned char *) malloc (200);
if (re_comp_buf.buffer == NULL)
- return gettext (re_error_msgid[(int) REG_ESPACE]);
+ return gettext (re_error_msgid[(int) REG_ESPACE]);
re_comp_buf.allocated = 200;
re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
/* Since `re_exec' always passes NULL for the `regs' argument, we
don't need to initialize the pattern buffer fields which affect it. */
- /* Match anchors at newlines. */
+ /* Match anchors at newlines. */
re_comp_buf.newline_anchor = 1;
ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
/* regcomp takes a regular expression as a string and compiles it.
- PREG is a regex_t *. We do not expect any fields to be initialized,
+ PREG is a regex_t *. We do not expect any fields to be initialized,
since POSIX says we shouldn't. Thus, we set
`buffer' to the compiled pattern;
routine will report only success or failure, and nothing about the
registers.
- It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
+ It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
the return codes and their meanings.) */
int
= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
* sizeof (*(RE_TRANSLATE_TYPE)0));
if (preg->translate == NULL)
- return (int) REG_ESPACE;
+ return (int) REG_ESPACE;
/* Map uppercase characters to corresponding lowercase ones. */
for (i = 0; i < CHAR_SET_SIZE; i++)
- preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
+ preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
}
else
preg->translate = NULL;
{ /* REG_NEWLINE implies neither . nor [^...] match newline. */
syntax &= ~RE_DOT_NEWLINE;
syntax |= RE_HAT_LISTS_NOT_NEWLINE;
- /* It also changes the matching behavior. */
+ /* It also changes the matching behavior. */
preg->newline_anchor = 1;
}
else
string STRING.
If NMATCH is zero or REG_NOSUB was set in the cflags argument to
- `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
+ `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
least NMATCH elements, and we set them to the offsets of the
corresponding matched substrings.
/* The user has told us exactly how many registers to return
information about, via `nmatch'. We have to pass that on to the
- matching routines. */
+ matching routines. */
private_preg.regs_allocated = REGS_FIXED;
if (want_reg_info)
regs.start = TALLOC (nmatch, regoff_t);
regs.end = TALLOC (nmatch, regoff_t);
if (regs.start == NULL || regs.end == NULL)
- return (int) REG_NOMATCH;
+ return (int) REG_NOMATCH;
}
/* Perform the searching operation. */
ret = re_search (&private_preg, string, len,
- /* start: */ 0, /* range: */ len,
- want_reg_info ? ®s : (struct re_registers *) 0);
+ /* start: */ 0, /* range: */ len,
+ want_reg_info ? ®s : (struct re_registers *) 0);
/* Copy the register information to the POSIX structure. */
if (want_reg_info)
{
if (ret >= 0)
- {
- unsigned r;
+ {
+ unsigned r;
- for (r = 0; r < nmatch; r++)
- {
- pmatch[r].rm_so = regs.start[r];
- pmatch[r].rm_eo = regs.end[r];
- }
- }
+ for (r = 0; r < nmatch; r++)
+ {
+ pmatch[r].rm_so = regs.start[r];
+ pmatch[r].rm_eo = regs.end[r];
+ }
+ }
- /* If we needed the temporary register info, free the space now. */
+ /* If we needed the temporary register info, free the space now. */
free (regs.start);
free (regs.end);
}
if (errcode < 0
|| errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
/* Only error codes returned by the rest of the code should be passed
- to this routine. If we are given anything else, or if other regex
+ to this routine. If we are given anything else, or if other regex
code generates an invalid error code, then the program has a bug.
Dump core so we can fix it. */
abort ();
if (errbuf_size != 0)
{
if (msg_size > errbuf_size)
- {
- strncpy (errbuf, msg, errbuf_size - 1);
- errbuf[errbuf_size - 1] = 0;
- }
+ {
+ strncpy (errbuf, msg, errbuf_size - 1);
+ errbuf[errbuf_size - 1] = 0;
+ }
else
- strcpy (errbuf, msg);
+ strcpy (errbuf, msg);
}
return msg_size;