{
double f1, f2;
EMACS_INT i1, i2;
- bool fneq;
+ bool lt, eq, gt;
bool test;
CHECK_NUMBER_COERCE_MARKER (num1);
return bignumcompare (num1, num2, comparison);
/* If either arg is floating point, set F1 and F2 to the 'double'
- approximations of the two arguments, and set FNEQ if floating-point
- comparison reports that F1 is not equal to F2, possibly because F1
- or F2 is a NaN. Regardless, set I1 and I2 to integers that break
- ties if the floating-point comparison is either not done or reports
+ approximations of the two arguments, and set LT, EQ, and GT to
+ the <, ==, > floating-point comparisons of F1 and F2
+ respectively, taking care to avoid problems if either is a NaN,
+ and trying to avoid problems on platforms where variables (in
+ violation of the C standard) can contain excess precision.
+ Regardless, set I1 and I2 to integers that break ties if the
+ floating-point comparison is either not done or reports
equality. */
if (FLOATP (num1))
to I2 will break the tie correctly. */
i1 = f2 = i2 = XFIXNUM (num2);
}
- fneq = f1 != f2;
+ lt = f1 < f2;
+ eq = f1 == f2;
+ gt = f1 > f2;
}
else
{
converse of comparing float to integer (see above). */
i2 = f1 = i1;
f2 = XFLOAT_DATA (num2);
- fneq = f1 != f2;
+ lt = f1 < f2;
+ eq = f1 == f2;
+ gt = f1 > f2;
}
else
{
i2 = XFIXNUM (num2);
- fneq = false;
+ eq = true;
}
}
+ if (eq)
+ {
+ /* Break a floating-point tie by comparing the integers. */
+ lt = i1 < i2;
+ eq = i1 == i2;
+ gt = i1 > i2;
+ }
+
switch (comparison)
{
case ARITH_EQUAL:
- test = !fneq && i1 == i2;
+ test = eq;
break;
case ARITH_NOTEQUAL:
- test = fneq || i1 != i2;
+ test = !eq;
break;
case ARITH_LESS:
- test = fneq ? f1 < f2 : i1 < i2;
+ test = lt;
break;
case ARITH_LESS_OR_EQUAL:
- test = fneq ? f1 <= f2 : i1 <= i2;
+ test = lt | eq;
break;
case ARITH_GRTR:
- test = fneq ? f1 > f2 : i1 > i2;
+ test = gt;
break;
case ARITH_GRTR_OR_EQUAL:
- test = fneq ? f1 >= f2 : i1 >= i2;
+ test = gt | eq;
break;
default: