]> git.eshelyaron.com Git - emacs.git/commitdiff
Remove @refill commands.
authorJay Belanger <jay.p.belanger@gmail.com>
Mon, 6 Dec 2004 05:01:20 +0000 (05:01 +0000)
committerJay Belanger <jay.p.belanger@gmail.com>
Mon, 6 Dec 2004 05:01:20 +0000 (05:01 +0000)
Use more Texinfo macros instead of TeX defs.

man/calc.texi

index e1fdea44dd0f77b3a50f47fd06197998525a7b44..e38168aee47918bbd63ed635267e919c2d1a63fb 100644 (file)
@@ -7,33 +7,60 @@
 @setchapternewpage odd
 @comment %**end of header (This is for running Texinfo on a region.)
 
+@c The following macros are used for conditional output for single lines.
+@c @texline foo
+@c    `foo' will appear only in TeX output
+@c @infoline foo
+@c    `foo' will appear only in non-TeX output
+
+@c In TeX output, @tmath{expr} will typeset expr in  math mode.
+@c In any output, @expr{expr} will typeset an expression;
+@c $x$ in TeX, @samp{x} otherwise.
+
+@iftex
+@macro texline{stuff}
+\stuff\
+@end macro
+@macro tmath{stuff}
+@tex
+$\stuff\$
+@end tex
+@end macro
+@alias infoline=comment
+@c @alias expr=math
+@tex
+\gdef\expr#1{\tex 
+             \let\t\ttfont 
+             \turnoffactive 
+             $#1$
+             \endgroup}
+@end tex
+@macro cpi{}
+@math{@pi{}}
+@end macro
+@macro cpiover{den}
+@math{@pi/\den\}
+@end macro
+@end iftex
+
+@ifnottex
+@alias texline=comment
+@macro infoline{stuff}
+\stuff\
+@end macro
+@alias expr=samp
+@macro cpi{}
+@expr{pi}
+@end macro
+@macro cpiover{den}
+@expr{pi/\den\}
+@end macro
+@end ifnottex
+
+
 @tex
-% Some special kludges to make TeX formatting prettier.
-% Because makeinfo.c exists, we can't just define new commands.
-% So instead, we take over little-used existing commands.
-%
 % Suggested by Karl Berry <karl@@freefriends.org>
 \gdef\!{\mskip-\thinmuskip}
-% Redefine @cite{text} to act like $text$ in regular TeX.
-% Info will typeset this same as @samp{text}.
-\gdef\goodtex{\tex \let\rm\goodrm \let\t\ttfont \turnoffactive}
-\gdef\goodrm{\fam0\tenrm}
-\gdef\cite{\goodtex$\citexxx}
-\gdef\citexxx#1{#1$\Etex}
-\global\let\oldxrefX=\xrefX
-\gdef\xrefX[#1]{\begingroup\let\cite=\dfn\oldxrefX[#1]\endgroup}
-
-% Redefine @c{tex-stuff} \n @whatever{info-stuff}.
-\gdef\c{\futurelet\next\mycxxx}
-\gdef\mycxxx{%
-  \ifx\next\bgroup \goodtex\let\next\mycxxy
-  \else\ifx\next\mindex \let\next\relax
-  \else\ifx\next\kindex \let\next\relax
-  \else\ifx\next\starindex \let\next\relax \else \let\next\comment
-  \fi\fi\fi\fi \next
-}
-\gdef\mycxxy#1#2{#1\Etex\mycxxz}
-\gdef\mycxxz#1{}
 @end tex
 
 @c Fix some other things specifically for this manual.
@@ -513,8 +540,9 @@ need to know.
 @cindex Marginal notes
 Every Calc keyboard command is listed in the Calc Summary, and also
 in the Key Index.  Algebraic functions, @kbd{M-x} commands, and
-variables also have their own indices.  @c{Each}
-@asis{In the printed manual, each}
+variables also have their own indices.  
+@texline Each
+@infoline In the printed manual, each
 paragraph that is referenced in the Key or Function Index is marked
 in the margin with its index entry.
 
@@ -570,7 +598,7 @@ the corresponding function in an algebraic-style formula would
 be @samp{cos(@var{x})}.
 
 A few commands don't have key equivalents:  @code{calc-sincos}
-[@code{sincos}].@refill
+[@code{sincos}].
 
 @node Demonstration of Calc, Using Calc, Notations Used in This Manual, Getting Started
 @section A Demonstration of Calc
@@ -595,12 +623,14 @@ Delete, and Space keys.
 then the command to operate on the numbers.
 
 @noindent
-Type @kbd{2 @key{RET} 3 + Q} to compute @c{$\sqrt{2+3} = 2.2360679775$}
-@asis{the square root of 2+3, which is 2.2360679775}.
+Type @kbd{2 @key{RET} 3 + Q} to compute 
+@texline @tmath{\sqrt{2+3} = 2.2360679775}.
+@infoline the square root of 2+3, which is 2.2360679775.
 
 @noindent
-Type @kbd{P 2 ^} to compute @c{$\pi^2 = 9.86960440109$}
-@asis{the value of `pi' squared, 9.86960440109}.
+Type @kbd{P 2 ^} to compute 
+@texline @tmath{\pi^2 = 9.86960440109}.
+@infoline the value of `pi' squared, 9.86960440109.
 
 @noindent
 Type @key{TAB} to exchange the order of these two results.
@@ -617,13 +647,15 @@ conventional ``algebraic'' notation.  To enter an algebraic formula,
 use the apostrophe key.
 
 @noindent
-Type @kbd{' sqrt(2+3) @key{RET}} to compute @c{$\sqrt{2+3}$}
-@asis{the square root of 2+3}.
+Type @kbd{' sqrt(2+3) @key{RET}} to compute 
+@texline @tmath{\sqrt{2+3}}.
+@infoline the square root of 2+3.
 
 @noindent
-Type @kbd{' pi^2 @key{RET}} to enter @c{$\pi^2$}
-@asis{`pi' squared}.  To evaluate this symbolic
-formula as a number, type @kbd{=}.
+Type @kbd{' pi^2 @key{RET}} to enter 
+@texline @tmath{\pi^2}.
+@infoline `pi' squared.  
+To evaluate this symbolic formula as a number, type @kbd{=}.
 
 @noindent
 Type @kbd{' arcsinh($ - $$) @key{RET}} to subtract the second-most-recent
@@ -680,12 +712,16 @@ the upper-leftmost @samp{1} and set the mark, then move to just after
 the lower-right @samp{8} and press @kbd{M-# r}.
 
 @noindent
-Type @kbd{v t} to transpose this @c{$3\times2$}
-@asis{3x2} matrix into a @c{$2\times3$}
-@asis{2x3} matrix.  Type
-@w{@kbd{v u}} to unpack the rows into two separate vectors.  Now type
-@w{@kbd{V R + @key{TAB} V R +}} to compute the sums of the two original columns.
-(There is also a special grab-and-sum-columns command, @kbd{M-# :}.)
+Type @kbd{v t} to transpose this 
+@texline @tmath{3\times2}
+@infoline 3x2 
+matrix into a 
+@texline @tmath{2\times3}
+@infoline 2x3
+matrix.  Type @w{@kbd{v u}} to unpack the rows into two separate
+vectors.  Now type @w{@kbd{V R + @key{TAB} V R +}} to compute the sums
+of the two original columns. (There is also a special
+grab-and-sum-columns command, @kbd{M-# :}.)
 
 @strong{Units conversion.}  Units are entered algebraically.
 Type @w{@kbd{' 43 mi/hr @key{RET}}} to enter the quantity 43 miles-per-hour.
@@ -701,7 +737,7 @@ or equations involving variables.  Type @kbd{@w{' [x + y} = a, x y = 1] @key{RET
 to enter a pair of equations involving three variables.
 (Note the leading apostrophe in this example; also, note that the space
 between @samp{x y} is required.)  Type @w{@kbd{a S x,y @key{RET}}} to solve
-these equations for the variables @cite{x} and @cite{y}.@refill
+these equations for the variables @expr{x} and @expr{y}.
 
 @noindent
 Type @kbd{d B} to view the solutions in more readable notation.
@@ -710,7 +746,7 @@ to view them in the notation for the @TeX{} typesetting system.
 Type @kbd{d N} to return to normal notation.
 
 @noindent
-Type @kbd{7.5}, then @kbd{s l a @key{RET}} to let @cite{a = 7.5} in these formulas.
+Type @kbd{7.5}, then @kbd{s l a @key{RET}} to let @expr{a = 7.5} in these formulas.
 (That's a letter @kbd{l}, not a numeral @kbd{1}.)
 
 @iftex
@@ -769,7 +805,7 @@ Once again, if you don't have a Meta key on your keyboard you can type
 @key{ESC} first, then @kbd{#}, to accomplish the same thing.  If you
 don't even have an @key{ESC} key, you can fake it by holding down
 Control or @key{CTRL} while typing a left square bracket
-(that's @kbd{C-[} in Emacs notation).@refill
+(that's @kbd{C-[} in Emacs notation).
 
 @kbd{M-#} is a @dfn{prefix key}; when you press it, Emacs waits for
 you to press a second key to complete the command.  In this case,
@@ -853,7 +889,7 @@ Calc commands use the digits, letters, and punctuation keys.
 Shifted (i.e., upper-case) letters are different from lowercase
 letters.  Some letters are @dfn{prefix} keys that begin two-letter
 commands.  For example, @kbd{e} means ``enter exponent'' and shifted
-@kbd{E} means @cite{e^x}.  With the @kbd{d} (``display modes'') prefix
+@kbd{E} means @expr{e^x}.  With the @kbd{d} (``display modes'') prefix
 the letter ``e'' takes on very different meanings:  @kbd{d e} means
 ``engineering notation'' and @kbd{d E} means ``@dfn{eqn} language mode.''
 
@@ -1317,13 +1353,15 @@ With any prefix argument, reset everything but the stack.
 @noindent
 Calc was originally started as a two-week project to occupy a lull
 in the author's schedule.  Basically, a friend asked if I remembered
-the value of @c{$2^{32}$}
-@cite{2^32}.  I didn't offhand, but I said, ``that's
-easy, just call up an @code{xcalc}.''  @code{Xcalc} duly reported
-that the answer to our question was @samp{4.294967e+09}---with no way to
-see the full ten digits even though we knew they were there in the
-program's memory!  I was so annoyed, I vowed to write a calculator
-of my own, once and for all.
+the value of 
+@texline @tmath{2^{32}}.
+@infoline @expr{2^32}.  
+I didn't offhand, but I said, ``that's easy, just call up an
+@code{xcalc}.''  @code{Xcalc} duly reported that the answer to our
+question was @samp{4.294967e+09}---with no way to see the full ten
+digits even though we knew they were there in the program's memory!  I
+was so annoyed, I vowed to write a calculator of my own, once and for
+all.
 
 I chose Emacs Lisp, a) because I had always been curious about it
 and b) because, being only a text editor extension language after
@@ -1373,18 +1411,19 @@ algebra system for microcomputers.
 Many people have contributed to Calc by reporting bugs and suggesting
 features, large and small.  A few deserve special mention:  Tim Peters,
 who helped develop the ideas that led to the selection commands, rewrite
-rules, and many other algebra features; @c{Fran\c cois}
-@asis{Francois} Pinard, who contributed
-an early prototype of the Calc Summary appendix as well as providing
-valuable suggestions in many other areas of Calc; Carl Witty, whose eagle
-eyes discovered many typographical and factual errors in the Calc manual;
-Tim Kay, who drove the development of Embedded mode; Ove Ewerlid, who
-made many suggestions relating to the algebra commands and contributed
-some code for polynomial operations; Randal Schwartz, who suggested the
-@code{calc-eval} function; Robert J. Chassell, who suggested the Calc
-Tutorial and exercises; and Juha Sarlin, who first worked out how to split
-Calc into quickly-loading parts.  Bob Weiner helped immensely with the
-Lucid Emacs port.
+rules, and many other algebra features; 
+@texline Fran\c cois
+@infoline Francois
+Pinard, who contributed an early prototype of the Calc Summary appendix
+as well as providing valuable suggestions in many other areas of Calc;
+Carl Witty, whose eagle eyes discovered many typographical and factual
+errors in the Calc manual; Tim Kay, who drove the development of
+Embedded mode; Ove Ewerlid, who made many suggestions relating to the
+algebra commands and contributed some code for polynomial operations;
+Randal Schwartz, who suggested the @code{calc-eval} function; Robert
+J. Chassell, who suggested the Calc Tutorial and exercises; and Juha
+Sarlin, who first worked out how to split Calc into quickly-loading
+parts.  Bob Weiner helped immensely with the Lucid Emacs port.
 
 @cindex Bibliography
 @cindex Knuth, Art of Computer Programming
@@ -1545,8 +1584,8 @@ from the top of the stack.
 
 @cindex Operators
 @cindex Operands
-In an operation like @cite{2+3}, the 2 and 3 are called the @dfn{operands}
-and the @cite{+} is the @dfn{operator}.  In an RPN calculator you always
+In an operation like @expr{2+3}, the 2 and 3 are called the @dfn{operands}
+and the @expr{+} is the @dfn{operator}.  In an RPN calculator you always
 enter the operands first, then the operator.  Each time you type a
 number, Calc adds or @dfn{pushes} it onto the top of the Stack.
 When you press an operator key like @kbd{+}, Calc @dfn{pops} the appropriate
@@ -1560,7 +1599,7 @@ you wish; type @kbd{M-# c} to switch into the Calc window (you can type
 The first four keystrokes ``push'' the numbers 2 and 3 onto the stack.
 The @kbd{+} key ``pops'' the top two numbers from the stack, adds them,
 and pushes the result (5) back onto the stack.  Here's how the stack
-will look at various points throughout the calculation:@refill
+will look at various points throughout the calculation:
 
 @smallexample
 @group
@@ -1581,11 +1620,11 @@ less distracting in regular use.
 @cindex Levels of stack
 The numbers @samp{1:} and @samp{2:} on the left are @dfn{stack level
 numbers}.  Old RPN calculators always had four stack levels called
-@cite{x}, @cite{y}, @cite{z}, and @cite{t}.  Calc's stack can grow
+@expr{x}, @expr{y}, @expr{z}, and @expr{t}.  Calc's stack can grow
 as large as you like, so it uses numbers instead of letters.  Some
 stack-manipulation commands accept a numeric argument that says
 which stack level to work on.  Normal commands like @kbd{+} always
-work on the top few levels of the stack.@refill
+work on the top few levels of the stack.
 
 @c [fix-ref Truncating the Stack]
 The Stack buffer is just an Emacs buffer, and you can move around in
@@ -1602,7 +1641,7 @@ You don't really need the second @key{RET} in @kbd{2 @key{RET} 3
 @key{RET} +}.  That's because if you type any operator name or
 other non-numeric key when you are entering a number, the Calculator
 automatically enters that number and then does the requested command.
-Thus @kbd{2 @key{RET} 3 +} will work just as well.@refill
+Thus @kbd{2 @key{RET} 3 +} will work just as well.
 
 Examples in this tutorial will often omit @key{RET} even when the
 stack displays shown would only happen if you did press @key{RET}:
@@ -1636,9 +1675,10 @@ Here's the first exercise:  What will the keystrokes @kbd{1 @key{RET} 2
 multiplication.)  Figure it out by hand, then try it with Calc to see
 if you're right.  @xref{RPN Answer 1, 1}. (@bullet{})
 
-(@bullet{}) @strong{Exercise 2.}  Compute @c{$(2\times4) + (7\times9.4) + {5\over4}$}
-@cite{2*4 + 7*9.5 + 5/4} using the
-stack.  @xref{RPN Answer 2, 2}. (@bullet{})
+(@bullet{}) @strong{Exercise 2.}  Compute 
+@texline @tmath{(2\times4) + (7\times9.4) + {5\over4}}
+@infoline @expr{2*4 + 7*9.5 + 5/4} 
+using the stack.  @xref{RPN Answer 2, 2}. (@bullet{})
 
 The @key{DEL} key is called Backspace on some keyboards.  It is
 whatever key you would use to correct a simple typing error when
@@ -1690,7 +1730,7 @@ the above example with @key{SPC} and the effect would be the same.
 Another stack manipulation key is @key{TAB}.  This exchanges the top
 two stack entries.  Suppose you have computed @kbd{2 @key{RET} 3 +}
 to get 5, and then you realize what you really wanted to compute
-was @cite{20 / (2+3)}.
+was @expr{20 / (2+3)}.
 
 @smallexample
 @group
@@ -1798,11 +1838,10 @@ What happens if you take the square root of a negative number?
 @end smallexample
 
 @noindent
-The notation @cite{(a, b)} represents a complex number.
-Complex numbers are more traditionally written @c{$a + b i$}
-@cite{a + b i};
+The notation @expr{(a, b)} represents a complex number.
+Complex numbers are more traditionally written @expr{a + b i};
 Calc can display in this format, too, but for now we'll stick to the
-@cite{(a, b)} notation.
+@expr{(a, b)} notation.
 
 If you don't know how complex numbers work, you can safely ignore this
 feature.  Complex numbers only arise from operations that would be
@@ -1861,7 +1900,7 @@ When you press @kbd{)} all the stack entries between the incomplete
 entry and the top are collected, so there's never really a reason
 to use the comma.  It's up to you.
 
-(@bullet{}) @strong{Exercise 4.}  To enter the complex number @cite{(2, 3)},
+(@bullet{}) @strong{Exercise 4.}  To enter the complex number @expr{(2, 3)},
 your friend Joe typed @kbd{( 2 , @key{SPC} 3 )}.  What happened?
 (Joe thought of a clever way to correct his mistake in only two
 keystrokes, but it didn't quite work.  Try it to find out why.)
@@ -1921,7 +1960,7 @@ entire stack.)
 If you are not used to RPN notation, you may prefer to operate the
 Calculator in ``algebraic mode,'' which is closer to the way
 non-RPN calculators work.  In algebraic mode, you enter formulas
-in traditional @cite{2+3} notation.
+in traditional @expr{2+3} notation.
 
 You don't really need any special ``mode'' to enter algebraic formulas.
 You can enter a formula at any time by pressing the apostrophe (@kbd{'})
@@ -2004,7 +2043,7 @@ the function name corresponding to the square-root key @kbd{Q} is
 the notation @samp{sqrt(@var{x})}.
 
 Press the apostrophe, then type @kbd{sqrt(5*2) - 3}.  The result should
-be @cite{0.16227766017}.
+be @expr{0.16227766017}.
 
 Note that if the formula begins with a function name, you need to use
 the apostrophe even if you are in algebraic mode.  If you type @kbd{arcsin}
@@ -2030,7 +2069,7 @@ Still in algebraic mode, type:
 
 Algebraic mode allows us to enter complex numbers without pressing
 an apostrophe first, but it also means we need to press @key{RET}
-after every entry, even for a simple number like @cite{1}.
+after every entry, even for a simple number like @expr{1}.
 
 (You can type @kbd{C-u m a} to enable a special ``incomplete algebraic
 mode'' in which the @kbd{(} and @kbd{[} keys use algebraic entry even
@@ -2050,8 +2089,9 @@ intermediate results of a calculation as you go along.  You can
 accomplish this in Calc by performing your calculation as a series
 of algebraic entries, using the @kbd{$} sign to tie them together.
 In an algebraic formula, @kbd{$} represents the number on the top
-of the stack.  Here, we perform the calculation @c{$\sqrt{2\times4+1}$}
-@cite{sqrt(2*4+1)},
+of the stack.  Here, we perform the calculation 
+@texline @tmath{\sqrt{2\times4+1}},
+@infoline @expr{sqrt(2*4+1)},
 which on a traditional calculator would be done by pressing
 @kbd{2 * 4 + 1 =} and then the square-root key.
 
@@ -2190,7 +2230,7 @@ the righthand formula has been evaluated as if by typing @kbd{=}.
 
 @noindent
 Notice that the instant we stored a new value in @code{a}, all
-@samp{=>} operators already on the stack that referred to @cite{a}
+@samp{=>} operators already on the stack that referred to @expr{a}
 were updated to use the new value.  With @samp{=>}, you can push a
 set of formulas on the stack, then change the variables experimentally
 to see the effects on the formulas' values.
@@ -2257,7 +2297,7 @@ mistakenly.
 @end smallexample
 
 @noindent
-It was not possible to redo past the @cite{6}, since that was placed there
+It was not possible to redo past the @expr{6}, since that was placed there
 by something other than an undo command.
 
 @cindex Time travel
@@ -2265,7 +2305,7 @@ You can think of undo and redo as a sort of ``time machine.''  Press
 @kbd{U} to go backward in time, @kbd{D} to go forward.  If you go
 backward and do something (like @kbd{*}) then, as any science fiction
 reader knows, you have changed your future and you cannot go forward
-again.  Thus, the inability to redo past the @cite{6} even though there
+again.  Thus, the inability to redo past the @expr{6} even though there
 was an earlier undo command.
 
 You can always recall an earlier result using the Trail.  We've ignored
@@ -2273,13 +2313,13 @@ the trail so far, but it has been faithfully recording everything we
 did since we loaded the Calculator.  If the Trail is not displayed,
 press @kbd{t d} now to turn it on.
 
-Let's try grabbing an earlier result.  The @cite{8} we computed was
+Let's try grabbing an earlier result.  The @expr{8} we computed was
 undone by a @kbd{U} command, and was lost even to Redo when we pressed
 @kbd{*}, but it's still there in the trail.  There should be a little
 @samp{>} arrow (the @dfn{trail pointer}) resting on the last trail
 entry.  If there isn't, press @kbd{t ]} to reset the trail pointer.
 Now, press @w{@kbd{t p}} to move the arrow onto the line containing
-@cite{8}, and press @w{@kbd{t y}} to ``yank'' that number back onto the
+@expr{8}, and press @w{@kbd{t y}} to ``yank'' that number back onto the
 stack.
 
 If you press @kbd{t ]} again, you will see that even our Yank command
@@ -2340,8 +2380,7 @@ directly, but you can press @kbd{`} (the backquote or accent grave)
 to edit a stack entry.
 
 Try entering @samp{3.141439} now.  If this is supposed to represent
-@c{$\pi$}
-@cite{pi}, it's got several errors.  Press @kbd{`} to edit this number.
+@cpi{}, it's got several errors.  Press @kbd{`} to edit this number.
 Now use the normal Emacs cursor motion and editing keys to change
 the second 4 to a 5, and to transpose the 3 and the 9.  When you
 press @key{RET}, the number on the stack will be replaced by your
@@ -2370,7 +2409,7 @@ Most of the symbols there are Emacs things you don't need to worry
 about, but the @samp{12} and the @samp{Deg} are mode indicators.
 The @samp{12} means that calculations should always be carried to
 12 significant figures.  That is why, when we type @kbd{1 @key{RET} 7 /},
-we get @cite{0.142857142857} with exactly 12 digits, not counting
+we get @expr{0.142857142857} with exactly 12 digits, not counting
 leading and trailing zeros.
 
 You can set the precision to anything you like by pressing @kbd{p},
@@ -2387,14 +2426,14 @@ then doing @kbd{1 @key{RET} 7 /} again:
 
 Although the precision can be set arbitrarily high, Calc always
 has to have @emph{some} value for the current precision.  After
-all, the true value @cite{1/7} is an infinitely repeating decimal;
+all, the true value @expr{1/7} is an infinitely repeating decimal;
 Calc has to stop somewhere.
 
 Of course, calculations are slower the more digits you request.
 Press @w{@kbd{p 12}} now to set the precision back down to the default.
 
 Calculations always use the current precision.  For example, even
-though we have a 30-digit value for @cite{1/7} on the stack, if
+though we have a 30-digit value for @expr{1/7} on the stack, if
 we use it in a calculation in 12-digit mode it will be rounded
 down to 12 digits before it is used.  Try it; press @key{RET} to
 duplicate the number, then @w{@kbd{1 +}}.  Notice that the @key{RET}
@@ -2412,7 +2451,7 @@ But the instant we pressed @kbd{+}, the number was rounded down.
 
 @noindent
 In fact, since we added a digit on the left, we had to lose one
-digit on the right from even the 12-digit value of @cite{1/7}.
+digit on the right from even the 12-digit value of @expr{1/7}.
 
 How did we get more than 12 digits when we computed @samp{2^3^4}?  The
 answer is that Calc makes a distinction between @dfn{integers} and
@@ -2463,7 +2502,7 @@ want to see.  You can enter numbers in this notation, too.
 @noindent
 Hey, the answer is different!  Look closely at the middle columns
 of the two examples.  In the first, the stack contained the
-exact integer @cite{10000}, but in the second it contained
+exact integer @expr{10000}, but in the second it contained
 a floating-point value with a decimal point.  When you raise a
 number to an integer power, Calc uses repeated squaring and
 multiplication to get the answer.  When you use a floating-point
@@ -2564,7 +2603,7 @@ whole stack.  The @kbd{d n} command changes back to the normal float
 format; since it doesn't have an @kbd{H} prefix, it also updates all
 the stack entries to be in @kbd{d n} format.
 
-Notice that the integer @cite{12345} was not affected by any
+Notice that the integer @expr{12345} was not affected by any
 of the float formats.  Integers are integers, and are always
 displayed exactly.
 
@@ -2712,13 +2751,15 @@ angle is measured in degrees.  For example,
 
 @noindent
 The shift-@kbd{S} command computes the sine of an angle.  The sine
-of 45 degrees is @c{$\sqrt{2}/2$}
-@cite{sqrt(2)/2}; squaring this yields @cite{2/4 = 0.5}.
-However, there has been a slight roundoff error because the
-representation of @c{$\sqrt{2}/2$}
-@cite{sqrt(2)/2} wasn't exact.  The @kbd{c 1}
-command is a handy way to clean up numbers in this case; it
-temporarily reduces the precision by one digit while it
+of 45 degrees is 
+@texline @tmath{\sqrt{2}/2};
+@infoline @expr{sqrt(2)/2}; 
+squaring this yields @expr{2/4 = 0.5}.  However, there has been a slight
+roundoff error because the representation of 
+@texline @tmath{\sqrt{2}/2}
+@infoline @expr{sqrt(2)/2} 
+wasn't exact.  The @kbd{c 1} command is a handy way to clean up numbers
+in this case; it temporarily reduces the precision by one digit while it
 re-rounds the number on the top of the stack.
 
 @cindex Roundoff errors, examples
@@ -2729,9 +2770,7 @@ What happened?  @xref{Modes Answer 3, 3}. (@bullet{})
 
 To do this calculation in radians, we would type @kbd{m r} first.
 (The indicator changes to @samp{Rad}.)  45 degrees corresponds to
-@c{$\pi\over4$}
-@cite{pi/4} radians.  To get @c{$\pi$}
-@cite{pi}, press the @kbd{P} key.  (Once
+@cpiover{4} radians.  To get @cpi{}, press the @kbd{P} key.  (Once
 again, this is a shifted capital @kbd{P}.  Remember, unshifted
 @kbd{p} sets the precision.)
 
@@ -2757,9 +2796,10 @@ either radians or degrees, depending on the current angular mode.
 @end smallexample
 
 @noindent
-Here we compute the Inverse Sine of @c{$\sqrt{0.5}$}
-@cite{sqrt(0.5)}, first in
-radians, then in degrees.
+Here we compute the Inverse Sine of 
+@texline @tmath{\sqrt{0.5}},
+@infoline @expr{sqrt(0.5)}, 
+first in radians, then in degrees.
 
 Use @kbd{c d} and @kbd{c r} to convert a number from radians to degrees
 and vice-versa.
@@ -2939,15 +2979,16 @@ provide a @kbd{\} command.  @xref{Arithmetic Answer 1, 1}. (@bullet{})
 
 We've already seen the @kbd{Q} (square root) and @kbd{S} (sine)
 commands.  Other commands along those lines are @kbd{C} (cosine),
-@kbd{T} (tangent), @kbd{E} (@cite{e^x}) and @kbd{L} (natural
+@kbd{T} (tangent), @kbd{E} (@expr{e^x}) and @kbd{L} (natural
 logarithm).  These can be modified by the @kbd{I} (inverse) and
 @kbd{H} (hyperbolic) prefix keys.
 
 Let's compute the sine and cosine of an angle, and verify the
-identity @c{$\sin^2x + \cos^2x = 1$}
-@cite{sin(x)^2 + cos(x)^2 = 1}.  We'll
-arbitrarily pick @i{-64} degrees as a good value for @cite{x}.  With
-the angular mode set to degrees (type @w{@kbd{m d}}), do:
+identity 
+@texline @tmath{\sin^2x + \cos^2x = 1}.
+@infoline @expr{sin(x)^2 + cos(x)^2 = 1}.  
+We'll arbitrarily pick @i{-64} degrees as a good value for @expr{x}.
+With the angular mode set to degrees (type @w{@kbd{m d}}), do:
 
 @smallexample
 @group
@@ -2966,8 +3007,9 @@ You can of course do these calculations to any precision you like.)
 Remember, @kbd{f h} is the @code{calc-hypot}, or square-root of sum
 of squares, command.
 
-Another identity is @c{$\displaystyle\tan x = {\sin x \over \cos x}$}
-@cite{tan(x) = sin(x) / cos(x)}.
+Another identity is 
+@texline @tmath{\displaystyle\tan x = {\sin x \over \cos x}}.
+@infoline @expr{tan(x) = sin(x) / cos(x)}.
 @smallexample
 @group
 
@@ -2980,7 +3022,7 @@ Another identity is @c{$\displaystyle\tan x = {\sin x \over \cos x}$}
 @end smallexample
 
 A physical interpretation of this calculation is that if you move
-@cite{0.89879} units downward and @cite{0.43837} units to the right,
+@expr{0.89879} units downward and @expr{0.43837} units to the right,
 your direction of motion is @i{-64} degrees from horizontal.  Suppose
 we move in the opposite direction, up and to the left:
 
@@ -3029,9 +3071,9 @@ the top two stack elements right after the @kbd{U U}, then a pair of
 
 A similar identity is supposed to hold for hyperbolic sines and cosines,
 except that it is the @emph{difference}
-@c{$\cosh^2x - \sinh^2x$}
-@cite{cosh(x)^2 - sinh(x)^2} that always equals one.
-Let's try to verify this identity.@refill
+@texline @tmath{\cosh^2x - \sinh^2x}
+@infoline @expr{cosh(x)^2 - sinh(x)^2} 
+that always equals one.  Let's try to verify this identity.
 
 @smallexample
 @group
@@ -3057,12 +3099,12 @@ enormously so.  Try it if you wish; sure enough, the answer is
 0.99999, reasonably close to 1.
 
 Of course, a more reasonable way to verify the identity is to use
-a more reasonable value for @cite{x}!
+a more reasonable value for @expr{x}!
 
 @cindex Common logarithm
 Some Calculator commands use the Hyperbolic prefix for other purposes.
 The logarithm and exponential functions, for example, work to the base
-@cite{e} normally but use base-10 instead if you use the Hyperbolic
+@expr{e} normally but use base-10 instead if you use the Hyperbolic
 prefix.
 
 @smallexample
@@ -3095,7 +3137,7 @@ value of @var{b}.
 Here we first use @kbd{B} to compute the base-10 logarithm, then use
 the ``hyperbolic'' exponential as a cheap hack to recover the number
 1000, then use @kbd{B} again to compute the natural logarithm.  Note
-that @kbd{P} with the hyperbolic prefix pushes the constant @cite{e}
+that @kbd{P} with the hyperbolic prefix pushes the constant @expr{e}
 onto the stack.
 
 You may have noticed that both times we took the base-10 logarithm
@@ -3136,8 +3178,8 @@ in this case).
 
 If you take the factorial of a non-integer, Calc uses a generalized
 factorial function defined in terms of Euler's Gamma function
-@c{$\Gamma(n)$}
-@cite{gamma(n)}
+@texline @tmath{\Gamma(n)}
+@infoline @expr{gamma(n)}
 (which is itself available as the @kbd{f g} command).
 
 @smallexample
@@ -3152,17 +3194,19 @@ factorial function defined in terms of Euler's Gamma function
 @end smallexample
 
 @noindent
-Here we verify the identity @c{$n! = \Gamma(n+1)$}
-@cite{@var{n}!@: = gamma(@var{n}+1)}.
+Here we verify the identity 
+@texline @tmath{n! = \Gamma(n+1)}.
+@infoline @expr{@var{n}!@: = gamma(@var{n}+1)}.
 
-The binomial coefficient @var{n}-choose-@var{m}@c{ or $\displaystyle {n \choose m}$}
-@asis{} is defined by
-@c{$\displaystyle {n! \over m! \, (n-m)!}$}
-@cite{n!@: / m!@: (n-m)!} for all reals @cite{n} and
-@cite{m}.  The intermediate results in this formula can become quite
-large even if the final result is small; the @kbd{k c} command computes
-a binomial coefficient in a way that avoids large intermediate
-values.
+The binomial coefficient @var{n}-choose-@var{m}
+@texline or @tmath{\displaystyle {n \choose m}}
+is defined by
+@texline @tmath{\displaystyle {n! \over m! \, (n-m)!}}
+@infoline @expr{n!@: / m!@: (n-m)!}
+for all reals @expr{n} and @expr{m}.  The intermediate results in this
+formula can become quite large even if the final result is small; the
+@kbd{k c} command computes a binomial coefficient in a way that avoids
+large intermediate values.
 
