return val;
}
-/* the rounding functions */
-
-DEFUN ("ceiling", Fceiling, Sceiling, 1, 1, 0,
- "Return the smallest integer no less than ARG. (Round toward +inf.)")
- (arg)
- register Lisp_Object arg;
-{
- CHECK_NUMBER_OR_FLOAT (arg, 0);
-
- if (FLOATP (arg))
- {
- double d;
-
- IN_FLOAT (d = ceil (XFLOAT (arg)->data), "ceiling", arg);
- FLOAT_TO_INT (d, arg, "ceiling", arg);
- }
-
- return arg;
-}
-
#endif /* LISP_FLOAT_TYPE */
-DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
- "Return the largest integer no greater than ARG. (Round towards -inf.)\n\
-With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR.")
- (arg, divisor)
+/* the rounding functions */
+
+static Lisp_Object
+rounding_driver (arg, divisor, double_round, int_round2, name)
register Lisp_Object arg, divisor;
+ double (*double_round) ();
+ EMACS_INT (*int_round2) ();
+ char *name;
{
CHECK_NUMBER_OR_FLOAT (arg, 0);
if (! IEEE_FLOATING_POINT && f2 == 0)
Fsignal (Qarith_error, Qnil);
- IN_FLOAT2 (f1 = floor (f1 / f2), "floor", arg, divisor);
- FLOAT_TO_INT2 (f1, arg, "floor", arg, divisor);
+ IN_FLOAT2 (f1 = (*double_round) (f1 / f2), name, arg, divisor);
+ FLOAT_TO_INT2 (f1, arg, name, arg, divisor);
return arg;
}
#endif
if (i2 == 0)
Fsignal (Qarith_error, Qnil);
- /* With C's /, the result is implementation-defined if either operand
- is negative, so use only nonnegative operands. */
- i1 = (i2 < 0
- ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
- : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
-
- XSETINT (arg, i1);
+ XSETINT (arg, (*int_round2) (i1, i2));
return arg;
}
if (FLOATP (arg))
{
double d;
- IN_FLOAT (d = floor (XFLOAT (arg)->data), "floor", arg);
- FLOAT_TO_INT (d, arg, "floor", arg);
+
+ IN_FLOAT (d = (*double_round) (XFLOAT (arg)->data), name, arg);
+ FLOAT_TO_INT (d, arg, name, arg);
}
#endif
return arg;
}
+/* With C's /, the result is implementation-defined if either operand
+ is negative, so take care with negative operands in the following
+ integer functions. */
+
+static EMACS_INT
+ceiling2 (i1, i2)
+ EMACS_INT i1, i2;
+{
+ return (i2 < 0
+ ? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2))
+ : (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1));
+}
+
+static EMACS_INT
+floor2 (i1, i2)
+ EMACS_INT i1, i2;
+{
+ return (i2 < 0
+ ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
+ : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
+}
+
+static EMACS_INT
+truncate2 (i1, i2)
+ EMACS_INT i1, i2;
+{
+ return (i2 < 0
+ ? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2))
+ : (i1 < 0 ? - (-i1 / i2) : i1 / i2));
+}
+
+static EMACS_INT
+round2 (i1, i2)
+ EMACS_INT i1, i2;
+{
+ /* The C language's division operator gives us one remainder R, but
+ we want the remainder R1 on the other side of 0 if R1 is closer
+ to 0 than R is; because we want to round to even, we also want R1
+ if R and R1 are the same distance from 0 and if C's quotient is
+ odd. */
+ EMACS_INT q = i1 / i2;
+ EMACS_INT r = i1 % i2;
+ EMACS_INT abs_r = r < 0 ? -r : r;
+ EMACS_INT abs_r1 = (i2 < 0 ? -i2 : i2) - abs_r;
+ return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1);
+}
+
+static double
+double_identity (d)
+ double d;
+{
+ return d;
+}
+
+DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0,
+ "Return the smallest integer no less than ARG. (Round toward +inf.)\n\
+With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR.")
+ (arg, divisor)
+ Lisp_Object arg, divisor;
+{
+ return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling");
+}
+
+DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
+ "Return the largest integer no greater than ARG. (Round towards -inf.)\n\
+With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR.")
+ (arg, divisor)
+ Lisp_Object arg, divisor;
+{
+ return rounding_driver (arg, divisor, floor, floor2, "floor");
+}
+
+DEFUN ("round", Fround, Sround, 1, 2, 0,
+ "Return the nearest integer to ARG.\n\
+With optional DIVISOR, return the nearest integer to ARG/DIVISOR.")
+ (arg, divisor)
+ Lisp_Object arg, divisor;
+{
+ return rounding_driver (arg, divisor, rint, round2, "round");
+}
+
+DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0,
+ "Truncate a floating point number to an int.\n\
+Rounds ARG toward zero.\n\
+With optional DIVISOR, truncate ARG/DIVISOR.")
+ (arg, divisor)
+ Lisp_Object arg, divisor;
+{
+ return rounding_driver (arg, divisor, double_identity, truncate2,
+ "truncate");
+}
+
#ifdef LISP_FLOAT_TYPE
Lisp_Object
"mod", x, y);
return make_float (f1);
}
-
-DEFUN ("round", Fround, Sround, 1, 1, 0,
- "Return the nearest integer to ARG.")
- (arg)
- register Lisp_Object arg;
-{
- CHECK_NUMBER_OR_FLOAT (arg, 0);
-
- if (FLOATP (arg))
- {
- double d;
-
- /* Screw the prevailing rounding mode. */
- IN_FLOAT (d = rint (XFLOAT (arg)->data), "round", arg);
- FLOAT_TO_INT (d, arg, "round", arg);
- }
-
- return arg;
-}
-
-DEFUN ("truncate", Ftruncate, Struncate, 1, 1, 0,
- "Truncate a floating point number to an int.\n\
-Rounds the value toward zero.")
- (arg)
- register Lisp_Object arg;
-{
- CHECK_NUMBER_OR_FLOAT (arg, 0);
-
- if (FLOATP (arg))
- {
- double d;
-
- d = XFLOAT (arg)->data;
- FLOAT_TO_INT (d, arg, "truncate", arg);
- }
-
- return arg;
-}
\f
/* It's not clear these are worth adding. */
defsubr (&Sabs);
defsubr (&Sfloat);
defsubr (&Slogb);
+#endif /* LISP_FLOAT_TYPE */
defsubr (&Sceiling);
+ defsubr (&Sfloor);
defsubr (&Sround);
defsubr (&Struncate);
-#endif /* LISP_FLOAT_TYPE */
- defsubr (&Sfloor);
}