 The @kbd{k} prefix key defines several common functions out of
 combinatorics and number theory.  Here we compute the binomial
@@ -3266,7 +3310,7 @@ of the vectors.
 @cindex Dot product
 The dot product of two vectors is equal to the product of their
 lengths times the cosine of the angle between them.  (Here the vector
-is interpreted as a line from the origin @cite{(0,0,0)} to the
+is interpreted as a line from the origin @expr{(0,0,0)} to the
 specified point in three-dimensional space.)  The @kbd{A}
 (absolute value) command can be used to compute the length of a
 vector.
@@ -3379,8 +3423,8 @@ the second example.
 
 When two matrices are multiplied, the lefthand matrix must have
 the same number of columns as the righthand matrix has rows.
-Row @cite{i}, column @cite{j} of the result is effectively the
-dot product of row @cite{i} of the left matrix by column @cite{j}
+Row @expr{i}, column @expr{j} of the result is effectively the
+dot product of row @expr{i} of the left matrix by column @expr{j}
 of the right matrix.
 
 If we try to duplicate this matrix and multiply it by itself,
@@ -3441,9 +3485,11 @@ rows in the matrix is different from the number of elements in the
 vector.
 
 (@bullet{}) @strong{Exercise 1.}  Use @samp{*} to sum along the rows
-of the above @c{$2\times3$}
-@asis{2x3} matrix to get @cite{[6, 15]}.  Now use @samp{*} to
-sum along the columns to get @cite{[5, 7, 9]}.
+of the above 
+@texline @tmath{2\times3}
+@infoline 2x3 
+matrix to get @expr{[6, 15]}.  Now use @samp{*} to sum along the columns
+to get @expr{[5, 7, 9]}. 
 @xref{Matrix Answer 1, 1}. (@bullet{})
 
 @cindex Identity matrix
@@ -3566,7 +3612,7 @@ inverse of the matrix.  Calc can do this all in one step:
 @end smallexample
 
 @noindent
-The result is the @cite{[a, b, c]} vector that solves the equations.
+The result is the @expr{[a, b, c]} vector that solves the equations.
 (Dividing by a square matrix is equivalent to multiplying by its
 inverse.)
 
@@ -3590,16 +3636,19 @@ the matrix and vector.  If we multiplied in the other order, Calc would
 assume the vector was a row vector in order to make the dimensions
 come out right, and the answer would be incorrect.  If you
 don't feel safe letting Calc take either interpretation of your
-vectors, use explicit @c{$N\times1$}
-@asis{Nx1} or @c{$1\times N$}
-@asis{1xN} matrices instead.
-In this case, you would enter the original column vector as
-@samp{[[6], [2], [3]]} or @samp{[6; 2; 3]}.
+vectors, use explicit 
+@texline @tmath{N\times1}
+@infoline Nx1
+or
+@texline @tmath{1\times N}
+@infoline 1xN
+matrices instead.  In this case, you would enter the original column
+vector as @samp{[[6], [2], [3]]} or @samp{[6; 2; 3]}.
 
 (@bullet{}) @strong{Exercise 2.}  Algebraic entry allows you to make
 vectors and matrices that include variables.  Solve the following
-system of equations to get expressions for @cite{x} and @cite{y}
-in terms of @cite{a} and @cite{b}.
+system of equations to get expressions for @expr{x} and @expr{y}
+in terms of @expr{a} and @expr{b}.
 
 @ifinfo
 @group
@@ -3628,10 +3677,10 @@ if it has more equations than variables.  It is often the case that
 there are no values for the variables that will satisfy all the
 equations at once, but it is still useful to find a set of values
 which ``nearly'' satisfy all the equations.  In terms of matrix equations,
-you can't solve @cite{A X = B} directly because the matrix @cite{A}
+you can't solve @expr{A X = B} directly because the matrix @expr{A}
 is not square for an over-determined system.  Matrix inversion works
 only for square matrices.  One common trick is to multiply both sides
-on the left by the transpose of @cite{A}:
+on the left by the transpose of @expr{A}:
 @ifinfo
 @samp{trn(A)*A*X = trn(A)*B}.
 @end ifinfo
@@ -3639,12 +3688,14 @@ on the left by the transpose of @cite{A}:
 \turnoffactive
 $A^T A \, X = A^T B$, where $A^T$ is the transpose \samp{trn(A)}.
 @end tex
-Now @c{$A^T A$}
-@cite{trn(A)*A} is a square matrix so a solution is possible.  It
-turns out that the @cite{X} vector you compute in this way will be a
-``least-squares'' solution, which can be regarded as the ``closest''
-solution to the set of equations.  Use Calc to solve the following
-over-determined system:@refill
+Now 
+@texline @tmath{A^T A}
+@infoline @expr{trn(A)*A} 
+is a square matrix so a solution is possible.  It turns out that the
+@expr{X} vector you compute in this way will be a ``least-squares''
+solution, which can be regarded as the ``closest'' solution to the set
+of equations.  Use Calc to solve the following over-determined
+system:
 
 @ifinfo
 @group
@@ -3733,8 +3784,10 @@ other a plain number.)  In the final step, we take the square root
 of each element.
 
 (@bullet{}) @strong{Exercise 1.}  Compute a vector of powers of two
-from @c{$2^{-4}$}
-@cite{2^-4} to @cite{2^4}.  @xref{List Answer 1, 1}. (@bullet{})
+from 
+@texline @tmath{2^{-4}}
+@infoline @expr{2^-4} 
+to @expr{2^4}.  @xref{List Answer 1, 1}. (@bullet{})
 
 You can also @dfn{reduce} a binary operator across a vector.
 For example, reducing @samp{*} computes the product of all the
@@ -3868,13 +3921,13 @@ the manual and find this table there.  (Press @kbd{g}, then type
 @kbd{List Tutorial}, to jump straight to this section.)
 
 Position the cursor at the upper-left corner of this table, just
-to the left of the @cite{1.34}.  Press @kbd{C-@@} to set the mark.
+to the left of the @expr{1.34}.  Press @kbd{C-@@} to set the mark.
 (On your system this may be @kbd{C-2}, @kbd{C-@key{SPC}}, or @kbd{NUL}.)
-Now position the cursor to the lower-right, just after the @cite{1.354}.
+Now position the cursor to the lower-right, just after the @expr{1.354}.
 You have now defined this region as an Emacs ``rectangle.''  Still
 in the Info buffer, type @kbd{M-# r}.  This command
 (@code{calc-grab-rectangle}) will pop you back into the Calculator, with
-the contents of the rectangle you specified in the form of a matrix.@refill
+the contents of the rectangle you specified in the form of a matrix.
 
 @smallexample
 @group
@@ -3919,7 +3972,7 @@ Let's store these in quick variables 1 and 2, respectively.
 (Recall that @kbd{t 2} is a variant of @kbd{s 2} that removes the
 stored value from the stack.)
 
-In a least squares fit, the slope @cite{m} is given by the formula
+In a least squares fit, the slope @expr{m} is given by the formula
 
 @ifinfo
 @example
@@ -3935,11 +3988,13 @@ $$ m = {N \sum x y - \sum x \sum y  \over
 @end tex
 
 @noindent
-where @c{$\sum x$}
-@cite{sum(x)} represents the sum of all the values of @cite{x}.
-While there is an actual @code{sum} function in Calc, it's easier to
-sum a vector using a simple reduction.  First, let's compute the four
-different sums that this formula uses.
+where 
+@texline @tmath{\sum x}
+@infoline @expr{sum(x)} 
+represents the sum of all the values of @expr{x}.  While there is an
+actual @code{sum} function in Calc, it's easier to sum a vector using a
+simple reduction.  First, let's compute the four different sums that
+this formula uses.
 
 @smallexample
 @group
@@ -3973,7 +4028,7 @@ respectively.  (We could have used \kbd{*} to compute $\sum x^2$ and
 $\sum x y$.)
 @end tex
 
-Finally, we also need @cite{N}, the number of data points.  This is just
+Finally, we also need @expr{N}, the number of data points.  This is just
 the length of either of our lists.
 
 @smallexample
@@ -4012,7 +4067,7 @@ Now we grind through the formula:
 @end group
 @end smallexample
 
-That gives us the slope @cite{m}.  The y-intercept @cite{b} can now
+That gives us the slope @expr{m}.  The y-intercept @expr{b} can now
 be found with the simple formula,
 
 @ifinfo
@@ -4038,8 +4093,10 @@ $$ b = {\sum y - m \sum x \over N} $$
 @end group
 @end smallexample
 
-Let's ``plot'' this straight line approximation, @c{$y \approx m x + b$}
-@cite{m x + b}, and compare it with the original data.@refill
+Let's ``plot'' this straight line approximation, 
+@texline @tmath{y \approx m x + b},
+@infoline @expr{m x + b}, 
+and compare it with the original data.
 
 @smallexample
 @group
@@ -4056,7 +4113,7 @@ to a vector, can be done without mapping commands since these are
 common operations from vector algebra.  As far as Calc is concerned,
 we've just been doing geometry in 19-dimensional space!
 
-We can subtract this vector from our original @cite{y} vector to get
+We can subtract this vector from our original @expr{y} vector to get
 a feel for the error of our fit.  Let's find the maximum error:
 
 @smallexample
@@ -4131,9 +4188,9 @@ when you are done to remove the X graphics window and terminate GNUPLOT.
 
 (@bullet{}) @strong{Exercise 2.}  An earlier exercise showed how to do
 least squares fitting to a general system of equations.  Our 19 data
-points are really 19 equations of the form @cite{y_i = m x_i + b} for
-different pairs of @cite{(x_i,y_i)}.  Use the matrix-transpose method
-to solve for @cite{m} and @cite{b}, duplicating the above result.
+points are really 19 equations of the form @expr{y_i = m x_i + b} for
+different pairs of @expr{(x_i,y_i)}.  Use the matrix-transpose method
+to solve for @expr{m} and @expr{b}, duplicating the above result.
 @xref{List Answer 2, 2}. (@bullet{})
 
 @cindex Geometric mean
@@ -4161,7 +4218,7 @@ us that the alternating sum of binomial coefficients
 @var{n}-choose-0 minus @var{n}-choose-1 plus @var{n}-choose-2, and so
 on up to @var{n}-choose-@var{n},
 always comes out to zero.  Let's verify this
-for @cite{n=6}.@refill
+for @expr{n=6}.
 @end ifinfo
 @tex
 As another example, a theorem about binomial coefficients tells
@@ -4232,13 +4289,13 @@ element of a plain vector.  With a negative argument, @kbd{v r}
 and @kbd{v c} instead delete one row, column, or vector element.
 
 @cindex Divisor functions
-(@bullet{}) @strong{Exercise 4.}  The @cite{k}th @dfn{divisor function}
+(@bullet{}) @strong{Exercise 4.}  The @expr{k}th @dfn{divisor function}
 @tex
 $\sigma_k(n)$
 @end tex
-is the sum of the @cite{k}th powers of all the divisors of an
-integer @cite{n}.  Figure out a method for computing the divisor
-function for reasonably small values of @cite{n}.  As a test,
+is the sum of the @expr{k}th powers of all the divisors of an
+integer @expr{n}.  Figure out a method for computing the divisor
+function for reasonably small values of @expr{n}.  As a test,
 the 0th and 1st divisor functions of 30 are 8 and 72, respectively.
 @xref{List Answer 4, 4}. (@bullet{})
 
@@ -4290,23 +4347,24 @@ command to enable multi-line display of vectors.)
 @cindex Maximizing a function over a list of values
 @c [fix-ref Numerical Solutions]
 (@bullet{}) @strong{Exercise 8.}  Compute a list of values of Bessel's
-@c{$J_1(x)$}
-@cite{J1} function @samp{besJ(1,x)} for @cite{x} from 0 to 5
-in steps of 0.25.
-Find the value of @cite{x} (from among the above set of values) for
+@texline @tmath{J_1(x)}
+@infoline @expr{J1} 
+function @samp{besJ(1,x)} for @expr{x} from 0 to 5 in steps of 0.25.
+Find the value of @expr{x} (from among the above set of values) for
 which @samp{besJ(1,x)} is a maximum.  Use an ``automatic'' method,
 i.e., just reading along the list by hand to find the largest value
 is not allowed!  (There is an @kbd{a X} command which does this kind
 of thing automatically; @pxref{Numerical Solutions}.)
-@xref{List Answer 8, 8}. (@bullet{})@refill
+@xref{List Answer 8, 8}. (@bullet{})
 
 @cindex Digits, vectors of
 (@bullet{}) @strong{Exercise 9.}  You are given an integer in the range
-@c{$0 \le N < 10^m$}
-@cite{0 <= N < 10^m} for @cite{m=12} (i.e., an integer of less than
-twelve digits).  Convert this integer into a vector of @cite{m}
+@texline @tmath{0 \le N < 10^m}
+@infoline @expr{0 <= N < 10^m} 
+for @expr{m=12} (i.e., an integer of less than
+twelve digits).  Convert this integer into a vector of @expr{m}
 digits, each in the range from 0 to 9.  In vector-of-digits notation,
-add one to this integer to produce a vector of @cite{m+1} digits
+add one to this integer to produce a vector of @expr{m+1} digits
 (since there could be a carry out of the most significant digit).
 Convert this vector back into a regular integer.  A good integer
 to try is 25129925999.  @xref{List Answer 9, 9}. (@bullet{})
@@ -4316,40 +4374,39 @@ to try is 25129925999.  @xref{List Answer 9, 9}. (@bullet{})
 happened?  How would you do this test?  @xref{List Answer 10, 10}. (@bullet{})
 
 (@bullet{}) @strong{Exercise 11.}  The area of a circle of radius one
-is @c{$\pi$}
-@cite{pi}.  The area of the @c{$2\times2$}
-@asis{2x2} square that encloses that
-circle is 4.  So if we throw @var{n} darts at random points in the square,
-about @c{$\pi/4$}
-@cite{pi/4} of them will land inside the circle.  This gives us
-an entertaining way to estimate the value of @c{$\pi$}
-@cite{pi}.  The @w{@kbd{k r}}
+is @cpi{}.  The area of the 
+@texline @tmath{2\times2}
+@infoline 2x2
+square that encloses that circle is 4.  So if we throw @var{n} darts at
+random points in the square, about @cpiover{4} of them will land inside
+the circle.  This gives us an entertaining way to estimate the value of 
+@cpi{}.  The @w{@kbd{k r}}
 command picks a random number between zero and the value on the stack.
 We could get a random floating-point number between @i{-1} and 1 by typing
-@w{@kbd{2.0 k r 1 -}}.  Build a vector of 100 random @cite{(x,y)} points in
+@w{@kbd{2.0 k r 1 -}}.  Build a vector of 100 random @expr{(x,y)} points in
 this square, then use vector mapping and reduction to count how many
 points lie inside the unit circle.  Hint:  Use the @kbd{v b} command.
 @xref{List Answer 11, 11}. (@bullet{})
 
 @cindex Matchstick problem
 (@bullet{}) @strong{Exercise 12.}  The @dfn{matchstick problem} provides
-another way to calculate @c{$\pi$}
-@cite{pi}.  Say you have an infinite field
+another way to calculate @cpi{}.  Say you have an infinite field
 of vertical lines with a spacing of one inch.  Toss a one-inch matchstick
 onto the field.  The probability that the matchstick will land crossing
-a line turns out to be @c{$2/\pi$}
-@cite{2/pi}.  Toss 100 matchsticks to estimate
-@c{$\pi$}
-@cite{pi}.  (If you want still more fun, the probability that the GCD
-(@w{@kbd{k g}}) of two large integers is one turns out to be @c{$6/\pi^2$}
-@cite{6/pi^2}.
-That provides yet another way to estimate @c{$\pi$}
-@cite{pi}.)
+a line turns out to be 
+@texline @tmath{2/\pi}.
+@infoline @expr{2/pi}.  
+Toss 100 matchsticks to estimate @cpi{}.  (If you want still more fun,
+the probability that the GCD (@w{@kbd{k g}}) of two large integers is
+one turns out to be 
+@texline @tmath{6/\pi^2}.
+@infoline @expr{6/pi^2}.
+That provides yet another way to estimate @cpi{}.)
 @xref{List Answer 12, 12}. (@bullet{})
 
 (@bullet{}) @strong{Exercise 13.}  An algebraic entry of a string in
 double-quote marks, @samp{"hello"}, creates a vector of the numerical
-(ASCII) codes of the characters (here, @cite{[104, 101, 108, 108, 111]}).
+(ASCII) codes of the characters (here, @expr{[104, 101, 108, 108, 111]}).
 Sometimes it is convenient to compute a @dfn{hash code} of a string,
 which is just an integer that represents the value of that string.
 Two equal strings have the same hash code; two different strings
@@ -4358,9 +4415,9 @@ over 400 function names, but Emacs can quickly find the definition for
 any given name because it has sorted the functions into ``buckets'' by
 their hash codes.  Sometimes a few names will hash into the same bucket,
 but it is easier to search among a few names than among all the names.)
-One popular hash function is computed as follows:  First set @cite{h = 0}.
-Then, for each character from the string in turn, set @cite{h = 3h + c_i}
-where @cite{c_i} is the character's ASCII code.  If we have 511 buckets,
+One popular hash function is computed as follows:  First set @expr{h = 0}.
+Then, for each character from the string in turn, set @expr{h = 3h + c_i}
+where @expr{c_i} is the character's ASCII code.  If we have 511 buckets,
 we then take the hash code modulo 511 to get the bucket number.  Develop a
 simple command or commands for converting string vectors into hash codes.
 The hash code for @samp{"Testing, 1, 2, 3"} is 1960915098, which modulo
@@ -4372,8 +4429,8 @@ value and a number of steps @var{n} from the stack; it then applies the
 function you give to the starting value 0, 1, 2, up to @var{n} times
 and returns a vector of the results.  Use this command to create a
 ``random walk'' of 50 steps.  Start with the two-dimensional point
-@cite{(0,0)}; then take one step a random distance between @i{-1} and 1
-in both @cite{x} and @cite{y}; then take another step, and so on.  Use the
+@expr{(0,0)}; then take one step a random distance between @i{-1} and 1
+in both @expr{x} and @expr{y}; then take another step, and so on.  Use the
 @kbd{g f} command to display this random walk.  Now modify your random
 walk to walk a unit distance, but in a random direction, at each step.
 (Hint:  The @code{sincos} function returns a vector of the cosine and
@@ -4436,8 +4493,7 @@ same, to within the current precision.
 
 (@bullet{}) @strong{Exercise 1.}  A calculation has produced the
 result 1.26508260337.  You suspect it is the square root of the
-product of @c{$\pi$}
-@cite{pi} and some rational number.  Is it?  (Be sure
+product of @cpi{} and some rational number.  Is it?  (Be sure
 to allow for roundoff error!)  @xref{Types Answer 1, 1}. (@bullet{})
 
 @dfn{Complex numbers} can be stored in both rectangular and polar form.
@@ -4453,7 +4509,7 @@ to allow for roundoff error!)  @xref{Types Answer 1, 1}. (@bullet{})
 
 @noindent
 The square root of @i{-9} is by default rendered in rectangular form
-(@w{@cite{0 + 3i}}), but we can convert it to polar form (3 with a
+(@w{@expr{0 + 3i}}), but we can convert it to polar form (3 with a
 phase angle of 90 degrees).  All the usual arithmetic and scientific
 operations are defined on both types of complex numbers.
 
@@ -4509,9 +4565,9 @@ to turn on ``infinite mode.''
 Dividing by zero normally is left unevaluated, but after @kbd{m i}
 it instead gives an infinite result.  The answer is actually
 @code{uinf}, ``undirected infinity.''  If you look at a graph of
-@cite{1 / x} around @w{@cite{x = 0}}, you'll see that it goes toward
+@expr{1 / x} around @w{@expr{x = 0}}, you'll see that it goes toward
 plus infinity as you approach zero from above, but toward minus
-infinity as you approach from below.  Since we said only @cite{1 / 0},
+infinity as you approach from below.  Since we said only @expr{1 / 0},
 Calc knows that the answer is infinite but not in which direction.
 That's what @code{uinf} means.  Notice that multiplying @code{uinf}
 by a negative number still leaves plain @code{uinf}; there's no
@@ -4641,10 +4697,11 @@ a 60% chance that the result is correct within 0.59 degrees.
 
 @cindex Torus, volume of
 (@bullet{}) @strong{Exercise 7.}  The volume of a torus (a donut shape) is
-@c{$2 \pi^2 R r^2$}
-@w{@cite{2 pi^2 R r^2}} where @cite{R} is the radius of the circle that
-defines the center of the tube and @cite{r} is the radius of the tube
-itself.  Suppose @cite{R} is 20 cm and @cite{r} is 4 cm, each known to
+@texline @tmath{2 \pi^2 R r^2}
+@infoline @w{@expr{2 pi^2 R r^2}} 
+where @expr{R} is the radius of the circle that
+defines the center of the tube and @expr{r} is the radius of the tube
+itself.  Suppose @expr{R} is 20 cm and @expr{r} is 4 cm, each known to
 within 5 percent.  What is the volume and the relative uncertainty of
 the volume?  @xref{Types Answer 7, 7}. (@bullet{})
 
@@ -4739,14 +4796,15 @@ that arises in the second one.
 
 @cindex Fermat, primality test of
 (@bullet{}) @strong{Exercise 10.}  A theorem of Pierre de Fermat
-says that @c{\w{$x^{n-1} \bmod n = 1$}}
-@cite{x^(n-1) mod n = 1} if @cite{n} is a prime number
-and @cite{x} is an integer less than @cite{n}.  If @cite{n} is
-@emph{not} a prime number, this will @emph{not} be true for most
-values of @cite{x}.  Thus we can test informally if a number is
-prime by trying this formula for several values of @cite{x}.
-Use this test to tell whether the following numbers are prime:
-811749613, 15485863.  @xref{Types Answer 10, 10}. (@bullet{})
+says that 
+@texline @w{@tmath{x^{n-1} \bmod n = 1}}
+@infoline @expr{x^(n-1) mod n = 1}
+if @expr{n} is a prime number and @expr{x} is an integer less than
+@expr{n}.  If @expr{n} is @emph{not} a prime number, this will
+@emph{not} be true for most values of @expr{x}.  Thus we can test
+informally if a number is prime by trying this formula for several
+values of @expr{x}.  Use this test to tell whether the following numbers
+are prime: 811749613, 15485863.  @xref{Types Answer 10, 10}. (@bullet{})
 
 It is possible to use HMS forms as parts of error forms, intervals,
 modulo forms, or as the phase part of a polar complex number.
@@ -4766,9 +4824,11 @@ of day on the stack as an HMS/modulo form.
 This calculation tells me it is six hours and 22 minutes until midnight.
 
 (@bullet{}) @strong{Exercise 11.}  A rule of thumb is that one year
-is about @c{$\pi \times 10^7$}
-@w{@cite{pi * 10^7}} seconds.  What time will it be that
-many seconds from right now?  @xref{Types Answer 11, 11}. (@bullet{})
+is about 
+@texline @tmath{\pi \times 10^7}
+@infoline @w{@expr{pi * 10^7}} 
+seconds.  What time will it be that many seconds from right now?
+@xref{Types Answer 11, 11}. (@bullet{})
 
 (@bullet{}) @strong{Exercise 12.}  You are preparing to order packaging
 for the CD release of the Extended Disco Version of @emph{Abbey Road}.
@@ -4949,9 +5009,9 @@ formulas.  Continuing with the formula from the last example,
 
 @noindent
 First we ``expand'' using the distributive law, then we ``collect''
-terms involving like powers of @cite{x}.
+terms involving like powers of @expr{x}.
 
-Let's find the value of this expression when @cite{x} is 2 and @cite{y}
+Let's find the value of this expression when @expr{x} is 2 and @expr{y}
 is one-half.
 
 @smallexample
@@ -4976,11 +5036,11 @@ unstore it with @kbd{s u x @key{RET}} before the above example will work
 properly.)
 
 @cindex Maximum of a function using Calculus
-Let's find the maximum value of our original expression when @cite{y}
-is one-half and @cite{x} ranges over all possible values.  We can
-do this by taking the derivative with respect to @cite{x} and examining
-values of @cite{x} for which the derivative is zero.  If the second
-derivative of the function at that value of @cite{x} is negative,
+Let's find the maximum value of our original expression when @expr{y}
+is one-half and @expr{x} ranges over all possible values.  We can
+do this by taking the derivative with respect to @expr{x} and examining
+values of @expr{x} for which the derivative is zero.  If the second
+derivative of the function at that value of @expr{x} is negative,
 the function has a local maximum there.
 
 @smallexample
@@ -4993,8 +5053,8 @@ the function has a local maximum there.
 @end smallexample
 
 @noindent
-Well, the derivative is clearly zero when @cite{x} is zero.  To find
-the other root(s), let's divide through by @cite{x} and then solve:
+Well, the derivative is clearly zero when @expr{x} is zero.  To find
+the other root(s), let's divide through by @expr{x} and then solve:
 
 @smallexample
 @group
@@ -5020,7 +5080,7 @@ Notice the use of @kbd{a s} to ``simplify'' the formula.  When the
 default algebraic simplifications don't do enough, you can use
 @kbd{a s} to tell Calc to spend more time on the job.
 
-Now we compute the second derivative and plug in our values of @cite{x}:
+Now we compute the second derivative and plug in our values of @expr{x}:
 
 @smallexample
 @group
@@ -5050,14 +5110,14 @@ to delete the @samp{x}.)
 
 @noindent
 The first of these second derivatives is negative, so we know the function
-has a maximum value at @cite{x = 1.19023}.  (The function also has a
-local @emph{minimum} at @cite{x = 0}.)
+has a maximum value at @expr{x = 1.19023}.  (The function also has a
+local @emph{minimum} at @expr{x = 0}.)
 
-When we solved for @cite{x}, we got only one value even though
-@cite{34 - 24 x^2 = 0} is a quadratic equation that ought to have
+When we solved for @expr{x}, we got only one value even though
+@expr{34 - 24 x^2 = 0} is a quadratic equation that ought to have
 two solutions.  The reason is that @w{@kbd{a S}} normally returns a
 single ``principal'' solution.  If it needs to come up with an
-arbitrary sign (as occurs in the quadratic formula) it picks @cite{+}.
+arbitrary sign (as occurs in the quadratic formula) it picks @expr{+}.
 If it needs an arbitrary integer, it picks zero.  We can get a full
 solution by pressing @kbd{H} (the Hyperbolic flag) before @kbd{a S}.
 
@@ -5075,9 +5135,9 @@ Calc has invented the variable @samp{s1} to represent an unknown sign;
 it is supposed to be either @i{+1} or @i{-1}.  Here we have used
 the ``let'' command to evaluate the expression when the sign is negative.
 If we plugged this into our second derivative we would get the same,
-negative, answer, so @cite{x = -1.19023} is also a maximum.
+negative, answer, so @expr{x = -1.19023} is also a maximum.
 
-To find the actual maximum value, we must plug our two values of @cite{x}
+To find the actual maximum value, we must plug our two values of @expr{x}
 into the original formula.
 
 @smallexample
@@ -5127,7 +5187,7 @@ Calc has a built-in @kbd{a P} command that solves an equation using
 @w{@kbd{H a S}} and returns a vector of all the solutions.  It simply
 automates the job we just did by hand.  Applied to our original
 cubic polynomial, it would produce the vector of solutions
-@cite{[1.19023, -1.19023, 0]}.  (There is also an @kbd{a X} command
+@expr{[1.19023, -1.19023, 0]}.  (There is also an @kbd{a X} command
 which finds a local maximum of a function.  It uses a numerical search
 method rather than examining the derivatives, and thus requires you
 to provide some kind of initial guess to show it where to look.)
@@ -5215,7 +5275,7 @@ may prefer to remain in Big mode, but all the examples in the tutorial
 are shown in normal mode.)
 
 @cindex Area under a curve
-What is the area under the portion of this curve from @cite{x = 1} to @cite{2}?
+What is the area under the portion of this curve from @expr{x = 1} to @expr{2}?
 This is simply the integral of the function:
 
 @smallexample
@@ -5228,7 +5288,7 @@ This is simply the integral of the function:
 @end smallexample
 
 @noindent
-We want to evaluate this at our two values for @cite{x} and subtract.
+We want to evaluate this at our two values for @expr{x} and subtract.
 One way to do it is again with vector mapping and reduction:
 
 @smallexample
@@ -5240,20 +5300,23 @@ One way to do it is again with vector mapping and reduction:
 @end group
 @end smallexample
 
-(@bullet{}) @strong{Exercise 3.}  Find the integral from 1 to @cite{y}
-of @c{$x \sin \pi x$}
-@w{@cite{x sin(pi x)}} (where the sine is calculated in radians).
-Find the values of the integral for integers @cite{y} from 1 to 5.
-@xref{Algebra Answer 3, 3}. (@bullet{})
+(@bullet{}) @strong{Exercise 3.}  Find the integral from 1 to @expr{y}
+of 
+@texline @tmath{x \sin \pi x}
+@infoline @w{@expr{x sin(pi x)}} 
+(where the sine is calculated in radians).  Find the values of the
+integral for integers @expr{y} from 1 to 5.  @xref{Algebra Answer 3,
+3}. (@bullet{})
 
 Calc's integrator can do many simple integrals symbolically, but many
 others are beyond its capabilities.  Suppose we wish to find the area
-under the curve @c{$\sin x \ln x$}
-@cite{sin(x) ln(x)} over the same range of @cite{x}.  If
-you entered this formula and typed @kbd{a i x @key{RET}} (don't bother to try
-this), Calc would work for a long time but would be unable to find a
-solution.  In fact, there is no closed-form solution to this integral.
-Now what do we do?
+under the curve 
+@texline @tmath{\sin x \ln x}
+@infoline @expr{sin(x) ln(x)} 
+over the same range of @expr{x}.  If you entered this formula and typed
+@kbd{a i x @key{RET}} (don't bother to try this), Calc would work for a
+long time but would be unable to find a solution.  In fact, there is no
+closed-form solution to this integral.  Now what do we do?
 
 @cindex Integration, numerical
 @cindex Numerical integration
@@ -5322,7 +5385,7 @@ we're not doing too well.  Let's try another approach.
 
 @noindent
 Here we have computed the Taylor series expansion of the function
-about the point @cite{x=1}.  We can now integrate this polynomial
+about the point @expr{x=1}.  We can now integrate this polynomial
 approximation, since polynomials are easy to integrate.
 
 @smallexample
@@ -5339,8 +5402,8 @@ Better!  By increasing the precision and/or asking for more terms
 in the Taylor series, we can get a result as accurate as we like.
 (Taylor series converge better away from singularities in the
 function such as the one at @code{ln(0)}, so it would also help to
-expand the series about the points @cite{x=2} or @cite{x=1.5} instead
-of @cite{x=1}.)
+expand the series about the points @expr{x=2} or @expr{x=1.5} instead
+of @expr{x=1}.)
 
 @cindex Simpson's rule
 @cindex Integration by Simpson's rule
@@ -5370,7 +5433,7 @@ $$ \displaylines{
 @end tex
 
 @noindent
-where @cite{n} (which must be even) is the number of slices and @cite{h}
+where @expr{n} (which must be even) is the number of slices and @expr{h}
 is the width of each slice.  These are 10 and 0.1 in our example.
 For reference, here is the corresponding formula for the stairstep
 method:
@@ -5389,9 +5452,11 @@ $$ h (f(a) + f(a+h) + f(a+2h) + f(a+3h) + \cdots
 \afterdisplay
 @end tex
 
-Compute the integral from 1 to 2 of @c{$\sin x \ln x$}
-@cite{sin(x) ln(x)} using
-Simpson's rule with 10 slices.  @xref{Algebra Answer 4, 4}. (@bullet{})
+Compute the integral from 1 to 2 of 
+@texline @tmath{\sin x \ln x}
+@infoline @expr{sin(x) ln(x)} 
+using Simpson's rule with 10 slices.  
+@xref{Algebra Answer 4, 4}. (@bullet{})
 
 Calc has a built-in @kbd{a I} command for doing numerical integration.
 It uses @dfn{Romberg's method}, which is a more sophisticated cousin
@@ -5639,7 +5704,7 @@ constants @samp{e}, @samp{phi}, and so on also match literally.
 A common error with rewrite
 rules is to write, say, @samp{f(a,b,c,d,e) := g(a+b+c+d+e)}, expecting
 to match any @samp{f} with five arguments but in fact matching
-only when the fifth argument is literally @samp{e}!@refill
+only when the fifth argument is literally @samp{e}!
 
 @cindex Fibonacci numbers
 @ignore
@@ -5789,10 +5854,10 @@ on the stack and tried to use the rule
 @samp{opt(a) + opt(b) x := f(a, b, x)}.  What happened?
 @xref{Rewrites Answer 3, 3}. (@bullet{})
 
-(@bullet{}) @strong{Exercise 4.}  Starting with a positive integer @cite{a},
-divide @cite{a} by two if it is even, otherwise compute @cite{3 a + 1}.
+(@bullet{}) @strong{Exercise 4.}  Starting with a positive integer @expr{a},
+divide @expr{a} by two if it is even, otherwise compute @expr{3 a + 1}.
 Now repeat this step over and over.  A famous unproved conjecture
-is that for any starting @cite{a}, the sequence always eventually
+is that for any starting @expr{a}, the sequence always eventually
 reaches 1.  Given the formula @samp{seq(@var{a}, 0)}, write a set of
 rules that convert this into @samp{seq(1, @var{n})} where @var{n}
 is the number of steps it took the sequence to reach the value 1.
@@ -5801,27 +5866,27 @@ configuration, and to stop with just the number @var{n} by itself.
 Now make the result be a vector of values in the sequence, from @var{a}
 to 1.  (The formula @samp{@var{x}|@var{y}} appends the vectors @var{x}
 and @var{y}.)  For example, rewriting @samp{seq(6)} should yield the
-vector @cite{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
+vector @expr{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
 @xref{Rewrites Answer 4, 4}. (@bullet{})
 
 (@bullet{}) @strong{Exercise 5.}  Define, using rewrite rules, a function
 @samp{nterms(@var{x})} that returns the number of terms in the sum
 @var{x}, or 1 if @var{x} is not a sum.  (A @dfn{sum} for our purposes
 is one or more non-sum terms separated by @samp{+} or @samp{-} signs,
-so that @cite{2 - 3 (x + y) + x y} is a sum of three terms.)
+so that @expr{2 - 3 (x + y) + x y} is a sum of three terms.)
 @xref{Rewrites Answer 5, 5}. (@bullet{})
 
-(@bullet{}) @strong{Exercise 6.}  Calc considers the form @cite{0^0}
+(@bullet{}) @strong{Exercise 6.}  Calc considers the form @expr{0^0}
 to be ``indeterminate,'' and leaves it unevaluated (assuming infinite
-mode is not enabled).  Some people prefer to define @cite{0^0 = 1},
-so that the identity @cite{x^0 = 1} can safely be used for all @cite{x}.
+mode is not enabled).  Some people prefer to define @expr{0^0 = 1},
+so that the identity @expr{x^0 = 1} can safely be used for all @expr{x}.
 Find a way to make Calc follow this convention.  What happens if you
 now type @kbd{m i} to turn on infinite mode?
 @xref{Rewrites Answer 6, 6}. (@bullet{})
 
 (@bullet{}) @strong{Exercise 7.}  A Taylor series for a function is an
 infinite series that exactly equals the value of that function at
-values of @cite{x} near zero.
+values of @expr{x} near zero.
 
 @ifinfo
 @example
@@ -5829,15 +5894,15 @@ cos(x) = 1 - x^2 / 2! + x^4 / 4! - x^6 / 6! + ...
 @end example
 @end ifinfo
 @tex
-\turnoffactive \let\rm\goodrm
+\turnoffactive
 \beforedisplay
 $$ \cos x = 1 - {x^2 \over 2!} + {x^4 \over 4!} - {x^6 \over 6!} + \cdots $$
 \afterdisplay
 @end tex
 
 The @kbd{a t} command produces a @dfn{truncated Taylor series} which
-is obtained by dropping all the terms higher than, say, @cite{x^2}.
-Calc represents the truncated Taylor series as a polynomial in @cite{x}.
+is obtained by dropping all the terms higher than, say, @expr{x^2}.
+Calc represents the truncated Taylor series as a polynomial in @expr{x}.
 Mathematicians often write a truncated series using a ``big-O'' notation
 that records what was the lowest term that was truncated.
 
@@ -5847,15 +5912,15 @@ cos(x) = 1 - x^2 / 2! + O(x^3)
 @end example
 @end ifinfo
 @tex
-\turnoffactive \let\rm\goodrm
+\turnoffactive
 \beforedisplay
 $$ \cos x = 1 - {x^2 \over 2!} + O(x^3) $$
 \afterdisplay
 @end tex
 
 @noindent
-The meaning of @cite{O(x^3)} is ``a quantity which is negligibly small
-if @cite{x^3} is considered negligibly small as @cite{x} goes to zero.''
+The meaning of @expr{O(x^3)} is ``a quantity which is negligibly small
+if @expr{x^3} is considered negligibly small as @expr{x} goes to zero.''
 
 The exercise is to create rewrite rules that simplify sums and products of
 power series represented as @samp{@var{polynomial} + O(@var{var}^@var{n})}.
@@ -5934,9 +5999,10 @@ in @samp{a + 1} for @samp{x} in the defining formula.
 @end ignore
 @tindex Si
 (@bullet{}) @strong{Exercise 1.}  The ``sine integral'' function
-@c{${\rm Si}(x)$}
-@cite{Si(x)} is defined as the integral of @samp{sin(t)/t} for
-@cite{t = 0} to @cite{x} in radians.  (It was invented because this
+@texline @tmath{{\rm Si}(x)}
+@infoline @expr{Si(x)} 
+is defined as the integral of @samp{sin(t)/t} for
+@expr{t = 0} to @expr{x} in radians.  (It was invented because this
 integral has no solution in terms of basic functions; if you give it
 to Calc's @kbd{a i} command, it will ponder it for a long time and then
 give up.)  We can use the numerical integration command, however,
@@ -6010,12 +6076,13 @@ the following functions:
 
 @enumerate
 @item
-Compute @c{$\displaystyle{\sin x \over x}$}
-@cite{sin(x) / x}, where @cite{x} is the number on the
-top of the stack.
+Compute 
+@texline @tmath{\displaystyle{\sin x \over x}},
+@infoline @expr{sin(x) / x}, 
+where @expr{x} is the number on the top of the stack.
 
 @item
-Compute the base-@cite{b} logarithm, just like the @kbd{B} key except
+Compute the base-@expr{b} logarithm, just like the @kbd{B} key except
 the arguments are taken in the opposite order.
 
 @item
@@ -6044,7 +6111,7 @@ inside keyboard macros, but actually work at any time.
 @end smallexample
 
 @noindent
-Here we have computed the fourth derivative of @cite{x^6} by
+Here we have computed the fourth derivative of @expr{x^6} by
 enclosing a derivative command in a ``repeat loop'' structure.
 This structure pops a repeat count from the stack, then
 executes the body of the loop that many times.
@@ -6074,14 +6141,18 @@ key if you have one, makes a copy of the number in level 2.)
 
 @cindex Golden ratio
 @cindex Phi, golden ratio
-A fascinating property of the Fibonacci numbers is that the @cite{n}th
-Fibonacci number can be found directly by computing @c{$\phi^n / \sqrt{5}$}
-@cite{phi^n / sqrt(5)}
-and then rounding to the nearest integer, where @c{$\phi$ (``phi'')}
-@cite{phi}, the
-``golden ratio,'' is @c{$(1 + \sqrt{5}) / 2$}
-@cite{(1 + sqrt(5)) / 2}.  (For convenience, this constant is available
-from the @code{phi} variable, or the @kbd{I H P} command.)
+A fascinating property of the Fibonacci numbers is that the @expr{n}th
+Fibonacci number can be found directly by computing 
+@texline @tmath{\phi^n / \sqrt{5}}
+@infoline @expr{phi^n / sqrt(5)}
+and then rounding to the nearest integer, where 
+@texline @tmath{\phi} (``phi''),
+@infoline @expr{phi}, 
+the ``golden ratio,'' is 
+@texline @tmath{(1 + \sqrt{5}) / 2}.
+@infoline @expr{(1 + sqrt(5)) / 2}. 
+(For convenience, this constant is available from the @code{phi}
+variable, or the @kbd{I H P} command.)
 
 @smallexample
 @group
@@ -6094,22 +6165,28 @@ from the @code{phi} variable, or the @kbd{I H P} command.)
 
 @cindex Continued fractions
 (@bullet{}) @strong{Exercise 5.}  The @dfn{continued fraction}
-representation of @c{$\phi$}
-@cite{phi} is @c{$1 + 1/(1 + 1/(1 + 1/( \ldots )))$}
-@cite{1 + 1/(1 + 1/(1 + 1/( ...@: )))}.
+representation of 
+@texline @tmath{\phi}
+@infoline @expr{phi} 
+is 
+@texline @tmath{1 + 1/(1 + 1/(1 + 1/( \ldots )))}.
+@infoline @expr{1 + 1/(1 + 1/(1 + 1/( ...@: )))}.
 We can compute an approximate value by carrying this however far
-and then replacing the innermost @c{$1/( \ldots )$}
-@cite{1/( ...@: )} by 1.  Approximate
-@c{$\phi$}
-@cite{phi} using a twenty-term continued fraction.
+and then replacing the innermost 
+@texline @tmath{1/( \ldots )}
+@infoline @expr{1/( ...@: )} 
+by 1.  Approximate
+@texline @tmath{\phi}
+@infoline @expr{phi} 
+using a twenty-term continued fraction.
 @xref{Programming Answer 5, 5}. (@bullet{})
 
 (@bullet{}) @strong{Exercise 6.}  Linear recurrences like the one for
 Fibonacci numbers can be expressed in terms of matrices.  Given a
-vector @w{@cite{[a, b]}} determine a matrix which, when multiplied by this
-vector, produces the vector @cite{[b, c]}, where @cite{a}, @cite{b} and
-@cite{c} are three successive Fibonacci numbers.  Now write a program
-that, given an integer @cite{n}, computes the @cite{n}th Fibonacci number
+vector @w{@expr{[a, b]}} determine a matrix which, when multiplied by this
+vector, produces the vector @expr{[b, c]}, where @expr{a}, @expr{b} and
+@expr{c} are three successive Fibonacci numbers.  Now write a program
+that, given an integer @expr{n}, computes the @expr{n}th Fibonacci number
 using matrix arithmetic.  @xref{Programming Answer 6, 6}. (@bullet{})
 
 @cindex Harmonic numbers
@@ -6198,12 +6275,13 @@ survive past the @kbd{Z '} command.
 The @dfn{Bernoulli numbers} are a sequence with the interesting
 property that all of the odd Bernoulli numbers are zero, and the
 even ones, while difficult to compute, can be roughly approximated
-by the formula @c{$\displaystyle{2 n! \over (2 \pi)^n}$}
-@cite{2 n!@: / (2 pi)^n}.  Let's write a keyboard
-macro to compute (approximate) Bernoulli numbers.  (Calc has a
-command, @kbd{k b}, to compute exact Bernoulli numbers, but
-this command is very slow for large @cite{n} since the higher
-Bernoulli numbers are very large fractions.)
+by the formula 
+@texline @tmath{\displaystyle{2 n! \over (2 \pi)^n}}.
+@infoline @expr{2 n!@: / (2 pi)^n}.  
+Let's write a keyboard macro to compute (approximate) Bernoulli numbers.
+(Calc has a command, @kbd{k b}, to compute exact Bernoulli numbers, but
+this command is very slow for large @expr{n} since the higher Bernoulli
+numbers are very large fractions.)
 
 @smallexample
 @group
@@ -6223,7 +6301,7 @@ if it pops zero or something that is not a number (like a formula).
 Here we take our integer argument modulo 2; this will be nonzero
 if we're asking for an odd Bernoulli number.
 
-The actual tenth Bernoulli number is @cite{5/66}.
+The actual tenth Bernoulli number is @expr{5/66}.
 
 @smallexample
 @group
@@ -6354,8 +6432,8 @@ Z '
 
 (@bullet{}) @strong{Exercise 8.}  A general algorithm for solving
 equations numerically is @dfn{Newton's Method}.  Given the equation
-@cite{f(x) = 0} for any function @cite{f}, and an initial guess
-@cite{x_0} which is reasonably close to the desired solution, apply
+@expr{f(x) = 0} for any function @expr{f}, and an initial guess
+@expr{x_0} which is reasonably close to the desired solution, apply
 this formula over and over:
 
 @ifinfo
@@ -6365,32 +6443,36 @@ new_x = x - f(x)/f'(x)
 @end ifinfo
 @tex
 \beforedisplay
-$$ x_{\goodrm new} = x - {f(x) \over f'(x)} $$
+$$ x_{\rm new} = x - {f(x) \over f'(x)} $$
 \afterdisplay
 @end tex
 
 @noindent
-where @cite{f'(x)} is the derivative of @cite{f}.  The @cite{x}
+where @expr{f'(x)} is the derivative of @expr{f}.  The @expr{x}
 values will quickly converge to a solution, i.e., eventually
-@c{$x_{\rm new}$}
-@cite{new_x} and @cite{x} will be equal to within the limits
+@texline @tmath{x_{\rm new}}
+@infoline @expr{new_x} 
+and @expr{x} will be equal to within the limits
 of the current precision.  Write a program which takes a formula
-involving the variable @cite{x}, and an initial guess @cite{x_0},
-on the stack, and produces a value of @cite{x} for which the formula
-is zero.  Use it to find a solution of @c{$\sin(\cos x) = 0.5$}
-@cite{sin(cos(x)) = 0.5}
-near @cite{x = 4.5}.  (Use angles measured in radians.)  Note that
+involving the variable @expr{x}, and an initial guess @expr{x_0},
+on the stack, and produces a value of @expr{x} for which the formula
+is zero.  Use it to find a solution of 
+@texline @tmath{\sin(\cos x) = 0.5}
+@infoline @expr{sin(cos(x)) = 0.5}
+near @expr{x = 4.5}.  (Use angles measured in radians.)  Note that
 the built-in @w{@kbd{a R}} (@code{calc-find-root}) command uses Newton's
 method when it is able.  @xref{Programming Answer 8, 8}. (@bullet{})
 
 @cindex Digamma function
 @cindex Gamma constant, Euler's
 @cindex Euler's gamma constant
-(@bullet{}) @strong{Exercise 9.}  The @dfn{digamma} function @c{$\psi(z)$ (``psi'')}
-@cite{psi(z)}
-is defined as the derivative of @c{$\ln \Gamma(z)$}
-@cite{ln(gamma(z))}.  For large
-values of @cite{z}, it can be approximated by the infinite sum
+(@bullet{}) @strong{Exercise 9.}  The @dfn{digamma} function 
+@texline @tmath{\psi(z) (``psi'')}
+@infoline @expr{psi(z)}
+is defined as the derivative of 
+@texline @tmath{\ln \Gamma(z)}.
+@infoline @expr{ln(gamma(z))}.  
+For large values of @expr{z}, it can be approximated by the infinite sum
 
 @ifinfo
 @example
@@ -6398,7 +6480,6 @@ psi(z) ~= ln(z) - 1/2z - sum(bern(2 n) / 2 n z^(2 n), n, 1, inf)
 @end example
 @end ifinfo
 @tex
-\let\rm\goodrm
 \beforedisplay
 $$ \psi(z) \approx \ln z - {1\over2z} -
    \sum_{n=1}^\infty {\code{bern}(2 n) \over 2 n z^{2n}}
@@ -6407,37 +6488,48 @@ $$
 @end tex
 
 @noindent
-where @c{$\sum$}
-@cite{sum} represents the sum over @cite{n} from 1 to infinity
+where 
+@texline @tmath{\sum}
+@infoline @expr{sum} 
+represents the sum over @expr{n} from 1 to infinity
 (or to some limit high enough to give the desired accuracy), and
 the @code{bern} function produces (exact) Bernoulli numbers.
 While this sum is not guaranteed to converge, in practice it is safe.
 An interesting mathematical constant is Euler's gamma, which is equal
 to about 0.5772.  One way to compute it is by the formula,
-@c{$\gamma = -\psi(1)$}
-@cite{gamma = -psi(1)}.  Unfortunately, 1 isn't a large enough argument
-for the above formula to work (5 is a much safer value for @cite{z}).
-Fortunately, we can compute @c{$\psi(1)$}
-@cite{psi(1)} from @c{$\psi(5)$}
-@cite{psi(5)} using
-the recurrence @c{$\psi(z+1) = \psi(z) + {1 \over z}$}
-@cite{psi(z+1) = psi(z) + 1/z}.  Your task:  Develop
-a program to compute @c{$\psi(z)$}
-@cite{psi(z)}; it should ``pump up'' @cite{z}
+@texline @tmath{\gamma = -\psi(1)}.
+@infoline @expr{gamma = -psi(1)}.  
+Unfortunately, 1 isn't a large enough argument
+for the above formula to work (5 is a much safer value for @expr{z}).
+Fortunately, we can compute 
+@texline @tmath{\psi(1)}
+@infoline @expr{psi(1)} 
+from 
+@texline @tmath{\psi(5)}
+@infoline @expr{psi(5)} 
+using the recurrence 
+@texline @tmath{\psi(z+1) = \psi(z) + {1 \over z}}.
+@infoline @expr{psi(z+1) = psi(z) + 1/z}.  
+Your task:  Develop a program to compute 
+@texline @tmath{\psi(z)};
+@infoline @expr{psi(z)}; 
+it should ``pump up'' @expr{z}
 if necessary to be greater than 5, then use the above summation
 formula.  Use looping commands to compute the sum.  Use your function
-to compute @c{$\gamma$}
-@cite{gamma} to twelve decimal places.  (Calc has a built-in command
+to compute 
+@texline @tmath{\gamma}
+@infoline @expr{gamma} 
+to twelve decimal places.  (Calc has a built-in command
 for Euler's constant, @kbd{I P}, which you can use to check your answer.)
 @xref{Programming Answer 9, 9}. (@bullet{})
 
 @cindex Polynomial, list of coefficients
-(@bullet{}) @strong{Exercise 10.}  Given a polynomial in @cite{x} and
-a number @cite{m} on the stack, where the polynomial is of degree
-@cite{m} or less (i.e., does not have any terms higher than @cite{x^m}),
+(@bullet{}) @strong{Exercise 10.}  Given a polynomial in @expr{x} and
+a number @expr{m} on the stack, where the polynomial is of degree
+@expr{m} or less (i.e., does not have any terms higher than @expr{x^m}),
 write a program to convert the polynomial into a list-of-coefficients
-notation.  For example, @cite{5 x^4 + (x + 1)^2} with @cite{m = 6}
-should produce the list @cite{[1, 2, 1, 0, 5, 0, 0]}.  Also develop
+notation.  For example, @expr{5 x^4 + (x + 1)^2} with @expr{m = 6}
+should produce the list @expr{[1, 2, 1, 0, 5, 0, 0]}.  Also develop
 a way to convert from this form back to the standard algebraic form.
 @xref{Programming Answer 10, 10}. (@bullet{})
 
@@ -6478,9 +6570,9 @@ to the same key with @kbd{Z K s}.  Now the @kbd{z s} command will run
 the complete recursive program.  (Another way is to use @w{@kbd{Z E}}
 or @kbd{M-# m} (@code{read-kbd-macro}) to read the whole macro at once,
 thus avoiding the ``training'' phase.)  The task:  Write a program
-that computes Stirling numbers of the first kind, given @cite{n} and
-@cite{m} on the stack.  Test it with @emph{small} inputs like
-@cite{s(4,2)}.  (There is a built-in command for Stirling numbers,
+that computes Stirling numbers of the first kind, given @expr{n} and
+@expr{m} on the stack.  Test it with @emph{small} inputs like
+@expr{s(4,2)}.  (There is a built-in command for Stirling numbers,
 @kbd{k s}, which you can use to check your answers.)
 @xref{Programming Answer 11, 11}. (@bullet{})
 
@@ -6492,7 +6584,7 @@ program can:
 
 (@bullet{}) @strong{Exercise 12.}  Write another program for
 computing Stirling numbers of the first kind, this time using
-rewrite rules.  Once again, @cite{n} and @cite{m} should be taken
+rewrite rules.  Once again, @expr{n} and @expr{m} should be taken
 from the stack.  @xref{Programming Answer 12, 12}. (@bullet{})
 
 @example
@@ -6601,21 +6693,23 @@ This section includes answers to all the exercises in the Calc tutorial.
 @noindent
 @kbd{1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -}
 
-The result is @c{$1 - (2 \times (3 + 4)) = -13$}
-@cite{1 - (2 * (3 + 4)) = -13}.
+The result is 
+@texline @tmath{1 - (2 \times (3 + 4)) = -13}.
+@infoline @expr{1 - (2 * (3 + 4)) = -13}.
 
 @node RPN Answer 2, RPN Answer 3, RPN Answer 1, Answers to Exercises
 @subsection RPN Tutorial Exercise 2
 
 @noindent
-@c{$2\times4 + 7\times9.5 + {5\over4} = 75.75$}
-@cite{2*4 + 7*9.5 + 5/4 = 75.75}
+@texline @tmath{2\times4 + 7\times9.5 + {5\over4} = 75.75}
+@infoline @expr{2*4 + 7*9.5 + 5/4 = 75.75}
 
-After computing the intermediate term @c{$2\times4 = 8$}
-@cite{2*4 = 8}, you can leave
-that result on the stack while you compute the second term.  With
-both of these results waiting on the stack you can then compute the
-final term, then press @kbd{+ +} to add everything up.
+After computing the intermediate term 
+@texline @tmath{2\times4 = 8},
+@infoline @expr{2*4 = 8}, 
+you can leave that result on the stack while you compute the second
+term.  With both of these results waiting on the stack you can then
+compute the final term, then press @kbd{+ +} to add everything up.
 
 @smallexample
 @group
@@ -6739,8 +6833,8 @@ If the @kbd{Q} key is broken, you could use @kbd{' $^0.5 @key{RET}}.
 Or, RPN style, @kbd{0.5 ^}.
 
 (Actually, @samp{$^1:2}, using the fraction one-half as the power, is
-a closer equivalent, since @samp{9^0.5} yields @cite{3.0} whereas
-@samp{sqrt(9)} and @samp{9^1:2} yield the exact integer @cite{3}.)
+a closer equivalent, since @samp{9^0.5} yields @expr{3.0} whereas
+@samp{sqrt(9)} and @samp{9^1:2} yield the exact integer @expr{3}.)
 
 @node Algebraic Answer 2, Algebraic Answer 3, Algebraic Answer 1, Answers to Exercises
 @subsection Algebraic Entry Tutorial Exercise 2
@@ -6755,14 +6849,14 @@ explicit @samp{*} symbol here:  @samp{2 x*(1+y)}.
 @subsection Algebraic Entry Tutorial Exercise 3
 
 @noindent
-The result from @kbd{1 @key{RET} 0 /} will be the formula @cite{1 / 0}.
+The result from @kbd{1 @key{RET} 0 /} will be the formula @expr{1 / 0}.
 The ``function'' @samp{/} cannot be evaluated when its second argument
 is zero, so it is left in symbolic form.  When you now type @kbd{0 *},
 the result will be zero because Calc uses the general rule that ``zero
 times anything is zero.''
 
 @c [fix-ref Infinities]
-The @kbd{m i} command enables an @dfn{infinite mode} in which @cite{1 / 0}
+The @kbd{m i} command enables an @dfn{infinite mode} in which @expr{1 / 0}
 results in a special symbol that represents ``infinity.''  If you
 multiply infinity by zero, Calc uses another special new symbol to
 show that the answer is ``indeterminate.''  @xref{Infinities}, for
@@ -6852,7 +6946,7 @@ copied that number into a file and later moved it back into Calc.
 @subsection Modes Tutorial Exercise 3
 
 @noindent
-The answer he got was @cite{0.5000000000006399}.
+The answer he got was @expr{0.5000000000006399}.
 
 The problem is not that the square operation is inexact, but that the
 sine of 45 that was already on the stack was accurate to only 12 places.
@@ -6917,16 +7011,17 @@ There is no fractional form for the square root of two, so if you type
 @noindent
 Dividing two integers that are larger than the current precision may
 give a floating-point result that is inaccurate even when rounded
-down to an integer.  Consider @cite{123456789 / 2} when the current
-precision is 6 digits.  The true answer is @cite{61728394.5}, but
-with a precision of 6 this will be rounded to @c{$12345700.0/2.0 = 61728500.0$}
-@cite{12345700.@: / 2.@: = 61728500.}.
+down to an integer.  Consider @expr{123456789 / 2} when the current
+precision is 6 digits.  The true answer is @expr{61728394.5}, but
+with a precision of 6 this will be rounded to 
+@texline @tmath{12345700.0/2.0 = 61728500.0}.
+@infoline @expr{12345700.@: / 2.@: = 61728500.}.
 The result, when converted to an integer, will be off by 106.
 
 Here are two solutions:  Raise the precision enough that the
 floating-point round-off error is strictly to the right of the
-decimal point.  Or, convert to fraction mode so that @cite{123456789 / 2}
-produces the exact fraction @cite{123456789:2}, which can be rounded
+decimal point.  Or, convert to fraction mode so that @expr{123456789 / 2}
+produces the exact fraction @expr{123456789:2}, which can be rounded
 down by the @kbd{F} command without ever switching to floating-point
 format.
 
@@ -6934,8 +7029,8 @@ format.
 @subsection Arithmetic Tutorial Exercise 2
 
 @noindent
-@kbd{27 @key{RET} 9 B} could give the exact result @cite{3:2}, but it
-does a floating-point calculation instead and produces @cite{1.5}.
+@kbd{27 @key{RET} 9 B} could give the exact result @expr{3:2}, but it
+does a floating-point calculation instead and produces @expr{1.5}.
 
 Calc will find an exact result for a logarithm if the result is an integer
 or the reciprocal of an integer.  But there is no efficient way to search
@@ -7029,14 +7124,19 @@ Type @kbd{d N} to return to ``normal'' display mode afterwards.
 @subsection Matrix Tutorial Exercise 3
 
 @noindent
-To solve @c{$A^T A \, X = A^T B$}
-@cite{trn(A) * A * X = trn(A) * B}, first we compute
-@c{$A' = A^T A$}
-@cite{A2 = trn(A) * A} and @c{$B' = A^T B$}
-@cite{B2 = trn(A) * B}; now, we have a
-system @c{$A' X = B'$}
-@cite{A2 * X = B2} which we can solve using Calc's @samp{/}
-command.
+To solve 
+@texline @tmath{A^T A \, X = A^T B},
+@infoline @expr{trn(A) * A * X = trn(A) * B}, 
+first we compute
+@texline @tmath{A' = A^T A}
+@infoline @expr{A2 = trn(A) * A} 
+and 
+@texline @tmath{B' = A^T B};
+@infoline @expr{B2 = trn(A) * B}; 
+now, we have a system 
+@texline @tmath{A' X = B'}
+@infoline @expr{A2 * X = B2} 
+which we can solve using Calc's @samp{/} command.
 
 @ifinfo
 @example
@@ -7066,8 +7166,9 @@ $$
 
 The first step is to enter the coefficient matrix.  We'll store it in
 quick variable number 7 for later reference.  Next, we compute the
-@c{$B'$}
-@cite{B2} vector.
+@texline @tmath{B'}
+@infoline @expr{B2} 
+vector.
 
 @smallexample
 @group
@@ -7082,8 +7183,10 @@ quick variable number 7 for later reference.  Next, we compute the
 @end smallexample
 
 @noindent
-Now we compute the matrix @c{$A'$}
-@cite{A2} and divide.
+Now we compute the matrix 
+@texline @tmath{A'}
+@infoline @expr{A2} 
+and divide.
 
 @smallexample
 @group
@@ -7101,14 +7204,18 @@ Now we compute the matrix @c{$A'$}
 (The actual computed answer will be slightly inexact due to
 round-off error.)
 
-Notice that the answers are similar to those for the @c{$3\times3$}
-@asis{3x3} system
-solved in the text.  That's because the fourth equation that was
+Notice that the answers are similar to those for the 
+@texline @tmath{3\times3}
+@infoline 3x3
+system solved in the text.  That's because the fourth equation that was 
 added to the system is almost identical to the first one multiplied
 by two.  (If it were identical, we would have gotten the exact same
-answer since the @c{$4\times3$}
-@asis{4x3} system would be equivalent to the original @c{$3\times3$}
-@asis{3x3}
+answer since the 
+@texline @tmath{4\times3}
+@infoline 4x3
+system would be equivalent to the original 
+@texline @tmath{3\times3}
+@infoline 3x3
 system.)
 
 Since the first and fourth equations aren't quite equivalent, they
@@ -7129,8 +7236,8 @@ the original system of equations to see how well they match.
 @end smallexample
 
 @noindent
-This is reasonably close to our original @cite{B} vector,
-@cite{[6, 2, 3, 11]}.
+This is reasonably close to our original @expr{B} vector,
+@expr{[6, 2, 3, 11]}.
 
 @node List Answer 1, List Answer 2, Matrix Answer 3, Answers to Exercises
 @subsection List Tutorial Exercise 1
@@ -7168,7 +7275,7 @@ vector.
 @subsection List Tutorial Exercise 2
 
 @noindent
-Given @cite{x} and @cite{y} vectors in quick variables 1 and 2 as before,
+Given @expr{x} and @expr{y} vectors in quick variables 1 and 2 as before,
 the first job is to form the matrix that describes the problem.
 
 @ifinfo
@@ -7183,10 +7290,12 @@ $$ m \times x + b \times 1 = y $$
 \afterdisplay
 @end tex
 
-Thus we want a @c{$19\times2$}
-@asis{19x2} matrix with our @cite{x} vector as one column and
+Thus we want a 
+@texline @tmath{19\times2}
+@infoline 19x2
+matrix with our @expr{x} vector as one column and
 ones as the other column.  So, first we build the column of ones, then
-we combine the two columns to form our @cite{A} matrix.
+we combine the two columns to form our @expr{A} matrix.
 
 @smallexample
 @group
@@ -7200,9 +7309,13 @@ we combine the two columns to form our @cite{A} matrix.
 @end smallexample
 
 @noindent
-Now we compute @c{$A^T y$}
-@cite{trn(A) * y} and @c{$A^T A$}
-@cite{trn(A) * A} and divide.
+Now we compute 
+@texline @tmath{A^T y}
+@infoline @expr{trn(A) * y} 
+and 
+@texline @tmath{A^T A}
+@infoline @expr{trn(A) * A} 
+and divide.
 
 @smallexample
 @group
@@ -7227,10 +7340,12 @@ Now we compute @c{$A^T y$}
 @end group
 @end smallexample
 
-Since we were solving equations of the form @c{$m \times x + b \times 1 = y$}
-@cite{m*x + b*1 = y}, these
-numbers should be @cite{m} and @cite{b}, respectively.  Sure enough, they
-agree exactly with the result computed using @kbd{V M} and @kbd{V R}!
+Since we were solving equations of the form 
+@texline @tmath{m \times x + b \times 1 = y},
+@infoline @expr{m*x + b*1 = y}, 
+these numbers should be @expr{m} and @expr{b}, respectively.  Sure
+enough, they agree exactly with the result computed using @kbd{V M} and
+@kbd{V R}!
 
 The moral of this story:  @kbd{V M} and @kbd{V R} will probably solve
 your problem, but there is often an easier way using the higher-level
@@ -7288,9 +7403,10 @@ then raise the number to that power.)
 @subsection List Tutorial Exercise 4
 
 @noindent
-A number @cite{j} is a divisor of @cite{n} if @c{$n \mathbin{\hbox{\code{\%}}} j = 0$}
-@samp{n % j = 0}.  The first
-step is to get a vector that identifies the divisors.
+A number @expr{j} is a divisor of @expr{n} if 
+@texline @tmath{n \mathbin{\hbox{\code{\%}}} j = 0}.
+@infoline @samp{n % j = 0}.  
+The first step is to get a vector that identifies the divisors.
 
 @smallexample
 @group
@@ -7358,10 +7474,11 @@ so that the mapping operation works; no prime factor will ever be
 zero, so adding zeros on the left and right is safe.  From then on
 the job is pretty straightforward.
 
-Incidentally, Calc provides the @c{\dfn{M\"obius} $\mu$}
-@dfn{Moebius mu} function which is
-zero if and only if its argument is square-free.  It would be a much
-more convenient way to do the above test in practice.
+Incidentally, Calc provides the 
+@texline @dfn{M@"obius} @tmath{\mu}
+@infoline @dfn{Moebius mu} 
+function which is zero if and only if its argument is square-free.  It
+would be a much more convenient way to do the above test in practice.
 
 @node List Answer 6, List Answer 7, List Answer 5, Answers to Exercises
 @subsection List Tutorial Exercise 6
@@ -7389,10 +7506,11 @@ exercise and type @kbd{1 -} to subtract one from all the elements.
 @end smallexample
 
 The numbers down the lefthand edge of the list we desire are called
-the ``triangular numbers'' (now you know why!).  The @cite{n}th
-triangular number is the sum of the integers from 1 to @cite{n}, and
-can be computed directly by the formula @c{$n (n+1) \over 2$}
-@cite{n * (n+1) / 2}.
+the ``triangular numbers'' (now you know why!).  The @expr{n}th
+triangular number is the sum of the integers from 1 to @expr{n}, and
+can be computed directly by the formula 
+@texline @tmath{n (n+1) \over 2}.
+@infoline @expr{n * (n+1) / 2}.
 
 @smallexample
 @group
@@ -7446,7 +7564,7 @@ since each element of the main vector is itself a small vector,
 @subsection List Tutorial Exercise 8
 
 @noindent
-The first step is to build a list of values of @cite{x}.
+The first step is to build a list of values of @expr{x}.
 
 @smallexample
 @group
@@ -7486,12 +7604,13 @@ A way to isolate the maximum value is to compute the maximum using
 
 @noindent
 It's a good idea to verify, as in the last step above, that only
-one value is equal to the maximum.  (After all, a plot of @c{$\sin x$}
-@cite{sin(x)}
+one value is equal to the maximum.  (After all, a plot of 
+@texline @tmath{\sin x}
+@infoline @expr{sin(x)}
 might have many points all equal to the maximum value, 1.)
 
 The vector we have now has a single 1 in the position that indicates
-the maximum value of @cite{x}.  Now it is a simple matter to convert
+the maximum value of @expr{x}.  Now it is a simple matter to convert
 this back into the corresponding value itself.
 
 @smallexample
@@ -7504,12 +7623,12 @@ this back into the corresponding value itself.
 @end group
 @end smallexample
 
-If @kbd{a =} had produced more than one @cite{1} value, this method
-would have given the sum of all maximum @cite{x} values; not very
+If @kbd{a =} had produced more than one @expr{1} value, this method
+would have given the sum of all maximum @expr{x} values; not very
 useful!  In this case we could have used @kbd{v m} (@code{calc-mask-vector})
 instead.  This command deletes all elements of a ``data'' vector that
 correspond to zeros in a ``mask'' vector, leaving us with, in this
-example, a vector of maximum @cite{x} values.
+example, a vector of maximum @expr{x} values.
 
 The built-in @kbd{a X} command maximizes a function using more
 efficient methods.  Just for illustration, let's use @kbd{a X}
@@ -7526,7 +7645,7 @@ to maximize @samp{besJ(1,x)} over this same interval.
 @end smallexample
 
 @noindent
-The output from @kbd{a X} is a vector containing the value of @cite{x}
+The output from @kbd{a X} is a vector containing the value of @expr{x}
 that maximizes the function, and the function's value at that maximum.
 As you can see, our simple search got quite close to the right answer.
 
@@ -7656,10 +7775,10 @@ Another way to do this final step would be to reduce the formula
 @subsection List Tutorial Exercise 10
 
 @noindent
-For the list @cite{[a, b, c, d]}, the result is @cite{((a = b) = c) = d},
-which will compare @cite{a} and @cite{b} to produce a 1 or 0, which is
-then compared with @cite{c} to produce another 1 or 0, which is then
-compared with @cite{d}.  This is not at all what Joe wanted.
+For the list @expr{[a, b, c, d]}, the result is @expr{((a = b) = c) = d},
+which will compare @expr{a} and @expr{b} to produce a 1 or 0, which is
+then compared with @expr{c} to produce another 1 or 0, which is then
+compared with @expr{d}.  This is not at all what Joe wanted.
 
 Here's a more correct method:
 
@@ -7687,9 +7806,9 @@ Here's a more correct method:
 @subsection List Tutorial Exercise 11
 
 @noindent
-The circle of unit radius consists of those points @cite{(x,y)} for which
-@cite{x^2 + y^2 < 1}.  We start by generating a vector of @cite{x^2}
-and a vector of @cite{y^2}.
+The circle of unit radius consists of those points @expr{(x,y)} for which
+@expr{x^2 + y^2 < 1}.  We start by generating a vector of @expr{x^2}
+and a vector of @expr{y^2}.
 
 We can make this go a bit faster by using the @kbd{v .} and @kbd{t .}
 commands.
@@ -7715,7 +7834,7 @@ commands.
 @end group
 @end smallexample
 
-Now we sum the @cite{x^2} and @cite{y^2} values, compare with 1 to
+Now we sum the @expr{x^2} and @expr{y^2} values, compare with 1 to
 get a vector of 1/0 truth values, then sum the truth values.
 
 @smallexample
@@ -7728,8 +7847,7 @@ get a vector of 1/0 truth values, then sum the truth values.
 @end smallexample
 
 @noindent
-The ratio @cite{84/100} should approximate the ratio @c{$\pi/4$}
-@cite{pi/4}.
+The ratio @expr{84/100} should approximate the ratio @cpiover{4}.
 
 @smallexample
 @group
@@ -7757,30 +7875,33 @@ return to full-sized display of vectors.
 @noindent
 This problem can be made a lot easier by taking advantage of some
 symmetries.  First of all, after some thought it's clear that the
-@cite{y} axis can be ignored altogether.  Just pick a random @cite{x}
-component for one end of the match, pick a random direction @c{$\theta$}
-@cite{theta},
-and see if @cite{x} and @c{$x + \cos \theta$}
-@cite{x + cos(theta)} (which is the @cite{x}
-coordinate of the other endpoint) cross a line.  The lines are at
-integer coordinates, so this happens when the two numbers surround
-an integer.
+@expr{y} axis can be ignored altogether.  Just pick a random @expr{x}
+component for one end of the match, pick a random direction 
+@texline @tmath{\theta},
+@infoline @expr{theta},
+and see if @expr{x} and 
+@texline @tmath{x + \cos \theta}
+@infoline @expr{x + cos(theta)} 
+(which is the @expr{x} coordinate of the other endpoint) cross a line.
+The lines are at integer coordinates, so this happens when the two
+numbers surround an integer.
 
 Since the two endpoints are equivalent, we may as well choose the leftmost
-of the two endpoints as @cite{x}.  Then @cite{theta} is an angle pointing
+of the two endpoints as @expr{x}.  Then @expr{theta} is an angle pointing
 to the right, in the range -90 to 90 degrees.  (We could use radians, but
-it would feel like cheating to refer to @c{$\pi/2$}
-@cite{pi/2} radians while trying
-to estimate @c{$\pi$}
-@cite{pi}!)
+it would feel like cheating to refer to @cpiover{2} radians while trying
+to estimate @cpi{}!)
 
 In fact, since the field of lines is infinite we can choose the
 coordinates 0 and 1 for the lines on either side of the leftmost
 endpoint.  The rightmost endpoint will be between 0 and 1 if the
 match does not cross a line, or between 1 and 2 if it does.  So:
-Pick random @cite{x} and @c{$\theta$}
-@cite{theta}, compute @c{$x + \cos \theta$}
-@cite{x + cos(theta)},
+Pick random @expr{x} and 
+@texline @tmath{\theta},
+@infoline @expr{theta}, 
+compute
+@texline @tmath{x + \cos \theta},
+@infoline @expr{x + cos(theta)},
 and count how many of the results are greater than one.  Simple!
 
 We can make this go a bit faster by using the @kbd{v .} and @kbd{t .}
@@ -7881,8 +8002,8 @@ we omitted the closing @kbd{"}.  (The same goes for all closing delimiters
 like @kbd{)} and @kbd{]} at the end of a formula.
 
 We'll show two different approaches here.  In the first, we note that
-if the input vector is @cite{[a, b, c, d]}, then the hash code is
-@cite{3 (3 (3a + b) + c) + d = 27a + 9b + 3c + d}.  In other words,
+if the input vector is @expr{[a, b, c, d]}, then the hash code is
+@expr{3 (3 (3a + b) + c) + d = 27a + 9b + 3c + d}.  In other words,
 it's a sum of descending powers of three times the ASCII codes.
 
 @smallexample
@@ -7944,7 +8065,7 @@ the operations are faster.
 @end smallexample
 
 Why does this work?  Think about a two-step computation:
-@w{@cite{3 (3a + b) + c}}.  Taking a result modulo 511 basically means
+@w{@expr{3 (3a + b) + c}}.  Taking a result modulo 511 basically means
 subtracting off enough 511's to put the result in the desired range.
 So the result when we take the modulo after every step is,
 
@@ -7961,7 +8082,7 @@ $$ 3 (3 a + b - 511 m) + c - 511 n $$
 @end tex
 
 @noindent
-for some suitable integers @cite{m} and @cite{n}.  Expanding out by
+for some suitable integers @expr{m} and @expr{n}.  Expanding out by
 the distributive law yields
 
 @ifinfo
@@ -7977,10 +8098,10 @@ $$ 9 a + 3 b + c - 511\times3 m - 511 n $$
 @end tex
 
 @noindent
-The @cite{m} term in the latter formula is redundant because any
-contribution it makes could just as easily be made by the @cite{n}
+The @expr{m} term in the latter formula is redundant because any
+contribution it makes could just as easily be made by the @expr{n}
 term.  So we can take it out to get an equivalent formula with
-@cite{n' = 3m + n},
+@expr{n' = 3m + n},
 
 @ifinfo
 @example
@@ -8006,7 +8127,7 @@ modulo some value @var{m}.
 @subsection List Tutorial Exercise 14
 
 We want to use @kbd{H V U} to nest a function which adds a random
-step to an @cite{(x,y)} coordinate.  The function is a bit long, but
+step to an @expr{(x,y)} coordinate.  The function is a bit long, but
 otherwise the problem is quite straightforward.
 
 @smallexample
@@ -8024,9 +8145,9 @@ Just as the text recommended, we used @samp{< >} nameless function
 notation to keep the two @code{random} calls from being evaluated
 before nesting even begins.
 
-We now have a vector of @cite{[x, y]} sub-vectors, which by Calc's
+We now have a vector of @expr{[x, y]} sub-vectors, which by Calc's
 rules acts like a matrix.  We can transpose this matrix and unpack
-to get a pair of vectors, @cite{x} and @cite{y}, suitable for graphing.
+to get a pair of vectors, @expr{x} and @expr{y}, suitable for graphing.
 
 @smallexample
 @group
@@ -8038,12 +8159,12 @@ to get a pair of vectors, @cite{x} and @cite{y}, suitable for graphing.
 @end group
 @end smallexample
 
-Incidentally, because the @cite{x} and @cite{y} are completely
+Incidentally, because the @expr{x} and @expr{y} are completely
 independent in this case, we could have done two separate commands
-to create our @cite{x} and @cite{y} vectors of numbers directly.
+to create our @expr{x} and @expr{y} vectors of numbers directly.
 
 To make a random walk of unit steps, we note that @code{sincos} of
-a random direction exactly gives us an @cite{[x, y]} step of unit
+a random direction exactly gives us an @expr{[x, y]} step of unit
 length; in fact, the new nesting function is even briefer, though
 we might want to lower the precision a bit for it.
 
@@ -8071,10 +8192,8 @@ Schwartz.)
 @subsection Types Tutorial Exercise 1
 
 @noindent
-If the number is the square root of @c{$\pi$}
-@cite{pi} times a rational number,
-then its square, divided by @c{$\pi$}
-@cite{pi}, should be a rational number.
+If the number is the square root of @cpi{} times a rational number,
+then its square, divided by @cpi{}, should be a rational number.
 
 @smallexample
 @group
@@ -8106,8 +8225,8 @@ precision slightly and try again:
 @noindent
 Aha!  It's unlikely that an irrational number would equal a fraction
 this simple to within ten digits, so our original number was probably
-@c{$\sqrt{27 \pi / 53}$}
-@cite{sqrt(27 pi / 53)}.
+@texline @tmath{\sqrt{27 \pi / 53}}.
+@infoline @expr{sqrt(27 pi / 53)}.
 
 Notice that we didn't need to re-round the number when we reduced the
 precision.  Remember, arithmetic operations always round their inputs
@@ -8123,17 +8242,17 @@ But if @w{@samp{17 inf = inf}}, then @samp{17 inf / inf = inf / inf = 17}, too.
 @samp{exp(inf) = inf}.  It's tempting to say that the exponential
 of infinity must be ``bigger'' than ``regular'' infinity, but as
 far as Calc is concerned all infinities are as just as big.
-In other words, as @cite{x} goes to infinity, @cite{e^x} also goes
-to infinity, but the fact the @cite{e^x} grows much faster than
-@cite{x} is not relevant here.
+In other words, as @expr{x} goes to infinity, @expr{e^x} also goes
+to infinity, but the fact the @expr{e^x} grows much faster than
+@expr{x} is not relevant here.
 
 @samp{exp(-inf) = 0}.  Here we have a finite answer even though
 the input is infinite.
 
-@samp{sqrt(-inf) = (0, 1) inf}.  Remember that @cite{(0, 1)}
-represents the imaginary number @cite{i}.  Here's a derivation:
+@samp{sqrt(-inf) = (0, 1) inf}.  Remember that @expr{(0, 1)}
+represents the imaginary number @expr{i}.  Here's a derivation:
 @samp{sqrt(-inf) = @w{sqrt((-1) * inf)} = sqrt(-1) * sqrt(inf)}.
-The first part is, by definition, @cite{i}; the second is @code{inf}
+The first part is, by definition, @expr{i}; the second is @code{inf}
 because, once again, all infinities are the same size.
 
 @samp{sqrt(uinf) = uinf}.  In fact, we do know something about the
@@ -8141,11 +8260,11 @@ direction because @code{sqrt} is defined to return a value in the
 right half of the complex plane.  But Calc has no notation for this,
 so it settles for the conservative answer @code{uinf}.
 
-@samp{abs(uinf) = inf}.  No matter which direction @cite{x} points,
+@samp{abs(uinf) = inf}.  No matter which direction @expr{x} points,
 @samp{abs(x)} always points along the positive real axis.
 
 @samp{ln(0) = -inf}.  Here we have an infinite answer to a finite
-input.  As in the @cite{1 / 0} case, Calc will only use infinities
+input.  As in the @expr{1 / 0} case, Calc will only use infinities
 here if you have turned on ``infinite'' mode.  Otherwise, it will
 treat @samp{ln(0)} as an error.
 
@@ -8154,9 +8273,9 @@ treat @samp{ln(0)} as an error.
 
 @noindent
 We can make @samp{inf - inf} be any real number we like, say,
-@cite{a}, just by claiming that we added @cite{a} to the first
+@expr{a}, just by claiming that we added @expr{a} to the first
 infinity but not to the second.  This is just as true for complex
-values of @cite{a}, so @code{nan} can stand for a complex number.
+values of @expr{a}, so @code{nan} can stand for a complex number.
 (And, similarly, @code{uinf} can stand for an infinity that points
 in any direction in the complex plane, such as @samp{(0, 1) inf}).
 
@@ -8403,7 +8522,7 @@ The same issue arises when you try to square an error form.
 @subsection Types Tutorial Exercise 10
 
 @noindent
-Testing the first number, we might arbitrarily choose 17 for @cite{x}.
+Testing the first number, we might arbitrarily choose 17 for @expr{x}.
 
 @smallexample
 @group
@@ -8435,7 +8554,7 @@ use this method to test the second number.
 @end smallexample
 
 @noindent
-The result is three ones (modulo @cite{n}), so it's very probable that
+The result is three ones (modulo @expr{n}), so it's very probable that
 15485863 is prime.  (In fact, this number is the millionth prime.)
 
 Note that the functions @samp{($$^($-1)) mod $} or @samp{$$^($-1) % $}
@@ -8604,20 +8723,20 @@ Thus Sam can take up to 14 pills without a worry.
 
 @noindent
 @c [fix-ref Declarations]
-The result @samp{sqrt(x)^2} is simplified back to @cite{x} by the
+The result @samp{sqrt(x)^2} is simplified back to @expr{x} by the
 Calculator, but @samp{sqrt(x^2)} is not.  (Consider what happens
-if @w{@cite{x = -4}}.)  If @cite{x} is real, this formula could be
+if @w{@expr{x = -4}}.)  If @expr{x} is real, this formula could be
 simplified to @samp{abs(x)}, but for general complex arguments even
 that is not safe.  (@xref{Declarations}, for a way to tell Calc
-that @cite{x} is known to be real.)
+that @expr{x} is known to be real.)
 
 @node Algebra Answer 2, Algebra Answer 3, Algebra Answer 1, Answers to Exercises
 @subsection Algebra Tutorial Exercise 2
 
 @noindent
-Suppose our roots are @cite{[a, b, c]}.  We want a polynomial which
-is zero when @cite{x} is any of these values.  The trivial polynomial
-@cite{x-a} is zero when @cite{x=a}, so the product @cite{(x-a)(x-b)(x-c)}
+Suppose our roots are @expr{[a, b, c]}.  We want a polynomial which
+is zero when @expr{x} is any of these values.  The trivial polynomial
+@expr{x-a} is zero when @expr{x=a}, so the product @expr{(x-a)(x-b)(x-c)}
 will do the job.  We can use @kbd{a c x} to write this in a more
 familiar form.
 
@@ -8808,7 +8927,7 @@ We'll use Big mode to make the formulas more readable.
 @end smallexample
 
 @noindent
-Multiplying by the conjugate helps because @cite{(a+b) (a-b) = a^2 - b^2}.
+Multiplying by the conjugate helps because @expr{(a+b) (a-b) = a^2 - b^2}.
 
 @smallexample
 @group
@@ -8858,11 +8977,11 @@ The first rule turns a one-argument @code{fib} that people like to write
 into a three-argument @code{fib} that makes computation easier.  The
 second rule converts back from three-argument form once the computation
 is done.  The third rule does the computation itself.  It basically
-says that if @cite{x} and @cite{y} are two consecutive Fibonacci numbers,
-then @cite{y} and @cite{x+y} are the next (overlapping) pair of Fibonacci
+says that if @expr{x} and @expr{y} are two consecutive Fibonacci numbers,
+then @expr{y} and @expr{x+y} are the next (overlapping) pair of Fibonacci
 numbers.
 
-Notice that because the number @cite{n} was ``validated'' by the
+Notice that because the number @expr{n} was ``validated'' by the
 conditions on the first rule, there is no need to put conditions on
 the other rules because the rule set would never get that far unless
 the input were valid.  That further speeds computation, since no
@@ -8959,8 +9078,8 @@ The change to return a vector is quite simple:
 @noindent
 Given @samp{seq(6)}, the result is @samp{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
 
-Notice that the @cite{n > 1} guard is no longer necessary on the last
-rule since the @cite{n = 1} case is now detected by another rule.
+Notice that the @expr{n > 1} guard is no longer necessary on the last
+rule since the @expr{n = 1} case is now detected by another rule.
 But a guard has been added to the initial rule to make sure the
 initial value is suitable before the computation begins.
 
@@ -8978,8 +9097,8 @@ apply and the rewrites will stop right away.
 @starindex
 @end ignore
 @tindex nterms
-If @cite{x} is the sum @cite{a + b}, then `@t{nterms(}@var{x}@t{)}' must
-be `@t{nterms(}@var{a}@t{)}' plus `@t{nterms(}@var{b}@t{)}'.  If @cite{x}
+If @expr{x} is the sum @expr{a + b}, then `@t{nterms(}@var{x}@t{)}' must
+be `@t{nterms(}@var{a}@t{)}' plus `@t{nterms(}@var{b}@t{)}'.  If @expr{x}
 is not a sum, then `@t{nterms(}@var{x}@t{)}' = 1.
 
 @smallexample
@@ -9026,7 +9145,7 @@ But then:
 Perhaps more surprisingly, this rule still works with infinite mode
 turned on.  Calc tries @code{EvalRules} before any built-in rules for
 a function.  This allows you to override the default behavior of any
-Calc feature:  Even though Calc now wants to evaluate @cite{0^0} to
+Calc feature:  Even though Calc now wants to evaluate @expr{0^0} to
 @code{nan}, your rule gets there first and evaluates it to 1 instead.
 
 Just for kicks, try adding the rule @code{2+3 := 6} to @code{EvalRules}.
@@ -9085,7 +9204,7 @@ The sixth rule is the corresponding rule for products of two O's.
 Another way to solve this problem would be to create a new ``data type''
 that represents truncated power series.  We might represent these as
 function calls @samp{series(@var{coefs}, @var{x})} where @var{coefs} is
-a vector of coefficients for @cite{x^0}, @cite{x^1}, @cite{x^2}, and so
+a vector of coefficients for @expr{x^0}, @expr{x^1}, @expr{x^2}, and so
 on.  Rules would exist for sums and products of such @code{series}
 objects, and as an optional convenience could also know how to combine a
 @code{series} object with a normal polynomial.  (With this, and with a
@@ -9115,7 +9234,7 @@ in Lisp.)
 Just enter the formula @samp{ninteg(sin(t)/t, t, 0, x)}, type
 @kbd{Z F}, and answer the questions.  Since this formula contains two
 variables, the default argument list will be @samp{(t x)}.  We want to
-change this to @samp{(x)} since @cite{t} is really a dummy variable
+change this to @samp{(x)} since @expr{t} is really a dummy variable
 to be used within @code{ninteg}.
 
 The exact keystrokes are @kbd{Z F s Si @key{RET} @key{RET} C-b C-b @key{DEL} @key{DEL} @key{RET} y}.
@@ -9146,8 +9265,9 @@ Each of these functions can be computed using the stack, or using
 algebraic entry, whichever way you prefer:
 
 @noindent
-Computing @c{$\displaystyle{\sin x \over x}$}
-@cite{sin(x) / x}:
+Computing 
+@texline @tmath{\displaystyle{\sin x \over x}}:
+@infoline @expr{sin(x) / x}:
 
 Using the stack:  @kbd{C-x (  @key{RET} S @key{TAB} /  C-x )}.
 
@@ -9207,8 +9327,8 @@ Here is the matrix:
 @end example
 
 @noindent
-Thus @samp{[0, 1; 1, 1]^n * [1, 1]} computes Fibonacci numbers @cite{n+1}
-and @cite{n+2}.  Here's one program that does the job:
+Thus @samp{[0, 1; 1, 1]^n * [1, 1]} computes Fibonacci numbers @expr{n+1}
+and @expr{n+2}.  Here's one program that does the job:
 
 @example
 C-x ( ' [0, 1; 1, 1] ^ ($-1) * [1, 1] @key{RET} v u @key{DEL} C-x )
@@ -9216,8 +9336,9 @@ C-x ( ' [0, 1; 1, 1] ^ ($-1) * [1, 1] @key{RET} v u @key{DEL} C-x )
 
 @noindent
 This program is quite efficient because Calc knows how to raise a
-matrix (or other value) to the power @cite{n} in only @c{$\log_2 n$}
-@cite{log(n,2)}
+matrix (or other value) to the power @expr{n} in only 
+@texline @tmath{\log_2 n}
+@infoline @expr{log(n,2)}
 steps.  For example, this program can compute the 1000th Fibonacci
 number (a 209-digit integer!) in about 10 steps; even though the
 @kbd{Z < ... Z >} solution had much simpler steps, it would have
@@ -9268,9 +9389,10 @@ harmonic number is 4.02.
 @subsection Programming Tutorial Exercise 8
 
 @noindent
-The first step is to compute the derivative @cite{f'(x)} and thus
-the formula @c{$\displaystyle{x - {f(x) \over f'(x)}}$}
-@cite{x - f(x)/f'(x)}.
+The first step is to compute the derivative @expr{f'(x)} and thus
+the formula 
+@texline @tmath{\displaystyle{x - {f(x) \over f'(x)}}}.
+@infoline @expr{x - f(x)/f'(x)}.
 
 (Because this definition is long, it will be repeated in concise form
 below.  You can use @w{@kbd{M-# m}} to load it from there.  While you are
@@ -9317,7 +9439,7 @@ repetitions are done.)
 @end group
 @end smallexample
 
-This is the new guess for @cite{x}.  Now we compare it with the
+This is the new guess for @expr{x}.  Now we compare it with the
 old one to see if we've converged.
 
 @smallexample
@@ -9383,13 +9505,16 @@ method (among others) to look for numerical solutions to any equation.
 @subsection Programming Tutorial Exercise 9
 
 @noindent
-The first step is to adjust @cite{z} to be greater than 5.  A simple
-``for'' loop will do the job here.  If @cite{z} is less than 5, we
-reduce the problem using @c{$\psi(z) = \psi(z+1) - 1/z$}
-@cite{psi(z) = psi(z+1) - 1/z}.  We go
-on to compute @c{$\psi(z+1)$}
-@cite{psi(z+1)}, and remember to add back a factor of
-@cite{-1/z} when we're done.  This step is repeated until @cite{z > 5}.
+The first step is to adjust @expr{z} to be greater than 5.  A simple
+``for'' loop will do the job here.  If @expr{z} is less than 5, we
+reduce the problem using 
+@texline @tmath{\psi(z) = \psi(z+1) - 1/z}.
+@infoline @expr{psi(z) = psi(z+1) - 1/z}.  We go
+on to compute 
+@texline @tmath{\psi(z+1)},
+@infoline @expr{psi(z+1)}, 
+and remember to add back a factor of @expr{-1/z} when we're done.  This
+step is repeated until @expr{z > 5}.
 
 (Because this definition is long, it will be repeated in concise form
 below.  You can use @w{@kbd{M-# m}} to load it from there.  While you are
@@ -9407,8 +9532,8 @@ just for purposes of illustration.)
 @end group
 @end smallexample
 
-Here, variable 1 holds @cite{z} and variable 2 holds the adjustment
-factor.  If @cite{z < 5}, we use a loop to increase it.
+Here, variable 1 holds @expr{z} and variable 2 holds the adjustment
+factor.  If @expr{z < 5}, we use a loop to increase it.
 
 (By the way, we started with @samp{1.0} instead of the integer 1 because
 otherwise the calculation below will try to do exact fractional arithmetic,
@@ -9426,8 +9551,9 @@ are exactly equal, not just equal to within the current precision.)
 @end group
 @end smallexample
 
-Now we compute the initial part of the sum:  @c{$\ln z - {1 \over 2z}$}
-@cite{ln(z) - 1/2z}
+Now we compute the initial part of the sum:  
+@texline @tmath{\ln z - {1 \over 2z}}
+@infoline @expr{ln(z) - 1/2z}
 minus the adjustment factor.
 
 @smallexample
@@ -9441,7 +9567,7 @@ minus the adjustment factor.
 @end smallexample
 
 Now we evaluate the series.  We'll use another ``for'' loop counting
-up the value of @cite{2 n}.  (Calc does have a summation command,
+up the value of @expr{2 n}.  (Calc does have a summation command,
 @kbd{a +}, but we'll use loops just to get more practice with them.)
 
 @smallexample
@@ -9468,9 +9594,11 @@ up the value of @cite{2 n}.  (Calc does have a summation command,
 @end group
 @end smallexample
 
-This is the value of @c{$-\gamma$}
-@cite{- gamma}, with a slight bit of roundoff error.
-To get a full 12 digits, let's use a higher precision:
+This is the value of 
+@texline @tmath{-\gamma},
+@infoline @expr{- gamma}, 
+with a slight bit of roundoff error.  To get a full 12 digits, let's use
+a higher precision:
 
 @smallexample
 @group
@@ -9500,12 +9628,14 @@ C-x )
 @subsection Programming Tutorial Exercise 10
 
 @noindent
-Taking the derivative of a term of the form @cite{x^n} will produce
-a term like @c{$n x^{n-1}$}
-@cite{n x^(n-1)}.  Taking the derivative of a constant
-produces zero.  From this it is easy to see that the @cite{n}th
-derivative of a polynomial, evaluated at @cite{x = 0}, will equal the
-coefficient on the @cite{x^n} term times @cite{n!}.
+Taking the derivative of a term of the form @expr{x^n} will produce
+a term like 
+@texline @tmath{n x^{n-1}}.
+@infoline @expr{n x^(n-1)}.  
+Taking the derivative of a constant
+produces zero.  From this it is easy to see that the @expr{n}th
+derivative of a polynomial, evaluated at @expr{x = 0}, will equal the
+coefficient on the @expr{x^n} term times @expr{n!}.
 
 (Because this definition is long, it will be repeated in concise form
 below.  You can use @w{@kbd{M-# m}} to load it from there.  While you are
@@ -9554,7 +9684,7 @@ have written instead, @kbd{r 1 @key{TAB} | t 1}.
 @end smallexample
 
 To convert back, a simple method is just to map the coefficients
-against a table of powers of @cite{x}.
+against a table of powers of @expr{x}.
 
 @smallexample
 @group
@@ -9614,7 +9744,7 @@ sure the stack comes out right.
 The last step replaces the 2 that was eaten during the creation
 of the dummy @kbd{z s} command.  Now we move on to the real
 definition.  The recurrence needs to be rewritten slightly,
-to the form @cite{s(n,m) = s(n-1,m-1) - (n-1) s(n-1,m)}.
+to the form @expr{s(n,m) = s(n-1,m-1) - (n-1) s(n-1,m)}.
 
 (Because this definition is long, it will be repeated in concise form
 below.  You can use @kbd{M-# m} to load it from there.)
@@ -9783,7 +9913,7 @@ list of the results of all calculations that have been done.  The
 Calc Trail buffer uses a variant of Calc Mode, so Calculator commands
 still work when the trail buffer's window is selected.  It is possible
 to turn the trail window off, but the @samp{*Calc Trail*} buffer itself
-still exists and is updated silently.  @xref{Trail Commands}.@refill
+still exists and is updated silently.  @xref{Trail Commands}.
 
 @kindex M-# c
 @kindex M-# M-#
@@ -9805,7 +9935,7 @@ for some commands this is the only form.  As a convenience, the @kbd{x}
 key (@code{calc-execute-extended-command})
 is like @kbd{M-x} except that it enters the initial string @samp{calc-}
 for you.  For example, the following key sequences are equivalent:
-@kbd{S}, @kbd{M-x calc-sin @key{RET}}, @kbd{x sin @key{RET}}.@refill
+@kbd{S}, @kbd{M-x calc-sin @key{RET}}, @kbd{x sin @key{RET}}.
 
 @cindex Extensions module
 @cindex @file{calc-ext} module
@@ -9818,14 +9948,14 @@ of the Calculator in the common case when all you need to do is a
 little arithmetic.  If for some reason the Calculator fails to load an
 extension module automatically, you can force it to load all the
 extensions by using the @kbd{M-# L} (@code{calc-load-everything})
-command.  @xref{Mode Settings}.@refill
+command.  @xref{Mode Settings}.
 
 If you type @kbd{M-x calc} or @kbd{M-# c} with any numeric prefix argument,
 the Calculator is loaded if necessary, but it is not actually started.
 If the argument is positive, the @file{calc-ext} extensions are also
 loaded if necessary.  User-written Lisp code that wishes to make use
 of Calc's arithmetic routines can use @samp{(calc 0)} or @samp{(calc 1)}
-to auto-load the Calculator.@refill
+to auto-load the Calculator.
 
 @kindex M-# b
 @pindex full-calc
@@ -9872,7 +10002,7 @@ If you type @kbd{M-x calc} again, the Calculator will reappear with the
 contents of the stack intact.  Typing @kbd{M-# c} or @kbd{M-# M-#}
 again from inside the Calculator buffer is equivalent to executing
 @code{calc-quit}; you can think of @kbd{M-# M-#} as toggling the
-Calculator on and off.@refill
+Calculator on and off.
 
 @kindex M-# x
 The @kbd{M-# x} command also turns the Calculator off, no matter which
@@ -9904,7 +10034,7 @@ The @kbd{<} and @kbd{>} keys are bound to @code{calc-scroll-left} and
 @code{calc-scroll-right}.  These are just like the normal horizontal
 scrolling commands except that they scroll one half-screen at a time by
 default.  (Calc formats its output to fit within the bounds of the
-window whenever it can.)@refill
+window whenever it can.)
 
 @kindex @{
 @kindex @}
@@ -9913,7 +10043,7 @@ window whenever it can.)@refill
 @cindex Vertical scrolling
 The @kbd{@{} and @kbd{@}} keys are bound to @code{calc-scroll-down}
 and @code{calc-scroll-up}.  They scroll up or down by one-half the
-height of the Calc window.@refill
+height of the Calc window.
 
 @kindex M-# 0
 @pindex calc-reset
@@ -10017,7 +10147,7 @@ H a S runs calc-solve-for:  a `H a S' v  => fsolve(a,v)  (?=notes)
 
 @noindent
 which means the command @kbd{H a S} or @kbd{H M-x calc-solve-for}
-takes a value @cite{a} from the stack, prompts for a value @cite{v},
+takes a value @expr{a} from the stack, prompts for a value @expr{v},
 then applies the algebraic function @code{fsolve} to these values.
 The @samp{?=notes} message means you can now type @kbd{?} to see
 additional notes from the summary that apply to this command.
@@ -10074,7 +10204,7 @@ The first three keystrokes ``push'' the numbers 1 and 2 onto the stack.  The
 @kbd{+} key always ``pops'' the top two numbers from the stack, adds them,
 and pushes the result (3) back onto the stack.  This number is ready for
 further calculations:  @kbd{5 -} pushes 5 onto the stack, then pops the
-3 and 5, subtracts them, and pushes the result (@i{-2}).@refill
+3 and 5, subtracts them, and pushes the result (@i{-2}).
 
 Note that the ``top'' of the stack actually appears at the @emph{bottom}
 of the buffer.  A line containing a single @samp{.} character signifies
@@ -10103,12 +10233,12 @@ two consecutive numbers.
 (After all, if you typed @kbd{1 2} by themselves the Calculator
 would enter the number 12.)  If you press @key{RET} or @key{SPC} @emph{not}
 right after typing a number, the key duplicates the number on the top of
-the stack.  @kbd{@key{RET} *} is thus a handy way to square a number.@refill
+the stack.  @kbd{@key{RET} *} is thus a handy way to square a number.
 
 The @key{DEL} key pops and throws away the top number on the stack.
 The @key{TAB} key swaps the top two objects on the stack.
 @xref{Stack and Trail}, for descriptions of these and other stack-related
-commands.@refill
+commands.
 
 @node Numeric Entry, Algebraic Entry, Stack Basics, Introduction
 @section Numeric Entry
@@ -10129,8 +10259,8 @@ you press a numeric key which is not valid, the key is ignored.
 @cindex Negative numbers, entering
 @kindex _
 There are three different concepts corresponding to the word ``minus,''
-typified by @cite{a-b} (subtraction), @cite{-x}
-(change-sign), and @cite{-5} (negative number).  Calc uses three
+typified by @expr{a-b} (subtraction), @expr{-x}
+(change-sign), and @expr{-5} (negative number).  Calc uses three
 different keys for these operations, respectively:
 @kbd{-}, @kbd{n}, and @kbd{_} (the underscore).  The @kbd{-} key subtracts
 the two numbers on the top of the stack.  The @kbd{n} key changes the sign
@@ -10138,7 +10268,7 @@ of the number on the top of the stack or the number currently being entered.
 The @kbd{_} key begins entry of a negative number or changes the sign of
 the number currently being entered.  The following sequences all enter the
 number @i{-5} onto the stack:  @kbd{0 @key{RET} 5 -}, @kbd{5 n @key{RET}},
-@kbd{5 @key{RET} n}, @kbd{_ 5 @key{RET}}, @kbd{5 _ @key{RET}}.@refill
+@kbd{5 @key{RET} n}, @kbd{_ 5 @key{RET}}, @kbd{5 _ @key{RET}}.
 
 Some other keys are active during numeric entry, such as @kbd{#} for
 non-decimal numbers, @kbd{:} for fractions, and @kbd{@@} for HMS forms.
@@ -10158,11 +10288,12 @@ During numeric entry, the only editing key available is @key{DEL}.
 Calculations can also be entered in algebraic form.  This is accomplished
 by typing the apostrophe key, @kbd{'}, followed by the expression in
 standard format:  @kbd{@key{'} 2+3*4 @key{RET}} computes
-@c{$2+(3\times4) = 14$}
-@cite{2+(3*4) = 14} and pushes that on the stack.  If you wish you can
+@texline @tmath{2+(3\times4) = 14}
+@infoline @expr{2+(3*4) = 14} 
+and pushes that on the stack.  If you wish you can
 ignore the RPN aspect of Calc altogether and simply enter algebraic
 expressions in this way.  You may want to use @key{DEL} every so often to
-clear previous results off the stack.@refill
+clear previous results off the stack.
 
 You can press the apostrophe key during normal numeric entry to switch
 the half-entered number into algebraic entry mode.  One reason to do this
@@ -10185,7 +10316,7 @@ you can omit the apostrophe.  Open parentheses and square brackets also
 begin algebraic entry.  You can still do RPN calculations in this mode,
 but you will have to press @key{RET} to terminate every number:
 @kbd{2 @key{RET} 3 @key{RET} * 4 @key{RET} +} would accomplish the same
-thing as @kbd{2*3+4 @key{RET}}.@refill
+thing as @kbd{2*3+4 @key{RET}}.
 
 @cindex Incomplete algebraic mode
 If you give a numeric prefix argument like @kbd{C-u} to the @kbd{m a}
@@ -10221,7 +10352,7 @@ stack with that formula rather than simply pushing the formula onto the
 stack.  Thus, @kbd{' 1+2 @key{RET}} pushes 3 on the stack, and @kbd{$*2
 @key{RET}} replaces it with 6.  Note that the @kbd{$} key always
 initiates algebraic entry; the @kbd{'} is unnecessary if @kbd{$} is the
-first character in the new formula.@refill
+first character in the new formula.
 
 Higher stack elements can be accessed from an entered formula with the
 symbols @kbd{$$}, @kbd{$$$}, and so on.  The number of stack elements
@@ -10229,7 +10360,7 @@ removed (to be replaced by the entered values) equals the number of dollar
 signs in the longest such symbol in the formula.  For example, @samp{$$+$$$}
 adds the second and third stack elements, replacing the top three elements
 with the answer.  (All information about the top stack element is thus lost
-since no single @samp{$} appears in this formula.)@refill
+since no single @samp{$} appears in this formula.)
 
 A slightly different way to refer to stack elements is with a dollar
 sign followed by a number:  @samp{$1}, @samp{$2}, and so on are much
@@ -10254,7 +10385,7 @@ If you finish your algebraic entry by pressing @key{LFD} (or @kbd{C-j})
 instead of @key{RET}, Calc disables the default simplifications
 (as if by @kbd{m O}; @pxref{Simplification Modes}) while the entry
 is being pushed on the stack.  Thus @kbd{' 1+2 @key{RET}} pushes 3
-on the stack, but @kbd{' 1+2 @key{LFD}} pushes the formula @cite{1+2};
+on the stack, but @kbd{' 1+2 @key{LFD}} pushes the formula @expr{1+2};
 you might then press @kbd{=} when it is time to evaluate this formula.
 
 @node Quick Calculator, Prefix Arguments, Algebraic Entry, Introduction
@@ -10333,7 +10464,7 @@ Many Calculator commands use numeric prefix arguments.  Some, such as
 @kbd{d s} (@code{calc-sci-notation}), set a parameter to the value of
 the prefix argument or use a default if you don't use a prefix.
 Others (like @kbd{d f} (@code{calc-fix-notation})) require an argument
-and prompt for a number if you don't give one as a prefix.@refill
+and prompt for a number if you don't give one as a prefix.
 
 As a rule, stack-manipulation commands accept a numeric prefix argument
 which is interpreted as an index into the stack.  A positive argument
@@ -10360,7 +10491,7 @@ argument for some other purpose.
 Numeric prefixes are specified the same way as always in Emacs:  Press
 a sequence of @key{META}-digits, or press @key{ESC} followed by digits,
 or press @kbd{C-u} followed by digits.  Some commands treat plain
-@kbd{C-u} (without any actual digits) specially.@refill
+@kbd{C-u} (without any actual digits) specially.
 
 @kindex ~
 @pindex calc-num-prefix
@@ -10368,7 +10499,7 @@ You can type @kbd{~} (@code{calc-num-prefix}) to pop an integer from the
 top of the stack and enter it as the numeric prefix for the next command.
 For example, @kbd{C-u 16 p} sets the precision to 16 digits; an alternate
 (silly) way to do this would be @kbd{2 @key{RET} 4 ^ ~ p}, i.e., compute 2
-to the fourth power and set the precision to that value.@refill
+to the fourth power and set the precision to that value.
 
 Conversely, if you have typed a numeric prefix argument the @kbd{~} key
 pushes it onto the stack in the form of an integer.
@@ -10416,7 +10547,7 @@ any other change, then it will be too late to redo.
 The @kbd{M-@key{RET}} key (@code{calc-last-args}) is like undo in that
 it restores the arguments of the most recent command onto the stack;
 however, it does not remove the result of that command.  Given a numeric
-prefix argument, this command applies to the @cite{n}th most recent
+prefix argument, this command applies to the @expr{n}th most recent
 command which removed items from the stack; it pushes those items back
 onto the stack.
 
@@ -10438,7 +10569,7 @@ The standard Emacs @kbd{C-_} undo key is recognized as a synonym for @kbd{U}.
 @cindex Why did an error occur?
 Many situations that would produce an error message in other calculators
 simply create unsimplified formulas in the Emacs Calculator.  For example,
-@kbd{1 @key{RET} 0 /} pushes the formula @cite{1 / 0}; @w{@kbd{0 L}} pushes
+@kbd{1 @key{RET} 0 /} pushes the formula @expr{1 / 0}; @w{@kbd{0 L}} pushes
 the formula @samp{ln(0)}.  Floating-point overflow and underflow are also
 reasons for this to happen.
 
@@ -10543,7 +10674,7 @@ possible in an attempt to recover from program bugs.  If a calculation
 ever halts incorrectly with the message ``Computation got stuck or
 ran too long,'' use the @kbd{M} command (@code{calc-more-recursion-depth})
 to increase this limit.  (Of course, this will not help if the
-calculation really did get stuck due to some problem inside Calc.)@refill
+calculation really did get stuck due to some problem inside Calc.)
 
 The limit is always increased (multiplied) by a factor of two.  There
 is also an @kbd{I M} (@code{calc-less-recursion-depth}) command which
@@ -10561,16 +10692,15 @@ internal Lisp recursion limit.  The minimum value for this limit is 600.
 @cindex Flushing caches
 Calc saves certain values after they have been computed once.  For
 example, the @kbd{P} (@code{calc-pi}) command initially ``knows'' the
-constant @c{$\pi$}
-@cite{pi} to about 20 decimal places; if the current precision
-is greater than this, it will recompute @c{$\pi$}
-@cite{pi} using a series
+constant @cpi{} to about 20 decimal places; if the current precision
+is greater than this, it will recompute @cpi{} using a series
 approximation.  This value will not need to be recomputed ever again
 unless you raise the precision still further.  Many operations such as
 logarithms and sines make use of similarly cached values such as
-@c{$\pi \over 4$}
-@cite{pi/4} and @c{$\ln 2$}
-@cite{ln(2)}.  The visible effect of caching is that
+@cpiover{4} and 
+@texline @tmath{\ln 2}.
+@infoline @expr{ln(2)}.  
+The visible effect of caching is that
 high-precision computations may seem to do extra work the first time.
 Other things cached include powers of two (for the binary arithmetic
 functions), matrix inverses and determinants, symbolic integrals, and
@@ -10643,7 +10773,7 @@ will be lost.
 This chapter discusses the various types of objects that can be placed
 on the Calculator stack, how they are displayed, and how they are
 entered.  (@xref{Data Type Formats}, for information on how these data
-types are represented as underlying Lisp objects.)@refill
+types are represented as underlying Lisp objects.)
 
 Integers, fractions, and floats are various ways of describing real
 numbers.  HMS forms also for many purposes act as real numbers.  These
@@ -10686,7 +10816,7 @@ floating-point form according to the current Fraction Mode.
 A decimal integer is represented as an optional sign followed by a
 sequence of digits.  Grouping (@pxref{Grouping Digits}) can be used to
 insert a comma at every third digit for display purposes, but you
-must not type commas during the entry of numbers.@refill
+must not type commas during the entry of numbers.
 
 @kindex #
 A non-decimal integer is represented as an optional sign, a radix
@@ -10695,7 +10825,7 @@ and above, the letters A through Z (upper- or lower-case) count as
 digits and do not terminate numeric entry mode.  @xref{Radix Modes}, for how
 to set the default radix for display of integers.  Numbers of any radix
 may be entered at any time.  If you press @kbd{#} at the beginning of a
-number, the current display radix is used.@refill
+number, the current display radix is used.
 
 @node Fractions, Floats, Integers, Data Types
 @section Fractions
@@ -10708,15 +10838,15 @@ performs RPN division; the following two sequences push the number
 @samp{2:3} on the stack:  @kbd{2 :@: 3 @key{RET}}, or @kbd{2 @key{RET} 3 /}
 assuming Fraction Mode has been enabled.)
 When the Calculator produces a fractional result it always reduces it to
-simplest form, which may in fact be an integer.@refill
+simplest form, which may in fact be an integer.
 
 Fractions may also be entered in a three-part form, where @samp{2:3:4}
 represents two-and-three-quarters.  @xref{Fraction Formats}, for fraction
-display formats.@refill
+display formats.
 
 Non-decimal fractions are entered and displayed as
 @samp{@var{radix}#@var{num}:@var{denom}} (or in the analogous three-part
-form).  The numerator and denominator always use the same radix.@refill
+form).  The numerator and denominator always use the same radix.
 
 @node Floats, Complex Numbers, Fractions, Data Types
 @section Floats
@@ -10726,12 +10856,13 @@ form).  The numerator and denominator always use the same radix.@refill
 A floating-point number or @dfn{float} is a number stored in scientific
 notation.  The number of significant digits in the fractional part is
 governed by the current floating precision (@pxref{Precision}).  The
-range of acceptable values is from @c{$10^{-3999999}$}
-@cite{10^-3999999} (inclusive)
-to @c{$10^{4000000}$}
-@cite{10^4000000}
-(exclusive), plus the corresponding negative
-values and zero.
+range of acceptable values is from 
+@texline @tmath{10^{-3999999}}
+@infoline @expr{10^-3999999} 
+(inclusive) to 
+@texline @tmath{10^{4000000}}
+@infoline @expr{10^4000000}
+(exclusive), plus the corresponding negative values and zero.
 
 Calculations that would exceed the allowable range of values (such
 as @samp{exp(exp(20))}) are left in symbolic form by Calc.  The
@@ -10772,7 +10903,7 @@ final result accurate to the full requested precision.  However,
 accuracy is not rigorously guaranteed.  If you suspect the validity of a
 result, try doing the same calculation in a higher precision.  The
 Calculator's arithmetic is not intended to be IEEE-conformant in any
-way.@refill
+way.
 
 While floats are always @emph{stored} in decimal, they can be entered
 and displayed in any radix just like integers and fractions.  The
@@ -10798,16 +10929,20 @@ polar.  The default format is rectangular, displayed in the form
 @samp{(@var{real},@var{imag})} where @var{real} is the real part and
 @var{imag} is the imaginary part, each of which may be any real number.
 Rectangular complex numbers can also be displayed in @samp{@var{a}+@var{b}i}
-notation; @pxref{Complex Formats}.@refill
-
-Polar complex numbers are displayed in the form `@t{(}@var{r}@t{;}@c{$\theta$}
-@var{theta}@t{)}'
-where @var{r} is the nonnegative magnitude and @c{$\theta$}
-@var{theta} is the argument
-or phase angle.  The range of @c{$\theta$}
-@var{theta} depends on the current angular
-mode (@pxref{Angular Modes}); it is generally between @i{-180} and
-@i{+180} degrees or the equivalent range in radians.@refill
+notation; @pxref{Complex Formats}.
+
+Polar complex numbers are displayed in the form 
+@texline `@t{(}@var{r}@t{;}@tmath{\theta}@t{)}'
+@infoline `@t{(}@var{r}@t{;}@var{theta}@t{)}'
+where @var{r} is the nonnegative magnitude and 
+@texline @tmath{\theta}
+@infoline @var{theta} 
+is the argument or phase angle.  The range of 
+@texline @tmath{\theta}
+@infoline @var{theta} 
+depends on the current angular mode (@pxref{Angular Modes}); it is
+generally between @i{-180} and @i{+180} degrees or the equivalent range
+in radians. 
 
 Complex numbers are entered in stages using incomplete objects.
 @xref{Incomplete Objects}.
@@ -10819,8 +10954,7 @@ a negative real), the current @dfn{Polar Mode} is used to determine the
 type.  @xref{Polar Mode}.
 
 A complex result in which the imaginary part is zero (or the phase angle
-is 0 or 180 degrees or @c{$\pi$}
-@cite{pi} radians) is automatically converted to a real
+is 0 or 180 degrees or @cpi{} radians) is automatically converted to a real
 number.
 
 @node Infinities, Vectors and Matrices, Complex Numbers, Data Types
@@ -10845,24 +10979,25 @@ entered using algebraic entry.
 Mathematically speaking, it is not rigorously correct to treat
 ``infinity'' as if it were a number, but mathematicians often do
 so informally.  When they say that @samp{1 / inf = 0}, what they
-really mean is that @cite{1 / x}, as @cite{x} becomes larger and
+really mean is that @expr{1 / x}, as @expr{x} becomes larger and
 larger, becomes arbitrarily close to zero.  So you can imagine
-that if @cite{x} got ``all the way to infinity,'' then @cite{1 / x}
+that if @expr{x} got ``all the way to infinity,'' then @expr{1 / x}
 would go all the way to zero.  Similarly, when they say that
-@samp{exp(inf) = inf}, they mean that @c{$e^x$}
-@cite{exp(x)} grows without
-bound as @cite{x} grows.  The symbol @samp{-inf} likewise stands
-for an infinitely negative real value; for example, we say that
+@samp{exp(inf) = inf}, they mean that 
+@texline @tmath{e^x}
+@infoline @expr{exp(x)} 
+grows without bound as @expr{x} grows.  The symbol @samp{-inf} likewise
+stands for an infinitely negative real value; for example, we say that
 @samp{exp(-inf) = 0}.  You can have an infinity pointing in any
 direction on the complex plane:  @samp{sqrt(-inf) = i inf}.
 
-The same concept of limits can be used to define @cite{1 / 0}.  We
-really want the value that @cite{1 / x} approaches as @cite{x}
-approaches zero.  But if all we have is @cite{1 / 0}, we can't
-tell which direction @cite{x} was coming from.  If @cite{x} was
+The same concept of limits can be used to define @expr{1 / 0}.  We
+really want the value that @expr{1 / x} approaches as @expr{x}
+approaches zero.  But if all we have is @expr{1 / 0}, we can't
+tell which direction @expr{x} was coming from.  If @expr{x} was
 positive and decreasing toward zero, then we should say that
-@samp{1 / 0 = inf}.  But if @cite{x} was negative and increasing
-toward zero, the answer is @samp{1 / 0 = -inf}.  In fact, @cite{x}
+@samp{1 / 0 = inf}.  But if @expr{x} was negative and increasing
+toward zero, the answer is @samp{1 / 0 = -inf}.  In fact, @expr{x}
 could be an imaginary number, giving the answer @samp{i inf} or
 @samp{-i inf}.  Calc uses the special symbol @samp{uinf} to mean
 @dfn{undirected infinity}, i.e., a value which is infinitely
@@ -10870,10 +11005,10 @@ large but with an unknown sign (or direction on the complex plane).
 
 Calc actually has three modes that say how infinities are handled.
 Normally, infinities never arise from calculations that didn't
-already have them.  Thus, @cite{1 / 0} is treated simply as an
+already have them.  Thus, @expr{1 / 0} is treated simply as an
 error and left unevaluated.  The @kbd{m i} (@code{calc-infinite-mode})
 command (@pxref{Infinite Mode}) enables a mode in which
-@cite{1 / 0} evaluates to @code{uinf} instead.  There is also
+@expr{1 / 0} evaluates to @code{uinf} instead.  There is also
 an alternative type of infinite mode which says to treat zeros
 as if they were positive, so that @samp{1 / 0 = inf}.  While this
 is less mathematically correct, it may be the answer you want in
@@ -10892,9 +11027,9 @@ notation.
 It's not so easy to define certain formulas like @samp{0 * inf} and
 @samp{inf / inf}.  Depending on where these zeros and infinities
 came from, the answer could be literally anything.  The latter
-formula could be the limit of @cite{x / x} (giving a result of one),
-or @cite{2 x / x} (giving two), or @cite{x^2 / x} (giving @code{inf}),
-or @cite{x / x^2} (giving zero).  Calc uses the symbol @code{nan}
+formula could be the limit of @expr{x / x} (giving a result of one),
+or @expr{2 x / x} (giving two), or @expr{x^2 / x} (giving @code{inf}),
+or @expr{x / x^2} (giving zero).  Calc uses the symbol @code{nan}
 to represent such an @dfn{indeterminate} value.  (The name ``nan''
 comes from analogy with the ``NAN'' concept of IEEE standard
 arithmetic; it stands for ``Not A Number.''  This is somewhat of a
@@ -10938,15 +11073,16 @@ Traditional vector and matrix arithmetic is also supported;
 @pxref{Basic Arithmetic} and @pxref{Matrix Functions}.
 Many other operations are applied to vectors element-wise.  For example,
 the complex conjugate of a vector is a vector of the complex conjugates
-of its elements.@refill
+of its elements.
 
 @ignore
 @starindex
 @end ignore
 @tindex vec
 Algebraic functions for building vectors include @samp{vec(a, b, c)}
-to build @samp{[a, b, c]}, @samp{cvec(a, n, m)} to build an @c{$n\times m$}
-@asis{@var{n}x@var{m}}
+to build @samp{[a, b, c]}, @samp{cvec(a, n, m)} to build an 
+@texline @tmath{n\times m}
+@infoline @var{n}x@var{m}
 matrix of @samp{a}s, and @samp{index(n)} to build a vector of integers
 from 1 to @samp{n}.
 
@@ -11077,7 +11213,7 @@ The @var{secs} value is a real number between 0 (inclusive) and 60
 (exclusive).  A positive HMS form is interpreted as @var{hours} +
 @var{mins}/60 + @var{secs}/3600.  A negative HMS form is interpreted
 as @i{- @var{hours}} @i{-} @var{mins}/60 @i{-} @var{secs}/3600.
-Display format for HMS forms is quite flexible.  @xref{HMS Formats}.@refill
+Display format for HMS forms is quite flexible.  @xref{HMS Formats}.
 
 HMS forms can be added and subtracted.  When they are added to numbers,
 the numbers are interpreted according to the current angular mode.  HMS
@@ -11216,10 +11352,10 @@ an integer multiple of) some value @var{M}.  Arithmetic modulo @var{M}
 often arises in number theory.  Modulo forms are written
 `@var{a} @t{mod} @var{M}',
 where @var{a} and @var{M} are real numbers or HMS forms, and
-@c{$0 \le a < M$}
-@cite{0 <= a < @var{M}}.
-In many applications @cite{a} and @cite{M} will be
-integers but this is not required.@refill
+@texline @tmath{0 \le a < M}.
+@infoline @expr{0 <= a < @var{M}}.
+In many applications @expr{a} and @expr{M} will be
+integers but this is not required.
 
 Modulo forms are not to be confused with the modulo operator @samp{%}.
 The expression @samp{27 % 10} means to compute 27 modulo 10 to produce
@@ -11228,28 +11364,30 @@ The expression @samp{27 mod 10} produces the result @samp{7 mod 10};
 further computations with this value are again reduced modulo 10 so that
 the result always lies in the desired range.
 
-When two modulo forms with identical @cite{M}'s are added or multiplied,
+When two modulo forms with identical @expr{M}'s are added or multiplied,
 the Calculator simply adds or multiplies the values, then reduces modulo
-@cite{M}.  If one argument is a modulo form and the other a plain number,
+@expr{M}.  If one argument is a modulo form and the other a plain number,
 the plain number is treated like a compatible modulo form.  It is also
 possible to raise modulo forms to powers; the result is the value raised
-to the power, then reduced modulo @cite{M}.  (When all values involved
+to the power, then reduced modulo @expr{M}.  (When all values involved
 are integers, this calculation is done much more efficiently than
 actually computing the power and then reducing.)
 
 @cindex Modulo division
 Two modulo forms `@var{a} @t{mod} @var{M}' and `@var{b} @t{mod} @var{M}'
-can be divided if @cite{a}, @cite{b}, and @cite{M} are all
+can be divided if @expr{a}, @expr{b}, and @expr{M} are all
 integers.  The result is the modulo form which, when multiplied by
 `@var{b} @t{mod} @var{M}', produces `@var{a} @t{mod} @var{M}'.  If
 there is no solution to this equation (which can happen only when
-@cite{M} is non-prime), or if any of the arguments are non-integers, the
+@expr{M} is non-prime), or if any of the arguments are non-integers, the
 division is left in symbolic form.  Other operations, such as square
 roots, are not yet supported for modulo forms.  (Note that, although
 @w{`@t{(}@var{a} @t{mod} @var{M}@t{)^.5}'} will compute a ``modulo square root''
-in the sense of reducing @c{$\sqrt a$}
-@cite{sqrt(a)} modulo @cite{M}, this is not a
-useful definition from the number-theoretical point of view.)@refill
+in the sense of reducing 
+@texline @tmath{\sqrt a}
+@infoline @expr{sqrt(a)} 
+modulo @expr{M}, this is not a useful definition from the
+number-theoretical point of view.)
 
 @ignore
 @mindex M
@@ -11261,17 +11399,17 @@ useful definition from the number-theoretical point of view.)@refill
 @tindex mod (operator)
 To create a modulo form during numeric entry, press the shift-@kbd{M}
 key to enter the word @samp{mod}.  As a special convenience, pressing
-shift-@kbd{M} a second time automatically enters the value of @cite{M}
+shift-@kbd{M} a second time automatically enters the value of @expr{M}
 that was most recently used before.  During algebraic entry, either
 type @samp{mod} by hand or press @kbd{M-m} (that's @kbd{@key{META}-m}).
-Once again, pressing this a second time enters the current modulo.@refill
+Once again, pressing this a second time enters the current modulo.
 
 You can also use @kbd{v p} and @kbd{%} to modify modulo forms.
 @xref{Building Vectors}.  @xref{Basic Arithmetic}.
 
 It is possible to mix HMS forms and modulo forms.  For example, an
 HMS form modulo 24 could be used to manipulate clock times; an HMS
-form modulo 360 would be suitable for angles.  Making the modulo @cite{M}
+form modulo 360 would be suitable for angles.  Making the modulo @expr{M}
 also be an HMS form eliminates troubles that would arise if the angular
 mode were inadvertently set to Radians, in which case
 @w{@samp{2@@ 0' 0" mod 24}} would be interpreted as two degrees modulo
@@ -11296,24 +11434,28 @@ The algebraic function @samp{makemod(a, m)} builds the modulo form
 @cindex Standard deviations
 An @dfn{error form} is a number with an associated standard
 deviation, as in @samp{2.3 +/- 0.12}.  The notation
-`@var{x} @t{+/-} @c{$\sigma$}
-@asis{sigma}' stands for an uncertain value which follows a normal or
-Gaussian distribution of mean @cite{x} and standard deviation or
-``error'' @c{$\sigma$}
-@cite{sigma}.  Both the mean and the error can be either numbers or
+@texline `@var{x} @t{+/-} @tmath{\sigma}' 
+@infoline `@var{x} @t{+/-} sigma' 
+stands for an uncertain value which follows
+a normal or Gaussian distribution of mean @expr{x} and standard
+deviation or ``error'' 
+@texline @tmath{\sigma}.
+@infoline @expr{sigma}.
+Both the mean and the error can be either numbers or
 formulas.  Generally these are real numbers but the mean may also be
 complex.  If the error is negative or complex, it is changed to its
 absolute value.  An error form with zero error is converted to a
-regular number by the Calculator.@refill
+regular number by the Calculator.
 
 All arithmetic and transcendental functions accept error forms as input.
 Operations on the mean-value part work just like operations on regular
-numbers.  The error part for any function @cite{f(x)} (such as @c{$\sin x$}
-@cite{sin(x)})
-is defined by the error of @cite{x} times the derivative of @cite{f}
-evaluated at the mean value of @cite{x}.  For a two-argument function
-@cite{f(x,y)} (such as addition) the error is the square root of the sum
-of the squares of the errors due to @cite{x} and @cite{y}.
+numbers.  The error part for any function @expr{f(x)} (such as 
+@texline @tmath{\sin x}
+@infoline @expr{sin(x)})
+is defined by the error of @expr{x} times the derivative of @expr{f}
+evaluated at the mean value of @expr{x}.  For a two-argument function
+@expr{f(x,y)} (such as addition) the error is the square root of the sum
+of the squares of the errors due to @expr{x} and @expr{y}.
 @tex
 $$ \eqalign{
   f(x \hbox{\code{ +/- }} \sigma)
@@ -11327,38 +11469,48 @@ $$ \eqalign{
 } $$
 @end tex
 Note that this
-definition assumes the errors in @cite{x} and @cite{y} are uncorrelated.
+definition assumes the errors in @expr{x} and @expr{y} are uncorrelated.
 A side effect of this definition is that @samp{(2 +/- 1) * (2 +/- 1)}
 is not the same as @samp{(2 +/- 1)^2}; the former represents the product
 of two independent values which happen to have the same probability
 distributions, and the latter is the product of one random value with itself.
 The former will produce an answer with less error, since on the average
-the two independent errors can be expected to cancel out.@refill
+the two independent errors can be expected to cancel out.
 
 Consult a good text on error analysis for a discussion of the proper use
 of standard deviations.  Actual errors often are neither Gaussian-distributed
 nor uncorrelated, and the above formulas are valid only when errors
 are small.  As an example, the error arising from
-`@t{sin(}@var{x} @t{+/-} @c{$\sigma$}
-@var{sigma}@t{)}' is
-`@c{$\sigma$\nobreak}
-@var{sigma} @t{abs(cos(}@var{x}@t{))}'.  When @cite{x} is close to zero,
-@c{$\cos x$}
-@cite{cos(x)} is
-close to one so the error in the sine is close to @c{$\sigma$}
-@cite{sigma}; this makes sense, since @c{$\sin x$}
-@cite{sin(x)} is approximately @cite{x} near zero, so a given
-error in @cite{x} will produce about the same error in the sine.  Likewise,
-near 90 degrees @c{$\cos x$}
-@cite{cos(x)} is nearly zero and so the computed error is
-small:  The sine curve is nearly flat in that region, so an error in @cite{x}
-has relatively little effect on the value of @c{$\sin x$}
-@cite{sin(x)}.  However, consider
-@samp{sin(90 +/- 1000)}.  The cosine of 90 is zero, so Calc will report
-zero error!  We get an obviously wrong result because we have violated
-the small-error approximation underlying the error analysis.  If the error
-in @cite{x} had been small, the error in @c{$\sin x$}
-@cite{sin(x)} would indeed have been negligible.@refill
+@texline `@t{sin(}@var{x} @t{+/-} @tmath{\sigma}@t{)}' 
+@infoline `@t{sin(}@var{x} @t{+/-} @var{sigma}@t{)}' 
+is 
+@texline `@tmath{\sigma} @t{abs(cos(}@var{x}@t{))}'.  
+@infoline `@var{sigma} @t{abs(cos(}@var{x}@t{))}'.  
+When @expr{x} is close to zero,
+@texline @tmath{\cos x}
+@infoline @expr{cos(x)} 
+is close to one so the error in the sine is close to 
+@texline @tmath{\sigma};
+@infoline @expr{sigma};
+this makes sense, since 
+@texline @tmath{\sin x}
+@infoline @expr{sin(x)} 
+is approximately @expr{x} near zero, so a given error in @expr{x} will
+produce about the same error in the sine.  Likewise, near 90 degrees
+@texline @tmath{\cos x}
+@infoline @expr{cos(x)} 
+is nearly zero and so the computed error is
+small:  The sine curve is nearly flat in that region, so an error in @expr{x}
+has relatively little effect on the value of 
+@texline @tmath{\sin x}.
+@infoline @expr{sin(x)}.  
+However, consider @samp{sin(90 +/- 1000)}.  The cosine of 90 is zero, so
+Calc will report zero error!  We get an obviously wrong result because
+we have violated the small-error approximation underlying the error
+analysis.  If the error in @expr{x} had been small, the error in
+@texline @tmath{\sin x}
+@infoline @expr{sin(x)} 
+would indeed have been negligible.
 
 @ignore
 @mindex p
@@ -11411,10 +11563,10 @@ intervals of the type shown above, @dfn{open} intervals such as
 @emph{exclusive}, and @dfn{semi-open} intervals in which one end
 uses a round parenthesis and the other a square bracket.  In mathematical
 terms,
-@samp{[2 ..@: 4]} means @cite{2 <= x <= 4}, whereas
-@samp{[2 ..@: 4)} represents @cite{2 <= x < 4},
-@samp{(2 ..@: 4]} represents @cite{2 < x <= 4}, and
-@samp{(2 ..@: 4)} represents @cite{2 < x < 4}.@refill
+@samp{[2 ..@: 4]} means @expr{2 <= x <= 4}, whereas
+@samp{[2 ..@: 4)} represents @expr{2 <= x < 4},
+@samp{(2 ..@: 4]} represents @expr{2 < x <= 4}, and
+@samp{(2 ..@: 4)} represents @expr{2 < x < 4}.
 @end ifinfo
 @tex
 Calc supports several varieties of intervals, including \dfn{closed}
@@ -11464,14 +11616,19 @@ contain zero inside them Calc is forced to give the result,
 
 While it may seem that intervals and error forms are similar, they are
 based on entirely different concepts of inexact quantities.  An error
-form `@var{x} @t{+/-} @c{$\sigma$}
-@var{sigma}' means a variable is random, and its value could
-be anything but is ``probably'' within one @c{$\sigma$}
-@var{sigma} of the mean value @cite{x}.
-An interval `@t{[}@var{a} @t{..@:} @var{b}@t{]}' means a variable's value
-is unknown, but guaranteed to lie in the specified range.  Error forms
-are statistical or ``average case'' approximations; interval arithmetic
-tends to produce ``worst case'' bounds on an answer.@refill
+form 
+@texline `@var{x} @t{+/-} @tmath{\sigma}' 
+@infoline `@var{x} @t{+/-} @var{sigma}' 
+means a variable is random, and its value could
+be anything but is ``probably'' within one 
+@texline @tmath{\sigma} 
+@infoline @var{sigma} 
+of the mean value @expr{x}. An interval 
+`@t{[}@var{a} @t{..@:} @var{b}@t{]}' means a
+variable's value is unknown, but guaranteed to lie in the specified
+range.  Error forms are statistical or ``average case'' approximations;
+interval arithmetic tends to produce ``worst case'' bounds on an
+answer.
 
 Intervals may not contain complex numbers, but they may contain
 HMS forms or date forms.
@@ -11537,7 +11694,7 @@ pushes the complex number @samp{(1, 1.414)} (approximately).
 If several values lie on the stack in front of the incomplete object,
 all are collected and appended to the object.  Thus the @kbd{,} key
 is redundant:  @kbd{[ 2 @key{RET} 3 @key{RET} 2 * 9 ]}.  Some people
-prefer the equivalent @key{SPC} key to @key{RET}.@refill
+prefer the equivalent @key{SPC} key to @key{RET}.
 
 As a special case, typing @kbd{,} immediately after @kbd{(}, @kbd{[}, or
 @kbd{,} adds a zero or duplicates the preceding value in the list being
@@ -11575,14 +11732,14 @@ Calc also allows apostrophes and @code{#} signs in variable names.
 The Calc variable @code{foo} corresponds to the Emacs Lisp variable
 @code{var-foo}.  Commands like @kbd{s s} (@code{calc-store}) that operate
 on variables can be made to use any arbitrary Lisp variable simply by
-backspacing over the @samp{var-} prefix in the minibuffer.@refill
+backspacing over the @samp{var-} prefix in the minibuffer.
 
 In a command that takes a variable name, you can either type the full
 name of a variable, or type a single digit to use one of the special
 convenience variables @code{var-q0} through @code{var-q9}.  For example,
 @kbd{3 s s 2} stores the number 3 in variable @code{var-q2}, and
 @w{@kbd{3 s s foo @key{RET}}} stores that number in variable
-@code{var-foo}.@refill
+@code{var-foo}.
 
 To push a variable itself (as opposed to the variable's value) on the
 stack, enter its name as an algebraic expression using the apostrophe
@@ -11623,7 +11780,7 @@ A few variables are called @dfn{special constants}.  Their names are
 (@xref{Scientific Functions}.)  When they are evaluated with @kbd{=},
 their values are calculated if necessary according to the current precision
 or complex polar mode.  If you wish to use these symbols for other purposes,
-simply undefine or redefine them using @code{calc-store}.@refill
+simply undefine or redefine them using @code{calc-store}.
 
 The variables @samp{inf}, @samp{uinf}, and @samp{nan} stand for
 infinite or indeterminate values.  It's best not to use them as
@@ -11697,8 +11854,9 @@ the C-style ``if'' operator @samp{a?b:c} [@code{if}];
 @samp{=>} [@code{evalto}].
 
 Note that, unlike in usual computer notation, multiplication binds more
-strongly than division:  @samp{a*b/c*d} is equivalent to @c{$a b \over c d$}
-@cite{(a*b)/(c*d)}.
+strongly than division:  @samp{a*b/c*d} is equivalent to 
+@texline @tmath{a b \over c d}.
+@infoline @expr{(a*b)/(c*d)}.
 
 @cindex Multiplication, implicit
 @cindex Implicit multiplication
@@ -11712,7 +11870,7 @@ is interpreted as a function call, not an implicit @samp{*}.  In many
 cases you must use a space if you omit the @samp{*}:  @samp{2a} is the
 same as @samp{2*a}, and @samp{a b} is the same as @samp{a*b}, but @samp{ab}
 is a variable called @code{ab}, @emph{not} the product of @samp{a} and
-@samp{b}!  Also note that @samp{f (x)} is still a function call.@refill
+@samp{b}!  Also note that @samp{f (x)} is still a function call.
 
 @cindex Implicit comma in vectors
 The rules are slightly different for vectors written with square brackets.
@@ -11724,7 +11882,7 @@ Note that spaces around the brackets, and around explicit commas, are
 ignored.  To force spaces to be interpreted as multiplication you can
 enclose a formula in parentheses as in @samp{[(a b) 2(c d)]}, which is
 interpreted as @samp{[a*b, 2*c*d]}.  An implicit comma is also inserted
-between @samp{][}, as in the matrix @samp{[[1 2][3 4]]}.@refill
+between @samp{][}, as in the matrix @samp{[[1 2][3 4]]}.
 
 Vectors that contain commas (not embedded within nested parentheses or
 brackets) do not treat spaces specially:  @samp{[a b, 2 c d]} is a vector
@@ -11753,12 +11911,12 @@ call is left as it is during algebraic manipulation: @samp{f(x+y)} is
 left alone.  Beware that many innocent-looking short names like @code{in}
 and @code{re} have predefined meanings which could surprise you; however,
 single letters or single letters followed by digits are always safe to
-use for your own function names.  @xref{Function Index}.@refill
+use for your own function names.  @xref{Function Index}.
 
 In the documentation for particular commands, the notation @kbd{H S}
 (@code{calc-sinh}) [@code{sinh}] means that the key sequence @kbd{H S}, the
 command @kbd{M-x calc-sinh}, and the algebraic function @code{sinh(x)} all
-represent the same operation.@refill
+represent the same operation.
 
 Commands that interpret (``parse'') text as algebraic formulas include
 algebraic entry (@kbd{'}), editing commands like @kbd{`} which parse
@@ -11823,7 +11981,7 @@ For example, with @samp{10 20 30} on the stack,
 @key{RET} creates @samp{10 20 30 30},
 @kbd{C-u 2 @key{RET}} creates @samp{10 20 30 20 30},
 @kbd{C-u - 2 @key{RET}} creates @samp{10 20 30 20}, and
-@kbd{C-u 0 @key{RET}} creates @samp{10 20 30 10 20 30}.@refill
+@kbd{C-u 0 @key{RET}} creates @samp{10 20 30 10 20 30}.
 
 @kindex @key{LFD}
 @pindex calc-over
@@ -11833,7 +11991,7 @@ except that the sign of the numeric prefix argument is interpreted
 oppositely.  Also, with no prefix argument the default argument is 2.
 Thus with @samp{10 20 30} on the stack, @key{LFD} and @kbd{C-u 2 @key{LFD}}
 are both equivalent to @kbd{C-u - 2 @key{RET}}, producing
-@samp{10 20 30 20}.@refill
+@samp{10 20 30 20}.
 
 @kindex @key{DEL}
 @kindex C-d
@@ -11851,7 +12009,7 @@ For example, with @samp{10 20 30} on the stack,
 @key{DEL} leaves @samp{10 20},
 @kbd{C-u 2 @key{DEL}} leaves @samp{10},
 @kbd{C-u - 2 @key{DEL}} leaves @samp{10 30}, and
-@kbd{C-u 0 @key{DEL}} leaves an empty stack.@refill
+@kbd{C-u 0 @key{DEL}} leaves an empty stack.
 
 @kindex M-@key{DEL}
 @pindex calc-pop-above
@@ -11874,7 +12032,7 @@ For example, with @samp{10 20 30 40 50} on the stack,
 @key{TAB} creates @samp{10 20 30 50 40},
 @kbd{C-u 3 @key{TAB}} creates @samp{10 20 50 30 40},
 @kbd{C-u - 2 @key{TAB}} creates @samp{40 50 10 20 30}, and
-@kbd{C-u 0 @key{TAB}} creates @samp{50 40 30 20 10}.@refill
+@kbd{C-u 0 @key{TAB}} creates @samp{50 40 30 20 10}.
 
 @kindex M-@key{TAB}
 @pindex calc-roll-up
@@ -11885,7 +12043,7 @@ For example, with @samp{10 20 30 40 50} on the stack,
 @kbd{M-@key{TAB}} creates @samp{10 20 40 50 30},
 @kbd{C-u 4 M-@key{TAB}} creates @samp{10 30 40 50 20},
 @kbd{C-u - 2 M-@key{TAB}} creates @samp{30 40 50 10 20}, and
-@kbd{C-u 0 M-@key{TAB}} creates @samp{50 40 30 20 10}.@refill
+@kbd{C-u 0 M-@key{TAB}} creates @samp{50 40 30 20 10}.
 
 A good way to view the operation of @key{TAB} and @kbd{M-@key{TAB}} is in
 terms of moving a particular element to a new position in the stack.
@@ -11988,7 +12146,7 @@ The @kbd{t i} (@code{calc-trail-in}) and @kbd{t o}
 Calc Trail window.  In practice they are rarely used, since the commands
 shown below are a more convenient way to move around in the
 trail, and they work ``by remote control'' when the cursor is still
-in the Calculator window.@refill
+in the Calculator window.
 
 @cindex Trail pointer
 There is a @dfn{trail pointer} which selects some entry of the trail at
@@ -12011,7 +12169,7 @@ trail pointer.
 @pindex calc-trail-scroll-right
 The @kbd{t <} (@code{calc-trail-scroll-left}) and @kbd{t >}
 (@code{calc-trail-scroll-right}) commands horizontally scroll the trail
-window left or right by one half of its width.@refill
+window left or right by one half of its width.
 
 @kindex t n
 @pindex calc-trail-next
@@ -12026,7 +12184,7 @@ The @kbd{t n} (@code{calc-trail-next}) and @kbd{t p}
 one line.  The @kbd{t f} (@code{calc-trail-forward}) and @kbd{t b}
 (@code{calc-trail-backward}) commands move the trail pointer down or up
 one screenful at a time.  All of these commands accept numeric prefix
-arguments to move several lines or screenfuls at a time.@refill
+arguments to move several lines or screenfuls at a time.
 
 @kindex t [
 @pindex calc-trail-first
@@ -12038,7 +12196,7 @@ The @kbd{t [} (@code{calc-trail-first}) and @kbd{t ]}
 (@code{calc-trail-last}) commands move the trail pointer to the first or
 last line of the trail.  The @kbd{t h} (@code{calc-trail-here}) command
 moves the trail pointer to the cursor position; unlike the other trail
-commands, @kbd{t h} works only when Calc Trail is the selected window.@refill
+commands, @kbd{t h} works only when Calc Trail is the selected window.
 
 @kindex t s
 @pindex calc-trail-isearch-forward
@@ -12050,7 +12208,7 @@ The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r}
 search forward or backward through the trail.  You can press @key{RET}
 to terminate the search; the trail pointer moves to the current line.
 If you cancel the search with @kbd{C-g}, the trail pointer stays where
-it was when the search began.@refill
+it was when the search began.
 @end ifinfo
 @tex
 The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r}
@@ -12248,7 +12406,7 @@ what you see is what you get.  Reducing the current precision does not
 round values already on the stack, but those values will be rounded
 down before being used in any calculation.  The @kbd{c 0} through
 @kbd{c 9} commands (@pxref{Conversions}) can be used to round an
-existing value to a new precision.@refill
+existing value to a new precision.
 
 @cindex Accuracy of calculations
 It is important to distinguish the concepts of @dfn{precision} and
@@ -12291,7 +12449,7 @@ There is no single-key equivalent to the @code{calc-arcsin} function.
 Instead, you must first press @kbd{I} (@code{calc-inverse}) to set
 the @dfn{Inverse Flag}, then press @kbd{S} (@code{calc-sin}).
 The @kbd{I} key actually toggles the Inverse Flag.  When this flag
-is set, the word @samp{Inv} appears in the mode line.@refill
+is set, the word @samp{Inv} appears in the mode line.
 
 @kindex H
 @pindex calc-hyperbolic
@@ -12300,7 +12458,7 @@ Hyperbolic Flag, which transforms @code{calc-sin} into @code{calc-sinh}.
 If both of these flags are set at once, the effect will be
 @code{calc-arcsinh}.  (The Hyperbolic flag is also used by some
 non-trigonometric commands; for example @kbd{H L} computes a base-10,
-instead of base-@i{e}, logarithm.)@refill
+instead of base-@i{e}, logarithm.)
 
 Command names like @code{calc-arcsin} are provided for completeness, and
 may be executed with @kbd{x} or @kbd{M-x}.  Their effect is simply to
@@ -12356,8 +12514,7 @@ result is a complex number and the current mode is HMS, the number is
 instead expressed in degrees.  (Complex-number calculations would
 normally be done in radians mode, though.  Complex numbers are converted
 to degrees by calculating the complex result in radians and then
-multiplying by 180 over @c{$\pi$}
-@cite{pi}.)
+multiplying by 180 over @cpi{}.)
 
 @kindex m r
 @pindex calc-radians-mode
@@ -12368,7 +12525,7 @@ multiplying by 180 over @c{$\pi$}
 The @kbd{m r} (@code{calc-radians-mode}), @kbd{m d} (@code{calc-degrees-mode}),
 and @kbd{m h} (@code{calc-hms-mode}) commands control the angular mode.
 The current angular mode is displayed on the Emacs mode line.
-The default angular mode is degrees.@refill
+The default angular mode is degrees.
 
 @node Polar Mode, Fraction Mode, Angular Modes, Calculation Modes
 @subsection Polar Mode
@@ -12396,16 +12553,16 @@ of the above example situations would produce polar complex numbers.
 Division of two integers normally yields a floating-point number if the
 result cannot be expressed as an integer.  In some cases you would
 rather get an exact fractional answer.  One way to accomplish this is
-to multiply fractions instead:  @kbd{6 @key{RET} 1:4 *} produces @cite{3:2}
-even though @kbd{6 @key{RET} 4 /} produces @cite{1.5}.
+to multiply fractions instead:  @kbd{6 @key{RET} 1:4 *} produces @expr{3:2}
+even though @kbd{6 @key{RET} 4 /} produces @expr{1.5}.
 
 @kindex m f
 @pindex calc-frac-mode
 To set the Calculator to produce fractional results for normal integer
 divisions, use the @kbd{m f} (@code{calc-frac-mode}) command.
-For example, @cite{8/4} produces @cite{2} in either mode,
-but @cite{6/4} produces @cite{3:2} in Fraction Mode, @cite{1.5} in
-Float Mode.@refill
+For example, @expr{8/4} produces @expr{2} in either mode,
+but @expr{6/4} produces @expr{3:2} in Fraction Mode, @expr{1.5} in
+Float Mode.
 
 At any time you can use @kbd{c f} (@code{calc-float}) to convert a
 fraction to a float, or @kbd{c F} (@code{calc-fraction}) to convert a
@@ -12416,7 +12573,7 @@ float to a fraction.  @xref{Conversions}.
 
 @noindent
 @cindex Infinite mode
-The Calculator normally treats results like @cite{1 / 0} as errors;
+The Calculator normally treats results like @expr{1 / 0} as errors;
 formulas like this are left in unsimplified form.  But Calc can be
 put into a mode where such calculations instead produce ``infinite''
 results.
@@ -12432,7 +12589,7 @@ will not be generated when infinite mode is off.)
 
 With infinite mode turned on, @samp{1 / 0} will generate @code{uinf},
 an undirected infinity.  @xref{Infinities}, for a discussion of the
-difference between @code{inf} and @code{uinf}.  Also, @cite{0 / 0}
+difference between @code{inf} and @code{uinf}.  Also, @expr{0 / 0}
 evaluates to @code{nan}, the ``indeterminate'' symbol.  Various other
 functions can also return infinities in this mode; for example,
 @samp{ln(0) = -inf}, and @samp{gamma(-7) = uinf}.  Once again,
@@ -12477,7 +12634,7 @@ the expression at the top of the stack, by temporarily disabling
 @code{calc-symbolic-mode} and executing @kbd{=} (@code{calc-evaluate}).
 Given a numeric prefix argument, it also
 sets the floating-point precision to the specified value for the duration
-of the command.@refill
+of the command.
 
 To evaluate a formula numerically without expanding the variables it
 contains, you can use the key sequence @kbd{m s a v m s} (this uses
@@ -12504,7 +12661,7 @@ multiplication to be commutative.  (Recall that in matrix arithmetic,
 @samp{A*B} is not the same as @samp{B*A}.)  This assumption affects
 rewrite rules and algebraic simplification.  Another effect of this
 mode is that calculations that would normally produce constants like
-0 and 1 (e.g., @cite{a - a} and @cite{a / a}, respectively) will now
+0 and 1 (e.g., @expr{a - a} and @expr{a / a}, respectively) will now
 produce function calls that represent ``generic'' zero or identity
 matrices: @samp{idn(0)}, @samp{idn(1)}.  The @code{idn} function
 @samp{idn(@var{a},@var{n})} returns @var{a} times an @var{n}x@var{n}
@@ -12598,7 +12755,7 @@ Type @kbd{m w} (@code{calc-working}) with a numeric prefix of 0 to
 disable all ``working'' messages.  Use a numeric prefix of 1 to enable
 only the plain @samp{Working...} message.  Use a numeric prefix of 2 to
 see intermediate results as well.  With no numeric prefix this displays
-the current mode.@refill
+the current mode.
 
 While it may seem that the ``working'' messages will slow Calc down
 considerably, experiments have shown that their impact is actually
@@ -12613,13 +12770,13 @@ The current @dfn{simplification mode} controls how numbers and formulas
 are ``normalized'' when being taken from or pushed onto the stack.
 Some normalizations are unavoidable, such as rounding floating-point
 results to the current precision, and reducing fractions to simplest
-form.  Others, such as simplifying a formula like @cite{a+a} (or @cite{2+3}),
+form.  Others, such as simplifying a formula like @expr{a+a} (or @expr{2+3}),
 are done by default but can be turned off when necessary.
 
-When you press a key like @kbd{+} when @cite{2} and @cite{3} are on the
+When you press a key like @kbd{+} when @expr{2} and @expr{3} are on the
 stack, Calc pops these numbers, normalizes them, creates the formula
-@cite{2+3}, normalizes it, and pushes the result.  Of course the standard
-rules for normalizing @cite{2+3} will produce the result @cite{5}.
+@expr{2+3}, normalizes it, and pushes the result.  Of course the standard
+rules for normalizing @expr{2+3} will produce the result @expr{5}.
 
 Simplification mode commands consist of the lower-case @kbd{m} prefix key
 followed by a shifted letter.
@@ -12627,7 +12784,7 @@ followed by a shifted letter.
 @kindex m O
 @pindex calc-no-simplify-mode
 The @kbd{m O} (@code{calc-no-simplify-mode}) command turns off all optional
-simplifications.  These would leave a formula like @cite{2+3} alone.  In
+simplifications.  These would leave a formula like @expr{2+3} alone.  In
 fact, nothing except simple numbers are ever affected by normalization
 in this mode.
 
@@ -12635,22 +12792,24 @@ in this mode.
 @pindex calc-num-simplify-mode
 The @kbd{m N} (@code{calc-num-simplify-mode}) command turns off simplification
 of any formulas except those for which all arguments are constants.  For
-example, @cite{1+2} is simplified to @cite{3}, and @cite{a+(2-2)} is
-simplified to @cite{a+0} but no further, since one argument of the sum
-is not a constant.  Unfortunately, @cite{(a+2)-2} is @emph{not} simplified
+example, @expr{1+2} is simplified to @expr{3}, and @expr{a+(2-2)} is
+simplified to @expr{a+0} but no further, since one argument of the sum
+is not a constant.  Unfortunately, @expr{(a+2)-2} is @emph{not} simplified
 because the top-level @samp{-} operator's arguments are not both
-constant numbers (one of them is the formula @cite{a+2}).
+constant numbers (one of them is the formula @expr{a+2}).
 A constant is a number or other numeric object (such as a constant
 error form or modulo form), or a vector all of whose
-elements are constant.@refill
+elements are constant.
 
 @kindex m D
 @pindex calc-default-simplify-mode
 The @kbd{m D} (@code{calc-default-simplify-mode}) command restores the
 default simplifications for all formulas.  This includes many easy and
-fast algebraic simplifications such as @cite{a+0} to @cite{a}, and
-@cite{a + 2 a} to @cite{3 a}, as well as evaluating functions like
-@cite{@t{deriv}(x^2, x)} to @cite{2 x}.
+fast algebraic simplifications such as @expr{a+0} to @expr{a}, and
+@expr{a + 2 a} to @expr{3 a}, as well as evaluating functions like
+@texline @t{deriv}@expr{(x^2,x)}
+@infoline @expr{@t{deriv}(x^2, x)} 
+to @expr{2 x}.
 
 @kindex m B
 @pindex calc-bin-simplify-mode
@@ -12681,13 +12840,13 @@ simplification; it applies the command @kbd{u s}
 (@code{calc-simplify-units}), which in turn
 is a superset of @kbd{a s}.  In this mode, variable names which
 are identifiable as unit names (like @samp{mm} for ``millimeters'')
-are simplified with their unit definitions in mind.@refill
+are simplified with their unit definitions in mind.
 
 A common technique is to set the simplification mode down to the lowest
 amount of simplification you will allow to be applied automatically, then
 use manual commands like @kbd{a s} and @kbd{c c} (@code{calc-clean}) to
 perform higher types of simplifications on demand.  @xref{Algebraic
-Definitions}, for another sample use of no-simplification mode.@refill
+Definitions}, for another sample use of no-simplification mode.
 
 @node Declarations, Display Modes, Simplification Modes, Mode Settings
 @section Declarations
@@ -12949,8 +13108,8 @@ The value is a constant with respect to other variables.
 Calc does not check the declarations for a variable when you store
 a value in it.  However, storing @i{-3.5} in a variable that has
 been declared @code{pos}, @code{int}, or @code{matrix} may have
-unexpected effects; Calc may evaluate @samp{sqrt(x^2)} to @cite{3.5}
-if it substitutes the value first, or to @cite{-3.5} if @code{x}
+unexpected effects; Calc may evaluate @samp{sqrt(x^2)} to @expr{3.5}
+if it substitutes the value first, or to @expr{-3.5} if @code{x}
 was declared @code{pos} and the formula @samp{sqrt(x^2)} is
 simplified to @samp{x} before the value is substituted.  Before
 using a variable for a new purpose, it is best to use @kbd{s d}
@@ -13018,7 +13177,7 @@ includes integers, fractions, floats, real error forms, and intervals.
 @end ignore
 @tindex dimag
 The @code{dimag} function checks if its argument is imaginary,
-i.e., is mathematically equal to a real number times @cite{i}.
+i.e., is mathematically equal to a real number times @expr{i}.
 
 @ignore
 @starindex
@@ -13036,7 +13195,7 @@ The @code{dpos} function checks for positive (but nonzero) reals.
 The @code{dneg} function checks for negative reals.  The @code{dnonneg}
 function checks for nonnegative reals, i.e., reals greater than or
 equal to zero.  Note that the @kbd{a s} command can simplify an
-expression like @cite{x > 0} to 1 or 0 using @code{dpos}, and that
+expression like @expr{x > 0} to 1 or 0 using @code{dpos}, and that
 @kbd{a s} is effectively applied to all conditions in rewrite rules,
 so the actual functions @code{dpos}, @code{dneg}, and @code{dnonneg}
 are rarely necessary.
@@ -13105,7 +13264,7 @@ The commands in this section are two-key sequences beginning with the
 (@code{calc-line-breaking}) commands are described elsewhere;
 @pxref{Stack Basics} and @pxref{Normal Language Modes}, respectively.
 Display formats for vectors and matrices are also covered elsewhere;
-@pxref{Vector and Matrix Formats}.@refill
+@pxref{Vector and Matrix Formats}.
 
 One thing all display modes have in common is their treatment of the
 @kbd{H} prefix.  This prefix causes any mode command that would normally
@@ -13165,7 +13324,7 @@ binary, octal, hexadecimal, and decimal as the current display radix,
 respectively.  Numbers can always be entered in any radix, though the
 current radix is used as a default if you press @kbd{#} without any initial
 digits.  A number entered without a @kbd{#} is @emph{always} interpreted
-as decimal.@refill
+as decimal.
 
 @kindex d r
 @pindex calc-radix
@@ -13180,10 +13339,12 @@ Integers normally are displayed with however many digits are necessary to
 represent the integer and no more.  The @kbd{d z} (@code{calc-leading-zeros})
 command causes integers to be padded out with leading zeros according to the
 current binary word size.  (@xref{Binary Functions}, for a discussion of
-word size.)  If the absolute value of the word size is @cite{w}, all integers
-are displayed with at least enough digits to represent @c{$2^w-1$}
-@cite{(2^w)-1} in the
-current radix.  (Larger integers will still be displayed in their entirety.)
+word size.)  If the absolute value of the word size is @expr{w}, all integers
+are displayed with at least enough digits to represent 
+@texline @tmath{2^w-1}
+@infoline @expr{(2^w)-1} 
+in the current radix.  (Larger integers will still be displayed in their
+entirety.) 
 
 @node Grouping Digits, Float Formats, Radix Modes, Display Modes
 @subsection Grouping Digits
@@ -13202,10 +13363,10 @@ separated by commas.
 The @kbd{d g} command toggles grouping on and off.
 With a numerix prefix of 0, this command displays the current state of
 the grouping flag; with an argument of minus one it disables grouping;
-with a positive argument @cite{N} it enables grouping on every @cite{N}
+with a positive argument @expr{N} it enables grouping on every @expr{N}
 digits.  For floating-point numbers, grouping normally occurs only
-before the decimal point.  A negative prefix argument @cite{-N} enables
-grouping every @cite{N} digits both before and after the decimal point.@refill
+before the decimal point.  A negative prefix argument @expr{-N} enables
+grouping every @expr{N} digits both before and after the decimal point.
 
 @kindex d ,
 @pindex calc-group-char
@@ -13298,7 +13459,7 @@ numbers, and commas to separate elements in a list.
 There are three supported notations for complex numbers in rectangular
 form.  The default is as a pair of real numbers enclosed in parentheses
 and separated by a comma: @samp{(a,b)}.  The @kbd{d c}
-(@code{calc-complex-notation}) command selects this style.@refill
+(@code{calc-complex-notation}) command selects this style.
 
 @kindex d i
 @pindex calc-i-notation
@@ -13307,7 +13468,7 @@ and separated by a comma: @samp{(a,b)}.  The @kbd{d c}
 The other notations are @kbd{d i} (@code{calc-i-notation}), in which
 numbers are displayed in @samp{a+bi} form, and @kbd{d j}
 (@code{calc-j-notation}) which displays the form @samp{a+bj} preferred
-in some disciplines.@refill
+in some disciplines.
 
 @cindex @code{i} variable
 @vindex i
@@ -13318,7 +13479,7 @@ this formula and you have not changed the variable @samp{i}, the @samp{i}
 will be interpreted as @samp{(0,1)} and the formula will be simplified
 to @samp{(2,3)}.  Other commands (like @code{calc-sin}) will @emph{not}
 interpret the formula @samp{2 + 3 * i} as a complex number.
-@xref{Variables}, under ``special constants.''@refill
+@xref{Variables}, under ``special constants.''
 
 @node Fraction Formats, HMS Formats, Complex Formats, Display Modes
 @subsection Fraction Formats
@@ -13346,12 +13507,12 @@ a number.  For example:  @samp{:10} or @samp{+/3}.  In this case,
 Calc adjusts all fractions that are displayed to have the specified
 denominator, if possible.  Otherwise it adjusts the denominator to
 be a multiple of the specified value.  For example, in @samp{:6} mode
-the fraction @cite{1:6} will be unaffected, but @cite{2:3} will be
-displayed as @cite{4:6}, @cite{1:2} will be displayed as @cite{3:6},
-and @cite{1:8} will be displayed as @cite{3:24}.  Integers are also
-affected by this mode:  3 is displayed as @cite{18:6}.  Note that the
+the fraction @expr{1:6} will be unaffected, but @expr{2:3} will be
+displayed as @expr{4:6}, @expr{1:2} will be displayed as @expr{3:6},
+and @expr{1:8} will be displayed as @expr{3:24}.  Integers are also
+affected by this mode:  3 is displayed as @expr{18:6}.  Note that the
 format @samp{:1} writes fractions the same as @samp{:}, but it writes
-integers as @cite{n:1}.
+integers as @expr{n:1}.
 
 The fraction format does not affect the way fractions or integers are
 stored, only the way they appear on the screen.  The fraction format
@@ -13710,15 +13871,15 @@ operations.  This is similar to the Emacs ``narrowing'' feature, except
 that the values below the @samp{.} are @emph{visible}, just temporarily
 frozen.  This feature allows you to keep several independent calculations
 running at once in different parts of the stack, or to apply a certain
-command to an element buried deep in the stack.@refill
+command to an element buried deep in the stack.
 
 Pressing @kbd{d t} by itself moves the @samp{.} to the line the cursor
 is on.  Thus, this line and all those below it become hidden.  To un-hide
 these lines, move down to the end of the buffer and press @w{@kbd{d t}}.
-With a positive numeric prefix argument @cite{n}, @kbd{d t} hides the
-bottom @cite{n} values in the buffer.  With a negative argument, it hides
-all but the top @cite{n} values.  With an argument of zero, it hides zero
-values, i.e., moves the @samp{.} all the way down to the bottom.@refill
+With a positive numeric prefix argument @expr{n}, @kbd{d t} hides the
+bottom @expr{n} values in the buffer.  With a negative argument, it hides
+all but the top @expr{n} values.  With an argument of zero, it hides zero
+values, i.e., moves the @samp{.} all the way down to the bottom.
 
 @kindex d [
 @pindex calc-truncate-up
@@ -13726,7 +13887,7 @@ values, i.e., moves the @samp{.} all the way down to the bottom.@refill
 @pindex calc-truncate-down
 The @kbd{d [} (@code{calc-truncate-up}) and @kbd{d ]}
 (@code{calc-truncate-down}) commands move the @samp{.} up or down one
-line at a time (or several lines with a prefix argument).@refill
+line at a time (or several lines with a prefix argument).
 
 @node Justification, Labels, Truncating the Stack, Display Modes
 @subsection Justification
@@ -13743,7 +13904,7 @@ control this arrangement by typing @kbd{d <} (@code{calc-left-justify}),
 @kbd{d >} (@code{calc-right-justify}), or @kbd{d =}
 (@code{calc-center-justify}).  For example, in right-justification mode,
 stack entries are displayed flush-right against the right edge of the
-window.@refill
+window.
 
 If you change the width of the Calculator window you may have to type
 @kbd{d @key{SPC}} (@code{calc-refresh}) to re-align right-justified or centered
@@ -13933,10 +14094,10 @@ One slight ambiguity of Big notation is that
 @end example
 
 @noindent
-can represent either the negative rational number @cite{-3:4}, or the
+can represent either the negative rational number @expr{-3:4}, or the
 actual expression @samp{-(3/4)}; but the latter formula would normally
 never be displayed because it would immediately be evaluated to
-@cite{-3:4} or @cite{-0.75}, so this ambiguity is not a problem in
+@expr{-3:4} or @expr{-0.75}, so this ambiguity is not a problem in
 typical use.
 
 Non-decimal numbers are displayed with subscripts.  Thus there is no
@@ -14061,7 +14222,7 @@ and displayed in @TeX{} notation, as in @samp{\sin\left( a \over b \right)}.
 Math formulas are usually enclosed by @samp{$ $} signs in @TeX{}; these
 should be omitted when interfacing with Calc.  To Calc, the @samp{$} sign
 has the same meaning it always does in algebraic formulas (a reference to
-an existing entry on the stack).@refill
+an existing entry on the stack).
 
 Complex numbers are displayed as in @samp{3 + 4i}.  Fractions and
 quotients are written using @code{\over};
@@ -14073,7 +14234,7 @@ ceiling functions are written with @code{\lfloor}, @code{\rfloor}, etc.
 The words @code{\left} and @code{\right} are ignored when reading
 formulas in @TeX{} mode.  Both @code{inf} and @code{uinf} are written
 as @code{\infty}; when read, @code{\infty} always translates to
-@code{inf}.@refill
+@code{inf}.
 
 Function calls are written the usual way, with the function name followed
 by the arguments in parentheses.  However, functions for which @TeX{} has
@@ -14081,9 +14242,11 @@ special names (like @code{\sin}) will use curly braces instead of
 parentheses for very simple arguments.  During input, curly braces and
 parentheses work equally well for grouping, but when the document is
 formatted the curly braces will be invisible.  Thus the printed result is
-@c{$\sin{2 x}$}
-@cite{sin 2x} but @c{$\sin(2 + x)$}
-@cite{sin(2 + x)}.
+@texline @tmath{\sin{2 x}}
+@infoline @expr{sin 2x} 
+but 
+@texline @tmath{\sin(2 + x)}.
+@infoline @expr{sin(2 + x)}.
 
 Function and variable names not treated specially by @TeX{} are simply
 written out as-is, which will cause them to come out in italic letters
@@ -14244,7 +14407,6 @@ sin(a^2 / b_i)
 @end group
 @end example
 @tex
-\let\rm\goodrm
 $$ \sin\left( a^2 \over b_i \right) $$
 @end tex
 @sp 1
@@ -14282,7 +14444,7 @@ $$ [|a|, \left| a \over b \right|,
 @end group
 @end example
 @tex
-\turnoffactive\let\rm\goodrm
+\turnoffactive
 $$ [\sin{a}, \sin{2 a}, \sin(2 + a), \sin\left( {a \over b} \right)] $$
 @end tex
 @sp 2
@@ -14300,7 +14462,6 @@ First with plain @kbd{d T}, then with @kbd{C-u d T}, then finally with
 @end group
 @end example
 @tex
-\let\rm\goodrm
 $$ [f(a), foo(bar), \sin{\pi}] $$
 $$ [f(a), \hbox{foo}(\hbox{bar}), \sin{\pi}] $$
 $$ [f(a), \tilde F(\hbox{bar}), \sin{\pi}] $$
@@ -14453,7 +14614,7 @@ written @code{Pi}, @code{E}, @code{I}, @code{GoldenRatio}, @code{EulerGamma},
 Mathematica mode.
 Non-decimal numbers are written, e.g., @samp{16^^7fff}.  Floating-point
 numbers in scientific notation are written @samp{1.23*10.^3}.
-Subscripts use double square brackets: @samp{a[[i]]}.@refill
+Subscripts use double square brackets: @samp{a[[i]]}.
 
 @node Maple Language Mode, Compositions, Mathematica Language Mode, Language Modes
 @subsection Maple Language Mode
@@ -14594,9 +14755,9 @@ mod    400
 =>      40
 @end example
 
-The general rule is that if an operator with precedence @cite{n}
-occurs as an argument to an operator with precedence @cite{m}, then
-the argument is enclosed in parentheses if @cite{n < m}.  Top-level
+The general rule is that if an operator with precedence @expr{n}
+occurs as an argument to an operator with precedence @expr{m}, then
+the argument is enclosed in parentheses if @expr{n < m}.  Top-level
 expressions and expressions which are function arguments, vector
 components, etc., are formatted with precedence zero (so that they
 normally never get additional parentheses).
@@ -15579,8 +15740,10 @@ Command is @kbd{m p}.
 
 @item
 Matrix/scalar mode.  Default value is @i{-1}.  Value is 0 for scalar
-mode, @i{-2} for matrix mode, or @var{N} for @c{$N\times N$}
-@var{N}x@var{N} matrix mode.  Command is @kbd{m v}.
+mode, @i{-2} for matrix mode, or @var{N} for 
+@texline @tmath{N\times N}
+@infoline @var{N}x@var{N} 
+matrix mode.  Command is @kbd{m v}.
 
 @item
 Simplification mode.  Default is 1.  Value is @i{-1} for off (@kbd{m O}),
@@ -15906,9 +16069,9 @@ error form to a plain symbolic formula (as in @samp{(a +/- b) + c}) will not
 work, for the same reasons just mentioned for vectors.  Instead you must
 write @samp{(a +/- b) + (c +/- 0)}.
 
-If both arguments of @kbd{+} are modulo forms with equal values of @cite{M},
+If both arguments of @kbd{+} are modulo forms with equal values of @expr{M},
 or if one argument is a modulo form and the other a plain number, the
-result is a modulo form which represents the sum, modulo @cite{M}, of
+result is a modulo form which represents the sum, modulo @expr{M}, of
 the two values.
 
 If both arguments of @kbd{+} are intervals, the result is an interval
@@ -15964,19 +16127,19 @@ whereas @w{@samp{[-2 ..@: 3] ^ 2}} is @samp{[0 ..@: 9]}.
 @end ignore
 @tindex /
 The @kbd{/} (@code{calc-divide}) command divides two numbers.  When
-dividing a scalar @cite{B} by a square matrix @cite{A}, the computation
-performed is @cite{B} times the inverse of @cite{A}.  This also occurs
-if @cite{B} is itself a vector or matrix, in which case the effect is
-to solve the set of linear equations represented by @cite{B}.  If @cite{B}
-is a matrix with the same number of rows as @cite{A}, or a plain vector
+dividing a scalar @expr{B} by a square matrix @expr{A}, the computation
+performed is @expr{B} times the inverse of @expr{A}.  This also occurs
+if @expr{B} is itself a vector or matrix, in which case the effect is
+to solve the set of linear equations represented by @expr{B}.  If @expr{B}
+is a matrix with the same number of rows as @expr{A}, or a plain vector
 (which is interpreted here as a column vector), then the equation
-@cite{A X = B} is solved for the vector or matrix @cite{X}.  Otherwise,
-if @cite{B} is a non-square matrix with the same number of @emph{columns}
-as @cite{A}, the equation @cite{X A = B} is solved.  If you wish a vector
-@cite{B} to be interpreted as a row vector to be solved as @cite{X A = B},
+@expr{A X = B} is solved for the vector or matrix @expr{X}.  Otherwise,
+if @expr{B} is a non-square matrix with the same number of @emph{columns}
+as @expr{A}, the equation @expr{X A = B} is solved.  If you wish a vector
+@expr{B} to be interpreted as a row vector to be solved as @expr{X A = B},
 make it into a one-row matrix with @kbd{C-u 1 v p} first.  To force a
-left-handed solution with a square matrix @cite{B}, transpose @cite{A} and
-@cite{B} before dividing, then transpose the result.
+left-handed solution with a square matrix @expr{B}, transpose @expr{A} and
+@expr{B} before dividing, then transpose the result.
 
 HMS forms can be divided by real numbers or by other HMS forms.  Error
 forms can be divided in any combination of ways.  Modulo forms where both
@@ -16026,10 +16189,10 @@ operation when the arguments are integers, it avoids problems that
 @tindex %
 The @kbd{%} (@code{calc-mod}) command performs a ``modulo'' (or ``remainder'')
 operation.  Mathematically, @samp{a%b = a - (a\b)*b}, and is defined
-for all real numbers @cite{a} and @cite{b} (except @cite{b=0}).  For
-positive @cite{b}, the result will always be between 0 (inclusive) and
-@cite{b} (exclusive).  Modulo does not work for HMS forms and error forms.
-If @cite{a} is a modulo form, its modulo is changed to @cite{b}, which
+for all real numbers @expr{a} and @expr{b} (except @expr{b=0}).  For
+positive @expr{b}, the result will always be between 0 (inclusive) and
+@expr{b} (exclusive).  Modulo does not work for HMS forms and error forms.
+If @expr{a} is a modulo form, its modulo is changed to @expr{b}, which
 must be positive real number.
 
 @kindex :
@@ -16083,7 +16246,7 @@ zero depending on the sign of @samp{a}.
 @tindex inv
 @cindex Reciprocal
 The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the
-reciprocal of a number, i.e., @cite{1 / x}.  Operating on a square
+reciprocal of a number, i.e., @expr{1 / x}.  Operating on a square
 matrix, it computes the inverse of that matrix.
 
 @kindex Q
@@ -16098,8 +16261,8 @@ complex number whose form is determined by the current Polar Mode.
 @tindex hypot
 The @kbd{f h} (@code{calc-hypot}) [@code{hypot}] command computes the square
 root of the sum of the squares of two numbers.  That is, @samp{hypot(a,b)}
-is the length of the hypotenuse of a right triangle with sides @cite{a}
-and @cite{b}.  If the arguments are complex numbers, their squared
+is the length of the hypotenuse of a right triangle with sides @expr{a}
+and @expr{b}.  If the arguments are complex numbers, their squared
 magnitudes are used.
 
 @kindex f Q
@@ -16124,7 +16287,7 @@ The @kbd{f n} (@code{calc-min}) [@code{min}] and @kbd{f x} (@code{calc-max})
 respectively.  These commands also work on HMS forms, date forms,
 intervals, and infinities.  (In algebraic expressions, these functions
 take any number of arguments and return the maximum or minimum among
-all the arguments.)@refill
+all the arguments.)
 
 @kindex f M
 @kindex f X
@@ -16133,17 +16296,18 @@ all the arguments.)@refill
 @pindex calc-xpon-part
 @tindex xpon
 The @kbd{f M} (@code{calc-mant-part}) [@code{mant}] function extracts
-the ``mantissa'' part @cite{m} of its floating-point argument; @kbd{f X}
+the ``mantissa'' part @expr{m} of its floating-point argument; @kbd{f X}
 (@code{calc-xpon-part}) [@code{xpon}] extracts the ``exponent'' part
-@cite{e}.  The original number is equal to @c{$m \times 10^e$}
-@cite{m * 10^e},
-where @cite{m} is in the interval @samp{[1.0 ..@: 10.0)} except that
-@cite{m=e=0} if the original number is zero.  For integers
+@expr{e}.  The original number is equal to 
+@texline @tmath{m \times 10^e},
+@infoline @expr{m * 10^e},
+where @expr{m} is in the interval @samp{[1.0 ..@: 10.0)} except that
+@expr{m=e=0} if the original number is zero.  For integers
 and fractions, @code{mant} returns the number unchanged and @code{xpon}
 returns zero.  The @kbd{v u} (@code{calc-unpack}) command can also be
 used to ``unpack'' a floating-point number; this produces an integer
 mantissa and exponent, with the constraint that the mantissa is not
-a multiple of ten (again except for the @cite{m=e=0} case).@refill
+a multiple of ten (again except for the @expr{m=e=0} case).
 
 @kindex f S
 @pindex calc-scale-float
@@ -16152,7 +16316,7 @@ The @kbd{f S} (@code{calc-scale-float}) [@code{scf}] function scales a number
 by a given power of ten.  Thus, @samp{scf(mant(x), xpon(x)) = x} for any
 real @samp{x}.  The second argument must be an integer, but the first
 may actually be any numeric value.  For example, @samp{scf(5,-2) = 0.05}
-or @samp{1:20} depending on the current Fraction Mode.@refill
+or @samp{1:20} depending on the current Fraction Mode.
 
 @kindex f [
 @kindex f ]
@@ -16167,10 +16331,12 @@ floating-point numbers, the change is by one unit in the last place.
 For example, incrementing @samp{12.3456} when the current precision
 is 6 digits yields @samp{12.3457}.  If the current precision had been
 8 digits, the result would have been @samp{12.345601}.  Incrementing
-@samp{0.0} produces @c{$10^{-p}$}
-@cite{10^-p}, where @cite{p} is the current
+@samp{0.0} produces 
+@texline @tmath{10^{-p}},
+@infoline @expr{10^-p}, 
+where @expr{p} is the current
 precision.  These operations are defined only on integers and floats.
-With numeric prefix arguments, they change the number by @cite{n} units.
+With numeric prefix arguments, they change the number by @expr{n} units.
 
 Note that incrementing followed by decrementing, or vice-versa, will
 almost but not quite always cancel out.  Suppose the precision is
@@ -16207,7 +16373,7 @@ expressed as an integer-valued floating-point number.
 The @kbd{F} (@code{calc-floor}) [@code{floor} or @code{ffloor}] command
 truncates a real number to the next lower integer, i.e., toward minus
 infinity.  Thus @kbd{3.6 F} produces 3, but @kbd{_3.6 F} produces
-@i{-4}.@refill
+@i{-4}.
 
 @kindex I F
 @pindex calc-ceiling
@@ -16219,7 +16385,7 @@ infinity.  Thus @kbd{3.6 F} produces 3, but @kbd{_3.6 F} produces
 @kindex H I F
 The @kbd{I F} (@code{calc-ceiling}) [@code{ceil} or @code{fceil}]
 command truncates toward positive infinity.  Thus @kbd{3.6 I F} produces
-4, and @kbd{_3.6 I F} produces @i{-3}.@refill
+4, and @kbd{_3.6 I F} produces @i{-3}.
 
 @kindex R
 @pindex calc-round
@@ -16233,7 +16399,7 @@ The @kbd{R} (@code{calc-round}) [@code{round} or @code{fround}] command
 rounds to the nearest integer.  When the fractional part is .5 exactly,
 this command rounds away from zero.  (All other rounding in the
 Calculator uses this convention as well.)  Thus @kbd{3.5 R} produces 4
-but @kbd{3.4 R} produces 3; @kbd{_3.5 R} produces @i{-4}.@refill
+but @kbd{3.4 R} produces 3; @kbd{_3.5 R} produces @i{-4}.
 
 @kindex I R
 @pindex calc-trunc
@@ -16246,7 +16412,7 @@ but @kbd{3.4 R} produces 3; @kbd{_3.5 R} produces @i{-4}.@refill
 The @kbd{I R} (@code{calc-trunc}) [@code{trunc} or @code{ftrunc}]
 command truncates toward zero.  In other words, it ``chops off''
 everything after the decimal point.  Thus @kbd{3.6 I R} produces 3 and
-@kbd{_3.6 I R} produces @i{-3}.@refill
+@kbd{_3.6 I R} produces @i{-3}.
 
 These functions may not be applied meaningfully to error forms, but they
 do work for intervals.  As a convenience, applying @code{floor} to a
@@ -16284,7 +16450,7 @@ subtle point here is that the number being fed to @code{rounde} will
 already have been rounded to the current precision before @code{rounde}
 begins.  For example, @samp{rounde(2.500001)} with a current precision
 of 6 will incorrectly, or at least surprisingly, yield 2 because the
-argument will first have been rounded down to @cite{2.5} (which
+argument will first have been rounded down to @expr{2.5} (which
 @code{rounde} sees as an exact tie between 2 and 3).
 
 Each of these functions, when written in algebraic formulas, allows
@@ -16298,7 +16464,7 @@ no second argument at all.
 @cindex Fractional part of a number
 To compute the fractional part of a number (i.e., the amount which, when
 added to `@t{floor(}@var{n}@t{)}', will produce @var{n}) just take @var{n}
-modulo 1 using the @code{%} command.@refill
+modulo 1 using the @code{%} command.
 
 Note also the @kbd{\} (integer quotient), @kbd{f I} (integer logarithm),
 and @kbd{f Q} (integer square root) commands, which are analogous to
@@ -16313,8 +16479,8 @@ arguments and return the result rounded down to an integer.
 @pindex calc-conj
 @tindex conj
 The @kbd{J} (@code{calc-conj}) [@code{conj}] command computes the
-complex conjugate of a number.  For complex number @cite{a+bi}, the
-complex conjugate is @cite{a-bi}.  If the argument is a real number,
+complex conjugate of a number.  For complex number @expr{a+bi}, the
+complex conjugate is @expr{a-bi}.  If the argument is a real number,
 this command leaves it the same.  If the argument is a vector or matrix,
 this command replaces each element by its complex conjugate.
 
@@ -16324,15 +16490,15 @@ this command replaces each element by its complex conjugate.
 The @kbd{G} (@code{calc-argument}) [@code{arg}] command computes the
 ``argument'' or polar angle of a complex number.  For a number in polar
 notation, this is simply the second component of the pair
-`@t{(}@var{r}@t{;}@c{$\theta$}
-@var{theta}@t{)}'.
+@texline `@t{(}@var{r}@t{;}@tmath{\theta}@t{)}'.
+@infoline `@t{(}@var{r}@t{;}@var{theta}@t{)}'.
 The result is expressed according to the current angular mode and will
 be in the range @i{-180} degrees (exclusive) to @i{+180} degrees
-(inclusive), or the equivalent range in radians.@refill
+(inclusive), or the equivalent range in radians.
 
 @pindex calc-imaginary
 The @code{calc-imaginary} command multiplies the number on the
-top of the stack by the imaginary number @cite{i = (0,1)}.  This
+top of the stack by the imaginary number @expr{i = (0,1)}.  This
 command is not normally bound to a key in Calc, but it is available
 on the @key{IMAG} button in Keypad Mode.
 
@@ -16342,14 +16508,14 @@ on the @key{IMAG} button in Keypad Mode.
 The @kbd{f r} (@code{calc-re}) [@code{re}] command replaces a complex number
 by its real part.  This command has no effect on real numbers.  (As an
 added convenience, @code{re} applied to a modulo form extracts
-the value part.)@refill
+the value part.)
 
 @kindex f i
 @pindex calc-im
 @tindex im
 The @kbd{f i} (@code{calc-im}) [@code{im}] command replaces a complex number
 by its imaginary part; real numbers are converted to zero.  With a vector
-or matrix argument, these functions operate element-wise.@refill
+or matrix argument, these functions operate element-wise.
 
 @ignore
 @mindex v p
@@ -16383,13 +16549,13 @@ to another; they are two-key sequences beginning with the letter @kbd{c}.
 @tindex pfloat
 The @kbd{c f} (@code{calc-float}) [@code{pfloat}] command converts the
 number on the top of the stack to floating-point form.  For example,
-@cite{23} is converted to @cite{23.0}, @cite{3:2} is converted to
-@cite{1.5}, and @cite{2.3} is left the same.  If the value is a composite
+@expr{23} is converted to @expr{23.0}, @expr{3:2} is converted to
+@expr{1.5}, and @expr{2.3} is left the same.  If the value is a composite
 object such as a complex number or vector, each of the components is
 converted to floating-point.  If the value is a formula, all numbers
 in the formula are converted to floating-point.  Note that depending
 on the current floating-point precision, conversion to floating-point
-format may lose information.@refill
+format may lose information.
 
 As a special exception, integers which appear as powers or subscripts
 are not floated by @kbd{c f}.  If you really want to float a power,
@@ -16442,7 +16608,7 @@ which is analogous to @kbd{H c f} discussed above.
 The @kbd{c d} (@code{calc-to-degrees}) [@code{deg}] command converts a
 number into degrees form.  The value on the top of the stack may be an
 HMS form (interpreted as degrees-minutes-seconds), or a real number which
-will be interpreted in radians regardless of the current angular mode.@refill
+will be interpreted in radians regardless of the current angular mode.
 
 @kindex c r
 @pindex calc-to-radians
@@ -16475,7 +16641,7 @@ This command is equivalent to the @code{rect} or @code{polar}
 functions in algebraic formulas, depending on the direction of
 conversion.  (It uses @code{polar}, except that if the argument is
 already a polar complex number, it uses @code{rect} instead.  The
-@kbd{I c p} command always uses @code{rect}.)@refill
+@kbd{I c p} command always uses @code{rect}.)
 
 @kindex c c
 @pindex calc-clean
@@ -16488,7 +16654,7 @@ are normalized.  (Note that results will be undesirable if the current
 angular mode is different from the one under which the number was
 produced!)  Integers and fractions are generally unaffected by this
 operation.  Vectors and formulas are cleaned by cleaning each component
-number (i.e., pervasively).@refill
+number (i.e., pervasively).
 
 If the simplification mode is set below the default level, it is raised
 to the default level for the purposes of this command.  Thus, @kbd{c c}
@@ -16809,7 +16975,7 @@ command for this function; use @kbd{C-u 12 t I} instead.
 
 There is no @code{newday} function at all because @kbd{F} [@code{floor}]
 serves this purpose.  Similarly, instead of @code{incday} and
-@code{incweek} simply use @cite{d + n} or @cite{d + 7 n}.
+@code{incweek} simply use @expr{d + n} or @expr{d + 7 n}.
 
 @xref{Basic Arithmetic}, for the @kbd{f ]} [@code{incr}] command
 which can adjust a date/time form by a certain number of seconds.
@@ -16870,12 +17036,12 @@ considered to be a holiday.
 
 @item
 Any Calc formula which evaluates to one of the above three things.
-If the formula involves the variable @cite{y}, it stands for a
-yearly repeating holiday; @cite{y} will take on various year
+If the formula involves the variable @expr{y}, it stands for a
+yearly repeating holiday; @expr{y} will take on various year
 numbers like 1992.  For example, @samp{date(y, 12, 25)} specifies
 Christmas day, and @samp{newweek(date(y, 11, 7), 4) + 21} specifies
 Thanksgiving (which is held on the fourth Thursday of November).
-If the formula involves the variable @cite{m}, that variable
+If the formula involves the variable @expr{m}, that variable
 takes on month numbers from 1 to 12:  @samp{date(y, m, 15)} is
 a holiday that takes place on the 15th of every month.
 
@@ -17290,7 +17456,7 @@ decrease:  @kbd{50 @key{RET} 40 b %} produces @samp{-20%}, since 40 is
 20% smaller than 50.  (The answers are different in magnitude
 because, in the first case, we're increasing by 25% of 40, but
 in the second case, we're decreasing by 20% of 50.)  The effect
-of @kbd{40 @key{RET} 50 b %} is to compute @cite{(50-40)/40}, converting
+of @kbd{40 @key{RET} 50 b %} is to compute @expr{(50-40)/40}, converting
 the answer to percentage form as if by @kbd{c %}.
 
 @node Future Value, Present Value, Percentages, Financial Functions
@@ -17334,7 +17500,7 @@ The algebraic functions @code{fv} and @code{fvb} accept an optional
 fourth argument, which is used as an initial lump sum in the sense
 of @code{fvl}.  In other words, @code{fv(@var{rate}, @var{n},
 @var{payment}, @var{initial}) = fv(@var{rate}, @var{n}, @var{payment})
-+ fvl(@var{rate}, @var{n}, @var{initial})}.@refill
++ fvl(@var{rate}, @var{n}, @var{initial})}.
 
 To illustrate the relationships between these functions, we could
 do the @code{fvb} calculation ``by hand'' using @code{fvl}.  The
@@ -17352,7 +17518,7 @@ are now at the ends of the periods.  The end of one year is the same
 as the beginning of the next, so what this really means is that we've
 lost the payment at year zero (which contributed $1300.78), but we're
 now counting the payment at year five (which, since it didn't have
-a chance to earn interest, counts as $1000).  Indeed, @cite{5569.96 =
+a chance to earn interest, counts as $1000).  Indeed, @expr{5569.96 =
 5870.73 - 1300.78 + 1000} (give or take a bit of roundoff error).
 
 @node Present Value, Related Financial Functions, Future Value, Financial Functions
@@ -17382,7 +17548,7 @@ considering, which is @code{fv(9%, 4, 2000) = 9146.26}, with
 the return from leaving the money in the bank, which is
 @code{fvl(9%, 4, @var{x})} where @var{x} is the amount of money
 you would have to put up in advance.  The @code{pv} function
-finds the break-even point, @cite{x = 6479.44}, at which
+finds the break-even point, @expr{x = 6479.44}, at which
 @code{fvl(9%, 4, 6479.44)} is also equal to 9146.26.  This is
 the largest amount you should be willing to invest.
 
@@ -17431,7 +17597,7 @@ vector statistical functions like @code{vsum}.
 payment arguments, each either a vector or a plain number, all these
 values are collected left-to-right into the complete list of payments.
 A numeric prefix argument on the @kbd{b N} command says how many
-payment values or vectors to take from the stack.@refill
+payment values or vectors to take from the stack.
 
 @kindex I b N
 @tindex npvb
@@ -17453,7 +17619,7 @@ The @kbd{b M} (@code{calc-fin-pmt}) [@code{pmt}] command computes
 the amount of periodic payment necessary to amortize a loan.
 Thus @code{pmt(@var{rate}, @var{n}, @var{amount})} equals the
 value of @var{payment} such that @code{pv(@var{rate}, @var{n},
-@var{payment}) = @var{amount}}.@refill
+@var{payment}) = @var{amount}}.
 
 @kindex I b M
 @tindex pmtb
@@ -17475,14 +17641,14 @@ Thus @code{nper(@var{rate}, @var{payment}, @var{amount})} equals
 the value of @var{n} such that @code{pv(@var{rate}, @var{n},
 @var{payment}) = @var{amount}}.  If @var{payment} is too small
 ever to amortize a loan for @var{amount} at interest rate @var{rate},
-the @code{nper} function is left in symbolic form.@refill
+the @code{nper} function is left in symbolic form.
 
 @kindex I b #
 @tindex nperb
 The @kbd{I b #} [@code{nperb}] command does the same computation
 but using @code{pvb} instead of @code{pv}.  You can give a fourth
 lump-sum argument to these functions, but the computation will be
-rather slow in the four-argument case.@refill
+rather slow in the four-argument case.
 
 @kindex H b #
 @tindex nperl
@@ -17490,7 +17656,7 @@ The @kbd{H b #} [@code{nperl}] command does the same computation
 using @code{pvl}.  By exchanging @var{payment} and @var{amount} you
 can also get the solution for @code{fvl}.  For example,
 @code{nperl(8%, 2000, 1000) = 9.006}, so if you place $1000 in a
-bank account earning 8%, it will take nine years to grow to $2000.@refill
+bank account earning 8%, it will take nine years to grow to $2000.
 
 @kindex b T
 @pindex calc-fin-rate
@@ -17499,7 +17665,7 @@ The @kbd{b T} (@code{calc-fin-rate}) [@code{rate}] command computes
 the rate of return on an investment.  This is also an inverse of @code{pv}:
 @code{rate(@var{n}, @var{payment}, @var{amount})} computes the value of
 @var{rate} such that @code{pv(@var{rate}, @var{n}, @var{payment}) =
-@var{amount}}.  The result is expressed as a formula like @samp{6.3%}.@refill
+@var{amount}}.  The result is expressed as a formula like @samp{6.3%}.
 
 @kindex I b T
 @kindex H b T
@@ -17511,7 +17677,7 @@ in place of @code{pv}.  Also, @code{rate} and @code{rateb} can
 accept an optional fourth argument just like @code{pv} and @code{pvb}.
 To redo the above example from a different perspective,
 @code{ratel(9, 2000, 1000) = 8.00597%}, which says you will need an
-interest rate of 8% in order to double your account in nine years.@refill
+interest rate of 8% in order to double your account in nine years.
 
 @kindex b I
 @pindex calc-fin-irr
@@ -17573,7 +17739,7 @@ For symmetry, the @code{sln} function will accept a @var{period}
 parameter as well, although it will ignore its value except that the
 return value will as usual be zero if @var{period} is out of range.
 
-For example, pushing the vector @cite{[1,2,3,4,5]} (perhaps with @kbd{v x 5})
+For example, pushing the vector @expr{[1,2,3,4,5]} (perhaps with @kbd{v x 5})
 and then mapping @kbd{V M ' [sln(12000,2000,5,$), syd(12000,2000,5,$),
 ddb(12000,2000,5,$)] @key{RET}} produces a matrix that allows us to compare
 the three depreciation methods:
@@ -17594,7 +17760,7 @@ We see that @code{sln} depreciates by the same amount each year,
 @kbd{syd} depreciates more at the beginning and less at the end,
 and @kbd{ddb} weights the depreciation even more toward the beginning.
 
-Summing columns with @kbd{V R : +} yields @cite{[10000, 10000, 10000]};
+Summing columns with @kbd{V R : +} yields @expr{[10000, 10000, 10000]};
 the total depreciation in any method is (by definition) the
 difference between the cost and the salvage value.
 
@@ -17716,7 +17882,7 @@ $$ \code{ddb}(c, s, l, p) = { 2 (c - \hbox{depreciation so far}) \over l } $$
 @end tex
 
 @noindent
-In @code{pmt} and @code{pmtb}, @cite{x=0} if omitted.
+In @code{pmt} and @code{pmtb}, @expr{x=0} if omitted.
 
 These functions accept any numeric objects, including error forms,
 intervals, and even (though not very usefully) complex numbers.  The
@@ -17776,31 +17942,34 @@ commands, respectively).  You may also wish to enable display of leading
 zeros with @kbd{d z}.  @xref{Radix Modes}.
 
 @cindex Word size for binary operations
-The Calculator maintains a current @dfn{word size} @cite{w}, an
+The Calculator maintains a current @dfn{word size} @expr{w}, an
 arbitrary positive or negative integer.  For a positive word size, all
-of the binary operations described here operate modulo @cite{2^w}.  In
+of the binary operations described here operate modulo @expr{2^w}.  In
 particular, negative arguments are converted to positive integers modulo
-@cite{2^w} by all binary functions.@refill
+@expr{2^w} by all binary functions.
 
 If the word size is negative, binary operations produce 2's complement
-integers from @c{$-2^{-w-1}$}
-@cite{-(2^(-w-1))} to @c{$2^{-w-1}-1$}
-@cite{2^(-w-1)-1} inclusive.  Either
-mode accepts inputs in any range; the sign of @cite{w} affects only
-the results produced.
+integers from 
+@texline @tmath{-2^{-w-1}}
+@infoline @expr{-(2^(-w-1))} 
+to 
+@texline @tmath{2^{-w-1}-1}
+@infoline @expr{2^(-w-1)-1} 
+inclusive.  Either mode accepts inputs in any range; the sign of
+@expr{w} affects only the results produced.
 
 @kindex b c
 @pindex calc-clip
 @tindex clip
 The @kbd{b c} (@code{calc-clip})
 [@code{clip}] command can be used to clip a number by reducing it modulo
-@cite{2^w}.  The commands described in this chapter automatically clip
+@expr{2^w}.  The commands described in this chapter automatically clip
 their results to the current word size.  Note that other operations like
 addition do not use the current word size, since integer addition
 generally is not ``binary.''  (However, @pxref{Simplification Modes},
 @code{calc-bin-simplify-mode}.)  For example, with a word size of 8
 bits @kbd{b c} converts a number to the range 0 to 255; with a word
-size of @i{-8} @kbd{b c} converts to the range @i{-128} to 127.@refill
+size of @i{-8} @kbd{b c} converts to the range @i{-128} to 127.
 
 @kindex b w
 @pindex calc-word-size
@@ -17820,7 +17989,7 @@ will be used, but when @samp{and(a,b,-8)} is evaluated, a word size of
 in symbolic form unless the all of its argument(s) are integers or
 integer-valued floats.
 
-If either or both arguments are modulo forms for which @cite{M} is a
+If either or both arguments are modulo forms for which @expr{M} is a
 power of two, that power of two is taken as the word size unless a
 numeric prefix argument overrides it.  The current word size is never
 consulted when modulo-power-of-two forms are involved.
@@ -17830,7 +17999,7 @@ consulted when modulo-power-of-two forms are involved.
 @tindex and
 The @kbd{b a} (@code{calc-and}) [@code{and}] command computes the bitwise
 AND of the two numbers on the top of the stack.  In other words, for each
-of the @cite{w} binary digits of the two numbers (pairwise), the corresponding
+of the @expr{w} binary digits of the two numbers (pairwise), the corresponding
 bit of the result is 1 if and only if both input bits are 1:
 @samp{and(2#1100, 2#1010) = 2#1000}.
 
@@ -17965,17 +18134,20 @@ flag keys must be used to get some of these functions from the keyboard.
 @cindex Phi, golden ratio
 @cindex Golden ratio
 One miscellaneous command is shift-@kbd{P} (@code{calc-pi}), which pushes
-the value of @c{$\pi$}
-@cite{pi} (at the current precision) onto the stack.  With the
-Hyperbolic flag, it pushes the value @cite{e}, the base of natural logarithms.
-With the Inverse flag, it pushes Euler's constant @c{$\gamma$}
-@cite{gamma} (about 0.5772).  With both Inverse and Hyperbolic, it
-pushes the ``golden ratio'' @c{$\phi$}
-@cite{phi} (about 1.618).  (At present, Euler's constant is not available
+the value of @cpi{} (at the current precision) onto the stack.  With the
+Hyperbolic flag, it pushes the value @expr{e}, the base of natural logarithms.
+With the Inverse flag, it pushes Euler's constant 
+@texline @tmath{\gamma}
+@infoline @expr{gamma} 
+(about 0.5772).  With both Inverse and Hyperbolic, it
+pushes the ``golden ratio'' 
+@texline @tmath{\phi}
+@infoline @expr{phi} 
+(about 1.618).  (At present, Euler's constant is not available
 to unlimited precision; Calc knows only the first 100 digits.)
 In Symbolic mode, these commands push the
 actual variables @samp{pi}, @samp{e}, @samp{gamma}, and @samp{phi},
-respectively, instead of their values; @pxref{Symbolic Mode}.@refill
+respectively, instead of their values; @pxref{Symbolic Mode}.
 
 @ignore
 @mindex Q
@@ -18027,7 +18199,7 @@ this is redundant with the @kbd{E} command.
 @end ignore
 @kindex I L
 The shift-@kbd{E} (@code{calc-exp}) [@code{exp}] command computes the
-exponential, i.e., @cite{e} raised to the power of the number on the stack.
+exponential, i.e., @expr{e} raised to the power of the number on the stack.
 The meanings of the Inverse and Hyperbolic flags follow from those for
 the @code{calc-ln} command.
 
@@ -18048,8 +18220,9 @@ The @kbd{H L} (@code{calc-log10}) [@code{log10}] command computes the common
 (base-10) logarithm of a number.  (With the Inverse flag [@code{exp10}],
 it raises ten to a given power.)  Note that the common logarithm of a
 complex number is computed by taking the natural logarithm and dividing
-by @c{$\ln10$}
-@cite{ln(10)}.
+by 
+@texline @tmath{\ln10}.
+@infoline @expr{ln(10)}.
 
 @kindex B
 @kindex I B
@@ -18058,9 +18231,10 @@ by @c{$\ln10$}
 @tindex alog
 The @kbd{B} (@code{calc-log}) [@code{log}] command computes a logarithm
 to any base.  For example, @kbd{1024 @key{RET} 2 B} produces 10, since
-@c{$2^{10} = 1024$}
-@cite{2^10 = 1024}.  In certain cases like @samp{log(3,9)}, the result
-will be either @cite{1:2} or @cite{0.5} depending on the current Fraction
+@texline @tmath{2^{10} = 1024}.
+@infoline @expr{2^10 = 1024}.  
+In certain cases like @samp{log(3,9)}, the result
+will be either @expr{1:2} or @expr{0.5} depending on the current Fraction
 Mode setting.  With the Inverse flag [@code{alog}], this command is
 similar to @kbd{^} except that the order of the arguments is reversed.
 
@@ -18070,7 +18244,7 @@ similar to @kbd{^} except that the order of the arguments is reversed.
 The @kbd{f I} (@code{calc-ilog}) [@code{ilog}] command computes the
 integer logarithm of a number to any base.  The number and the base must
 themselves be positive integers.  This is the true logarithm, rounded
-down to an integer.  Thus @kbd{ilog(x,10)} is 3 for all @cite{x} in the
+down to an integer.  Thus @kbd{ilog(x,10)} is 3 for all @expr{x} in the
 range from 1000 to 9999.  If both arguments are positive integers, exact
 integer arithmetic is used; otherwise, this is equivalent to
 @samp{floor(log(x,b))}.
@@ -18079,19 +18253,21 @@ integer arithmetic is used; otherwise, this is equivalent to
 @pindex calc-expm1
 @tindex expm1
 The @kbd{f E} (@code{calc-expm1}) [@code{expm1}] command computes
-@c{$e^x - 1$}
-@cite{exp(x)-1}, but using an algorithm that produces a more accurate
-answer when the result is close to zero, i.e., when @c{$e^x$}
-@cite{exp(x)} is close
-to one.
+@texline @tmath{e^x - 1},
+@infoline @expr{exp(x)-1}, 
+but using an algorithm that produces a more accurate
+answer when the result is close to zero, i.e., when 
+@texline @tmath{e^x}
+@infoline @expr{exp(x)} 
+is close to one.
 
 @kindex f L
 @pindex calc-lnp1
 @tindex lnp1
 The @kbd{f L} (@code{calc-lnp1}) [@code{lnp1}] command computes
-@c{$\ln(x+1)$}
-@cite{ln(x+1)}, producing a more accurate answer when @cite{x} is close
-to zero.
+@texline @tmath{\ln(x+1)},
+@infoline @expr{ln(x+1)}, 
+producing a more accurate answer when @expr{x} is close to zero.
 
 @node Trigonometric and Hyperbolic Functions, Advanced Math Functions, Logarithmic Functions, Scientific Functions
 @section Trigonometric/Hyperbolic Functions
@@ -18104,7 +18280,7 @@ The shift-@kbd{S} (@code{calc-sin}) [@code{sin}] command computes the sine
 of an angle or complex number.  If the input is an HMS form, it is interpreted
 as degrees-minutes-seconds; otherwise, the input is interpreted according
 to the current angular mode.  It is best to use Radians mode when operating
-on complex numbers.@refill
+on complex numbers.
 
 Calc's ``units'' mechanism includes angular units like @code{deg},
 @code{rad}, and @code{grad}.  While @samp{sin(45 deg)} is not evaluated
@@ -18120,15 +18296,11 @@ mode is enabled; this example would be replaced by @samp{sqrt(2) / 2}.
 @xref{Symbolic Mode}.  Beware, this simplification occurs even if you
 have stored a different value in the variable @samp{pi}; this is one
 reason why changing built-in variables is a bad idea.  Arguments of
-the form @cite{x} plus a multiple of @c{$\pi/2$}
-@cite{pi/2} are also simplified.
-Calc includes similar formulas for @code{cos} and @code{tan}.@refill
+the form @expr{x} plus a multiple of @cpiover{2} are also simplified.
+Calc includes similar formulas for @code{cos} and @code{tan}.
 
 The @kbd{a s} command knows all angles which are integer multiples of
-@c{$\pi/12$}
-@cite{pi/12}, @c{$\pi/10$}
-@cite{pi/10}, or @c{$\pi/8$}
-@cite{pi/8} radians.  In degrees mode,
+@cpiover{12}, @cpiover{10}, or @cpiover{8} radians.  In degrees mode,
 analogous simplifications occur for integer multiples of 15 or 18
 degrees, and for arguments plus multiples of 90 degrees.
 
@@ -18253,7 +18425,7 @@ cosine of a number, returning them as a vector of the form
 @samp{[@var{cos}, @var{sin}]}.
 With the Inverse flag [@code{arcsincos}], this command takes a two-element
 vector as an argument and computes @code{arctan2} of the elements.
-(This command does not accept the Hyperbolic flag.)@refill
+(This command does not accept the Hyperbolic flag.)
 
 @node Advanced Math Functions, Branch Cuts, Trigonometric and Hyperbolic Functions, Scientific Functions
 @section Advanced Mathematical Functions
@@ -18278,8 +18450,9 @@ The @kbd{f g} (@code{calc-gamma}) [@code{gamma}] command computes the Euler
 gamma function.  For positive integer arguments, this is related to the
 factorial function:  @samp{gamma(n+1) = fact(n)}.  For general complex
 arguments the gamma function can be defined by the following definite
-integral:  @c{$\Gamma(a) = \int_0^\infty t^{a-1} e^t dt$}
-@cite{gamma(a) = integ(t^(a-1) exp(t), t, 0, inf)}.
+integral:  
+@texline @tmath{\Gamma(a) = \int_0^\infty t^{a-1} e^t dt}.
+@infoline @expr{gamma(a) = integ(t^(a-1) exp(t), t, 0, inf)}.  
 (The actual implementation uses far more efficient computational methods.)
 
 @kindex f G
@@ -18311,22 +18484,23 @@ integral:  @c{$\Gamma(a) = \int_0^\infty t^{a-1} e^t dt$}
 @tindex gammaG
 The @kbd{f G} (@code{calc-inc-gamma}) [@code{gammaP}] command computes
 the incomplete gamma function, denoted @samp{P(a,x)}.  This is defined by
-the integral, @c{$P(a,x) = \left( \int_0^x t^{a-1} e^t dt \right) / \Gamma(a)$}
-@cite{gammaP(a,x) = integ(t^(a-1) exp(t), t, 0, x) / gamma(a)}.
-This implies that @samp{gammaP(a,inf) = 1} for any @cite{a} (see the
+the integral, 
+@texline @tmath{P(a,x) = \left( \int_0^x t^{a-1} e^t dt \right) / \Gamma(a)}.
+@infoline @expr{gammaP(a,x) = integ(t^(a-1) exp(t), t, 0, x) / gamma(a)}.
+This implies that @samp{gammaP(a,inf) = 1} for any @expr{a} (see the
 definition of the normal gamma function).
 
 Several other varieties of incomplete gamma function are defined.
-The complement of @cite{P(a,x)}, called @cite{Q(a,x) = 1-P(a,x)} by
+The complement of @expr{P(a,x)}, called @expr{Q(a,x) = 1-P(a,x)} by
 some authors, is computed by the @kbd{I f G} [@code{gammaQ}] command.
 You can think of this as taking the other half of the integral, from
-@cite{x} to infinity.
+@expr{x} to infinity.
 
 @ifinfo
-The functions corresponding to the integrals that define @cite{P(a,x)}
-and @cite{Q(a,x)} but without the normalizing @cite{1/gamma(a)}
-factor are called @cite{g(a,x)} and @cite{G(a,x)}, respectively
-(where @cite{g} and @cite{G} represent the lower- and upper-case Greek
+The functions corresponding to the integrals that define @expr{P(a,x)}
+and @expr{Q(a,x)} but without the normalizing @expr{1/gamma(a)}
+factor are called @expr{g(a,x)} and @expr{G(a,x)}, respectively
+(where @expr{g} and @expr{G} represent the lower- and upper-case Greek
 letter gamma).  You can obtain these using the @kbd{H f G} [@code{gammag}]
 and @kbd{H I f G} [@code{gammaG}] commands.
 @end ifinfo
@@ -18344,10 +18518,11 @@ You can obtain these using the \kbd{H f G} [\code{gammag}] and
 @tindex beta
 The @kbd{f b} (@code{calc-beta}) [@code{beta}] command computes the
 Euler beta function, which is defined in terms of the gamma function as
-@c{$B(a,b) = \Gamma(a) \Gamma(b) / \Gamma(a+b)$}
-@cite{beta(a,b) = gamma(a) gamma(b) / gamma(a+b)}, or by
-@c{$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt$}
-@cite{beta(a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, 1)}.
+@texline @tmath{B(a,b) = \Gamma(a) \Gamma(b) / \Gamma(a+b)},
+@infoline @expr{beta(a,b) = gamma(a) gamma(b) / gamma(a+b)}, 
+or by
+@texline @tmath{B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt}.
+@infoline @expr{beta(a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, 1)}.
 
 @kindex f B
 @kindex H f B
@@ -18355,9 +18530,9 @@ Euler beta function, which is defined in terms of the gamma function as
 @tindex betaI
 @tindex betaB
 The @kbd{f B} (@code{calc-inc-beta}) [@code{betaI}] command computes
-the incomplete beta function @cite{I(x,a,b)}.  It is defined by
-@c{$I(x,a,b) = \left( \int_0^x t^{a-1} (1-t)^{b-1} dt \right) / B(a,b)$}
-@cite{betaI(x,a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, x) / beta(a,b)}.
+the incomplete beta function @expr{I(x,a,b)}.  It is defined by
+@texline @tmath{I(x,a,b) = \left( \int_0^x t^{a-1} (1-t)^{b-1} dt \right) / B(a,b)}.
+@infoline @expr{betaI(x,a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, x) / beta(a,b)}.
 Once again, the @kbd{H} (hyperbolic) prefix gives the corresponding
 un-normalized version [@code{betaB}].
 
@@ -18367,12 +18542,13 @@ un-normalized version [@code{betaB}].
 @tindex erf
 @tindex erfc
 The @kbd{f e} (@code{calc-erf}) [@code{erf}] command computes the
-error function @c{$\hbox{erf}(x) = {2 \over \sqrt{\pi}} \int_0^x e^{-t^2} dt$}
-@cite{erf(x) = 2 integ(exp(-(t^2)), t, 0, x) / sqrt(pi)}.
+error function 
+@texline @tmath{\hbox{erf}(x) = {2 \over \sqrt{\pi}} \int_0^x e^{-t^2} dt}.
+@infoline @expr{erf(x) = 2 integ(exp(-(t^2)), t, 0, x) / sqrt(pi)}.
 The complementary error function @kbd{I f e} (@code{calc-erfc}) [@code{erfc}]
 is the corresponding integral from @samp{x} to infinity; the sum
-@c{$\hbox{erf}(x) + \hbox{erfc}(x) = 1$}
-@cite{erf(x) + erfc(x) = 1}.
+@texline @tmath{\hbox{erf}(x) + \hbox{erfc}(x) = 1}.
+@infoline @expr{erf(x) + erfc(x) = 1}.
 
 @kindex f j
 @kindex f y
@@ -18384,10 +18560,10 @@ The @kbd{f j} (@code{calc-bessel-J}) [@code{besJ}] and @kbd{f y}
 (@code{calc-bessel-Y}) [@code{besY}] commands compute the Bessel
 functions of the first and second kinds, respectively.
 In @samp{besJ(n,x)} and @samp{besY(n,x)} the ``order'' parameter
-@cite{n} is often an integer, but is not required to be one.
+@expr{n} is often an integer, but is not required to be one.
 Calc's implementation of the Bessel functions currently limits the
 precision to 8 digits, and may not be exact even to that precision.
-Use with care!@refill
+Use with care!
 
 @node Branch Cuts, Random Numbers, Advanced Math Functions, Scientific Functions
 @section Branch Cuts and Principal Values
@@ -18420,9 +18596,9 @@ are designed with proper behavior around the branch cuts in mind, @emph{not}
 efficiency or accuracy.  You may need to increase the floating precision
 and wait a while to get suitable answers from them.
 
-For @samp{sqrt(a+bi)}:  When @cite{a<0} and @cite{b} is small but positive
-or zero, the result is close to the @cite{+i} axis.  For @cite{b} small and
-negative, the result is close to the @cite{-i} axis.  The result always lies
+For @samp{sqrt(a+bi)}:  When @expr{a<0} and @expr{b} is small but positive
+or zero, the result is close to the @expr{+i} axis.  For @expr{b} small and
+negative, the result is close to the @expr{-i} axis.  The result always lies
 in the right half of the complex plane.
 
 For @samp{ln(a+bi)}:  The real part is defined as @samp{ln(abs(a+bi))}.
@@ -18431,8 +18607,8 @@ Thus the branch cuts for @code{sqrt} and @code{ln} both lie on the
 negative real axis.
 
 The following table describes these branch cuts in another way.
-If the real and imaginary parts of @cite{z} are as shown, then
-the real and imaginary parts of @cite{f(z)} will be as shown.
+If the real and imaginary parts of @expr{z} are as shown, then
+the real and imaginary parts of @expr{f(z)} will be as shown.
 Here @code{eps} stands for a small positive value; each
 occurrence of @code{eps} may stand for a different small value.
 
@@ -18448,8 +18624,8 @@ occurrence of @code{eps} may stand for a different small value.
 For @samp{z1^z2}:  This is defined by @samp{exp(ln(z1)*z2)}.
 One interesting consequence of this is that @samp{(-8)^1:3} does
 not evaluate to @i{-2} as you might expect, but to the complex
-number @cite{(1., 1.732)}.  Both of these are valid cube roots
-of @i{-8} (as is @cite{(1., -1.732)}); Calc chooses a perhaps
+number @expr{(1., 1.732)}.  Both of these are valid cube roots
+of @i{-8} (as is @expr{(1., -1.732)}); Calc chooses a perhaps
 less-obvious root for the sake of mathematical consistency.
 
 For @samp{arcsin(z)}:  This is defined by @samp{-i*ln(i*z + sqrt(1-z^2))}.
@@ -18461,11 +18637,11 @@ the real axis, less than @i{-1} and greater than 1.
 
 For @samp{arctan(z)}:  This is defined by
 @samp{(ln(1+i*z) - ln(1-i*z)) / (2*i)}.  The branch cuts are on the
-imaginary axis, below @cite{-i} and above @cite{i}.
+imaginary axis, below @expr{-i} and above @expr{i}.
 
 For @samp{arcsinh(z)}:  This is defined by @samp{ln(z + sqrt(1+z^2))}.
-The branch cuts are on the imaginary axis, below @cite{-i} and
-above @cite{i}.
+The branch cuts are on the imaginary axis, below @expr{-i} and
+above @expr{i}.
 
 For @samp{arccosh(z)}:  This is defined by
 @samp{ln(z + (z+1)*sqrt((z-1)/(z+1)))}.  The branch cut is on the
@@ -18543,38 +18719,47 @@ are not rigorously specified at present.
 The @kbd{k r} (@code{calc-random}) [@code{random}] command produces
 random numbers of various sorts.
 
-Given a positive numeric prefix argument @cite{M}, it produces a random
-integer @cite{N} in the range @c{$0 \le N < M$}
-@cite{0 <= N < M}.  Each of the @cite{M}
-values appears with equal probability.@refill
+Given a positive numeric prefix argument @expr{M}, it produces a random
+integer @expr{N} in the range 
+@texline @tmath{0 \le N < M}.
+@infoline @expr{0 <= N < M}.  
+Each of the @expr{M} values appears with equal probability.
 
 With no numeric prefix argument, the @kbd{k r} command takes its argument
-from the stack instead.  Once again, if this is a positive integer @cite{M}
-the result is a random integer less than @cite{M}.  However, note that
-while numeric prefix arguments are limited to six digits or so, an @cite{M}
-taken from the stack can be arbitrarily large.  If @cite{M} is negative,
-the result is a random integer in the range @c{$M < N \le 0$}
-@cite{M < N <= 0}.
-
-If the value on the stack is a floating-point number @cite{M}, the result
-is a random floating-point number @cite{N} in the range @c{$0 \le N < M$}
-@cite{0 <= N < M}
-or @c{$M < N \le 0$}
-@cite{M < N <= 0}, according to the sign of @cite{M}.
-
-If @cite{M} is zero, the result is a Gaussian-distributed random real
+from the stack instead.  Once again, if this is a positive integer @expr{M}
+the result is a random integer less than @expr{M}.  However, note that
+while numeric prefix arguments are limited to six digits or so, an @expr{M}
+taken from the stack can be arbitrarily large.  If @expr{M} is negative,
+the result is a random integer in the range 
+@texline @tmath{M < N \le 0}.
+@infoline @expr{M < N <= 0}.
+
+If the value on the stack is a floating-point number @expr{M}, the result
+is a random floating-point number @expr{N} in the range 
+@texline @tmath{0 \le N < M}
+@infoline @expr{0 <= N < M}
+or 
+@texline @tmath{M < N \le 0},
+@infoline @expr{M < N <= 0}, 
+according to the sign of @expr{M}.
+
+If @expr{M} is zero, the result is a Gaussian-distributed random real
 number; the distribution has a mean of zero and a standard deviation
 of one.  The algorithm used generates random numbers in pairs; thus,
 every other call to this function will be especially fast.
 
-If @cite{M} is an error form @c{$m$ @code{+/-} $\sigma$}
-@samp{m +/- s} where @var{m}
-and @c{$\sigma$}
-@var{s} are both real numbers, the result uses a Gaussian
-distribution with mean @var{m} and standard deviation @c{$\sigma$}
+If @expr{M} is an error form 
+@texline @tmath{m} @code{+/-} @tmath{\sigma}
+@infoline @samp{m +/- s} 
+where @var{m} and 
+@texline @tmath{\sigma}
+@infoline @var{s} 
+are both real numbers, the result uses a Gaussian distribution with mean
+@var{m} and standard deviation 
+@texline @tmath{\sigma}.
 @var{s}.
 
-If @cite{M} is an interval form, the lower and upper bounds specify the
+If @expr{M} is an interval form, the lower and upper bounds specify the
 acceptable limits of the random numbers.  If both bounds are integers,
 the result is a random integer in the specified range.  If either bound
 is floating-point, the result is a random real number in the specified
@@ -18586,7 +18771,7 @@ million numbers from 1.00000 to 1.99999; @samp{random([1.0..2.0])} may
 additionally return 2.00000, but the probability of this happening is
 extremely small.)
 
-If @cite{M} is a vector, the result is one element taken at random from
+If @expr{M} is a vector, the result is one element taken at random from
 the vector.  All elements of the vector are given equal probabilities.
 
 @vindex RandSeed
@@ -18609,9 +18794,9 @@ number between zero and one.  It is equivalent to @samp{random(1.0)}.
 @kindex k a
 @pindex calc-random-again
 The @kbd{k a} (@code{calc-random-again}) command produces another random
-number, re-using the most recent value of @cite{M}.  With a numeric
+number, re-using the most recent value of @expr{M}.  With a numeric
 prefix argument @var{n}, it produces @var{n} more random numbers using
-that value of @cite{M}.
+that value of @expr{M}.
 
 @kindex k h
 @pindex calc-shuffle
@@ -18619,12 +18804,12 @@ that value of @cite{M}.
 The @kbd{k h} (@code{calc-shuffle}) command produces a vector of several
 random values with no duplicates.  The value on the top of the stack
 specifies the set from which the random values are drawn, and may be any
-of the @cite{M} formats described above.  The numeric prefix argument
+of the @expr{M} formats described above.  The numeric prefix argument
 gives the length of the desired list.  (If you do not provide a numeric
 prefix argument, the length of the list is taken from the top of the
-stack, and @cite{M} from second-to-top.)
+stack, and @expr{M} from second-to-top.)
 
-If @cite{M} is a floating-point number, zero, or an error form (so
+If @expr{M} is a floating-point number, zero, or an error form (so
 that the random values are being drawn from the set of real numbers)
 there is little practical difference between using @kbd{k h} and using
 @kbd{k r} several times.  But if the set of possible values consists
@@ -18632,8 +18817,8 @@ of just a few integers, or the elements of a vector, then there is
 a very real chance that multiple @kbd{k r}'s will produce the same
 number more than once.  The @kbd{k h} command produces a vector whose
 elements are always distinct.  (Actually, there is a slight exception:
-If @cite{M} is a vector, no given vector element will be drawn more
-than once, but if several elements of @cite{M} are equal, they may
+If @expr{M} is a vector, no given vector element will be drawn more
+than once, but if several elements of @expr{M} are equal, they may
 each make it into the result vector.)
 
 One use of @kbd{k h} is to rearrange a list at random.  This happens
@@ -18641,12 +18826,12 @@ if the prefix argument is equal to the number of values in the list:
 @kbd{[1, 1.5, 2, 2.5, 3] 5 k h} might produce the permuted list
 @samp{[2.5, 1, 1.5, 3, 2]}.  As a convenient feature, if the argument
 @var{n} is negative it is replaced by the size of the set represented
-by @cite{M}.  Naturally, this is allowed only when @cite{M} specifies
+by @expr{M}.  Naturally, this is allowed only when @expr{M} specifies
 a small discrete set of possibilities.
 
 To do the equivalent of @kbd{k h} but with duplications allowed,
-given @cite{M} on the stack and with @var{n} just entered as a numeric
-prefix, use @kbd{v b} to build a vector of copies of @cite{M}, then use
+given @expr{M} on the stack and with @var{n} just entered as a numeric
+prefix, use @kbd{v b} to build a vector of copies of @expr{M}, then use
 @kbd{V M k r} to ``map'' the normal @kbd{k r} function over the
 elements of this vector.  @xref{Matrix Functions}.
 
@@ -18683,10 +18868,12 @@ generators that are typically used to implement @code{random}.
 
 If @code{RandSeed} contains an integer, Calc uses this integer to
 seed an ``additive congruential'' method (Knuth's algorithm 3.2.2A,
-computing @c{$X_{n-55} - X_{n-24}$}
-@cite{X_n-55 - X_n-24}).  This method expands the seed
+computing 
+@texline @tmath{X_{n-55} - X_{n-24}}.
+@infoline @expr{X_n-55 - X_n-24}).  
+This method expands the seed
 value into a large table which is maintained internally; the variable
-@code{RandSeed} is changed from, e.g., 42 to the vector @cite{[42]}
+@code{RandSeed} is changed from, e.g., 42 to the vector @expr{[42]}
 to indicate that the seed has been absorbed into this table.  When
 @code{RandSeed} contains a vector, @kbd{k r} and related commands
 continue to use the same internal table as last time.  There is no
@@ -18718,16 +18905,21 @@ value.
 
 To create a random floating-point number with precision @var{p}, Calc
 simply creates a random @var{p}-digit integer and multiplies by
-@c{$10^{-p}$}
-@cite{10^-p}.  The resulting random numbers should be very clean, but note
+@texline @tmath{10^{-p}}.
+@infoline @expr{10^-p}.  
+The resulting random numbers should be very clean, but note
 that relatively small numbers will have few significant random digits.
 In other words, with a precision of 12, you will occasionally get
-numbers on the order of @c{$10^{-9}$}
-@cite{10^-9} or @c{$10^{-10}$}
-@cite{10^-10}, but those numbers
-will only have two or three random digits since they correspond to small
-integers times @c{$10^{-12}$}
-@cite{10^-12}.
+numbers on the order of 
+@texline @tmath{10^{-9}}
+@infoline @expr{10^-9} 
+or 
+@texline @tmath{10^{-10}},
+@infoline @expr{10^-10}, 
+but those numbers will only have two or three random digits since they
+correspond to small integers times 
+@texline @tmath{10^{-12}}.
+@infoline @expr{10^-12}.
 
 To create a random integer in the interval @samp{[0 .. @var{m})}, Calc
 counts the digits in @var{m}, creates a random integer with three
@@ -18761,7 +18953,7 @@ the GCD of two fractions is defined by taking the GCD of the
 numerators, and the LCM of the denominators.  This definition is
 consistent with the idea that @samp{a / gcd(a,x)} should yield an
 integer for any @samp{a} and @samp{x}.  For other types of arguments,
-the operation is left in symbolic form.@refill
+the operation is left in symbolic form.
 
 @kindex k l
 @pindex calc-lcm
@@ -18769,15 +18961,16 @@ the operation is left in symbolic form.@refill
 The @kbd{k l} (@code{calc-lcm}) [@code{lcm}] command computes the
 Least Common Multiple of two integers or fractions.  The product of
 the LCM and GCD of two numbers is equal to the product of the
-numbers.@refill
+numbers.
 
 @kindex k E
 @pindex calc-extended-gcd
 @tindex egcd
 The @kbd{k E} (@code{calc-extended-gcd}) [@code{egcd}] command computes
-the GCD of two integers @cite{x} and @cite{y} and returns a vector
-@cite{[g, a, b]} where @c{$g = \gcd(x,y) = a x + b y$}
-@cite{g = gcd(x,y) = a x + b y}.
+the GCD of two integers @expr{x} and @expr{y} and returns a vector
+@expr{[g, a, b]} where 
+@texline @tmath{g = \gcd(x,y) = a x + b y}.
+@infoline @expr{g = gcd(x,y) = a x + b y}.
 
 @kindex !
 @pindex calc-factorial
@@ -18794,7 +18987,7 @@ the number is a non-integral real number, the generalized factorial is used,
 as defined by the Euler Gamma function.  Please note that computation of
 large factorials can be slow; using floating-point format will help
 since fewer digits must be maintained.  The same is true of many of
-the commands in this section.@refill
+the commands in this section.
 
 @kindex k d
 @pindex calc-double-factorial
@@ -18805,29 +18998,30 @@ the commands in this section.@refill
 @tindex !!
 The @kbd{k d} (@code{calc-double-factorial}) [@code{dfact}] command
 computes the ``double factorial'' of an integer.  For an even integer,
-this is the product of even integers from 2 to @cite{N}.  For an odd
-integer, this is the product of odd integers from 3 to @cite{N}.  If
+this is the product of even integers from 2 to @expr{N}.  For an odd
+integer, this is the product of odd integers from 3 to @expr{N}.  If
 the argument is an integer-valued float, the result is a floating-point
 approximation.  This function is undefined for negative even integers.
-The notation @cite{N!!} is also recognized for double factorials.@refill
+The notation @expr{N!!} is also recognized for double factorials.
 
 @kindex k c
 @pindex calc-choose
 @tindex choose
 The @kbd{k c} (@code{calc-choose}) [@code{choose}] command computes the
-binomial coefficient @cite{N}-choose-@cite{M}, where @cite{M} is the number
-on the top of the stack and @cite{N} is second-to-top.  If both arguments
+binomial coefficient @expr{N}-choose-@expr{M}, where @expr{M} is the number
+on the top of the stack and @expr{N} is second-to-top.  If both arguments
 are integers, the result is an exact integer.  Otherwise, the result is a
 floating-point approximation.  The binomial coefficient is defined for all
-real numbers by @c{$N! \over M! (N-M)!\,$}
-@cite{N! / M! (N-M)!}.
+real numbers by
+@texline @tmath{N! \over M! (N-M)!\,}.
+@infoline @expr{N! / M! (N-M)!}.
 
 @kindex H k c
 @pindex calc-perm
 @tindex perm
 @ifinfo
 The @kbd{H k c} (@code{calc-perm}) [@code{perm}] command computes the
-number-of-permutations function @cite{N! / (N-M)!}.
+number-of-permutations function @expr{N! / (N-M)!}.
 @end ifinfo
 @tex
 The \kbd{H k c} (\code{calc-perm}) [\code{perm}] command computes the
@@ -18840,11 +19034,11 @@ number-of-perm\-utations function $N! \over (N-M)!\,$.
 @tindex bern
 The @kbd{k b} (@code{calc-bernoulli-number}) [@code{bern}] command
 computes a given Bernoulli number.  The value at the top of the stack
-is a nonnegative integer @cite{n} that specifies which Bernoulli number
+is a nonnegative integer @expr{n} that specifies which Bernoulli number
 is desired.  The @kbd{H k b} command computes a Bernoulli polynomial,
-taking @cite{n} from the second-to-top position and @cite{x} from the
-top of the stack.  If @cite{x} is a variable or formula the result is
-a polynomial in @cite{x}; if @cite{x} is a number the result is a number.
+taking @expr{n} from the second-to-top position and @expr{x} from the
+top of the stack.  If @expr{x} is a variable or formula the result is
+a polynomial in @expr{x}; if @expr{x} is a number the result is a number.
 
 @kindex k e
 @kindex H k e
@@ -18861,13 +19055,15 @@ functions.
 @tindex stir1
 @tindex stir2
 The @kbd{k s} (@code{calc-stirling-number}) [@code{stir1}] command
-computes a Stirling number of the first kind@c{ $n \brack m$}
-@asis{}, given two integers
-@cite{n} and @cite{m} on the stack.  The @kbd{H k s} [@code{stir2}]
-command computes a Stirling number of the second kind@c{ $n \brace m$}
-@asis{}.  These are
-the number of @cite{m}-cycle permutations of @cite{n} objects, and
-the number of ways to partition @cite{n} objects into @cite{m}
+computes a Stirling number of the first 
+@texline kind@tie{}@tmath{n \brack m},
+@infoline kind,
+given two integers @expr{n} and @expr{m} on the stack.  The @kbd{H k s}
+[@code{stir2}] command computes a Stirling number of the second 
+@texline kind@tie{}@tmath{n \brace m}.
+@infoline kind.
+These are the number of @expr{m}-cycle permutations of @expr{n} objects,
+and the number of ways to partition @expr{n} objects into @expr{m}
 non-empty sets, respectively.
 
 @kindex k p
@@ -18895,7 +19091,7 @@ The normal @kbd{k p} command performs one iteration of the primality
 test.  Pressing @kbd{k p} repeatedly for the same integer will perform
 additional iterations.  Also, @kbd{k p} with a numeric prefix performs
 the specified number of iterations.  There is also an algebraic function
-@samp{prime(n)} or @samp{prime(n,iters)} which returns 1 if @cite{n}
+@samp{prime(n)} or @samp{prime(n,iters)} which returns 1 if @expr{n}
 is (probably) prime and 0 if not.
 
 @kindex k f
@@ -18942,17 +19138,20 @@ analogously finds the next prime less than a given number.
 @pindex calc-totient
 @tindex totient
 The @kbd{k t} (@code{calc-totient}) [@code{totient}] command computes the
-Euler ``totient'' function@c{ $\phi(n)$}
-@asis{}, the number of integers less than @cite{n} which
-are relatively prime to @cite{n}.
+Euler ``totient'' 
+@texline function@tie{}@tmath{\phi(n)},
+@infoline function,
+the number of integers less than @expr{n} which
+are relatively prime to @expr{n}.
 
 @kindex k m
 @pindex calc-moebius
 @tindex moebius
 The @kbd{k m} (@code{calc-moebius}) [@code{moebius}] command computes the
-@c{M\"obius $\mu$}
-@asis{Moebius ``mu''} function.  If the input number is a product of @cite{k}
-distinct factors, this is @cite{(-1)^k}.  If the input number has any
+@texline M@"obius @tmath{\mu}
+@infoline Moebius ``mu''
+function.  If the input number is a product of @expr{k}
+distinct factors, this is @expr{(-1)^k}.  If the input number has any
 duplicate factors (i.e., can be divided by the same prime more than once),
 the result is zero.
 
@@ -18962,14 +19161,14 @@ the result is zero.
 @noindent
 The functions in this section compute various probability distributions.
 For continuous distributions, this is the integral of the probability
-density function from @cite{x} to infinity.  (These are the ``upper
+density function from @expr{x} to infinity.  (These are the ``upper
 tail'' distribution functions; there are also corresponding ``lower
-tail'' functions which integrate from minus infinity to @cite{x}.)
+tail'' functions which integrate from minus infinity to @expr{x}.)
 For discrete distributions, the upper tail function gives the sum
-from @cite{x} to infinity; the lower tail function gives the sum
-from minus infinity up to, but not including,@w{ }@cite{x}.
+from @expr{x} to infinity; the lower tail function gives the sum
+from minus infinity up to, but not including,@w{ }@expr{x}.
 
-To integrate from @cite{x} to @cite{y}, just use the distribution
+To integrate from @expr{x} to @expr{y}, just use the distribution
 function twice and subtract.  For example, the probability that a
 Gaussian random variable with mean 2 and standard deviation 1 will
 lie in the range from 2.5 to 2.8 is @samp{utpn(2.5,2,1) - utpn(2.8,2,1)}
@@ -18999,7 +19198,7 @@ order of the arguments in algebraic form differs from the order of
 arguments as found on the stack.  (The random variable comes last on
 the stack, so that you can type, e.g., @kbd{2 @key{RET} 1 @key{RET} 2.5
 k N M-@key{RET} @key{DEL} 2.8 k N -}, using @kbd{M-@key{RET} @key{DEL}} to
-recover the original arguments but substitute a new value for @cite{x}.)
+recover the original arguments but substitute a new value for @expr{x}.)
 
 @kindex k C
 @pindex calc-utpc
@@ -19013,9 +19212,10 @@ recover the original arguments but substitute a new value for @cite{x}.)
 @end ignore
 @tindex ltpc
 The @samp{utpc(x,v)} function uses the chi-square distribution with
-@c{$\nu$}
-@cite{v} degrees of freedom.  It is the probability that a model is
-correct if its chi-square statistic is @cite{x}.
+@texline @tmath{\nu}
+@infoline @expr{v} 
+degrees of freedom.  It is the probability that a model is
+correct if its chi-square statistic is @expr{x}.
 
 @kindex k F
 @pindex calc-utpf
@@ -19029,11 +19229,14 @@ correct if its chi-square statistic is @cite{x}.
 @end ignore
 @tindex ltpf
 The @samp{utpf(F,v1,v2)} function uses the F distribution, used in
-various statistical tests.  The parameters @c{$\nu_1$}
-@cite{v1} and @c{$\nu_2$}
-@cite{v2}
+various statistical tests.  The parameters 
+@texline @tmath{\nu_1}
+@infoline @expr{v1} 
+and 
+@texline @tmath{\nu_2}
+@infoline @expr{v2}
 are the degrees of freedom in the numerator and denominator,
-respectively, used in computing the statistic @cite{F}.
+respectively, used in computing the statistic @expr{F}.
 
 @kindex k N
 @pindex calc-utpn
@@ -19047,10 +19250,11 @@ respectively, used in computing the statistic @cite{F}.
 @end ignore
 @tindex ltpn
 The @samp{utpn(x,m,s)} function uses a normal (Gaussian) distribution
-with mean @cite{m} and standard deviation @c{$\sigma$}
-@cite{s}.  It is the
-probability that such a normal-distributed random variable would
-exceed @cite{x}.
+with mean @expr{m} and standard deviation 
+@texline @tmath{\sigma}.
+@infoline @expr{s}.  
+It is the probability that such a normal-distributed random variable
+would exceed @expr{x}.
 
 @kindex k P
 @pindex calc-utpp
@@ -19064,7 +19268,7 @@ exceed @cite{x}.
 @end ignore
 @tindex ltpp
 The @samp{utpp(n,x)} function uses a Poisson distribution with
-mean @cite{x}.  It is the probability that @cite{n} or more such
+mean @expr{x}.  It is the probability that @expr{n} or more such
 Poisson random events will occur.
 
 @kindex k T
@@ -19079,16 +19283,22 @@ Poisson random events will occur.
 @end ignore
 @tindex ltpt
 The @samp{utpt(t,v)} function uses the Student's ``t'' distribution
-with @c{$\nu$}
-@cite{v} degrees of freedom.  It is the probability that a
-t-distributed random variable will be greater than @cite{t}.
-(Note:  This computes the distribution function @c{$A(t|\nu)$}
-@cite{A(t|v)}
-where @c{$A(0|\nu) = 1$}
-@cite{A(0|v) = 1} and @c{$A(\infty|\nu) \to 0$}
-@cite{A(inf|v) -> 0}.  The
-@code{UTPT} operation on the HP-48 uses a different definition
-which returns half of Calc's value:  @samp{UTPT(t,v) = .5*utpt(t,v)}.)
+with 
+@texline @tmath{\nu}
+@infoline @expr{v} 
+degrees of freedom.  It is the probability that a
+t-distributed random variable will be greater than @expr{t}.
+(Note:  This computes the distribution function 
+@texline @tmath{A(t|\nu)}
+@infoline @expr{A(t|v)}
+where 
+@texline @tmath{A(0|\nu) = 1}
+@infoline @expr{A(0|v) = 1} 
+and 
+@texline @tmath{A(\infty|\nu) \to 0}.
+@infoline @expr{A(inf|v) -> 0}.  
+The @code{UTPT} operation on the HP-48 uses a different definition which
+returns half of Calc's value:  @samp{UTPT(t,v) = .5*utpt(t,v)}.)
 
 While Calc does not provide inverses of the probability distribution
 functions, the @kbd{a R} command can be used to solve for the inverse.
@@ -19155,7 +19365,7 @@ Negative packing modes create other kinds of composite objects:
 @item -1
 Two values are collected to build a complex number.  For example,
 @kbd{5 @key{RET} 7 C-u -1 v p} creates the complex number
-@cite{(5, 7)}.  The result is always a rectangular complex
+@expr{(5, 7)}.  The result is always a rectangular complex
 number.  The two input values must both be real numbers,
 i.e., integers, fractions, or floats.  If they are not, Calc
 will instead build a formula like @samp{a + (0, 1) b}.  (The
@@ -19245,8 +19455,9 @@ returned in the form @samp{[@w{[a, b, c]}, [d, e, f]]}.
 If any elements of the vector are negative, other kinds of
 packing are done at that level as described above.  For
 example, @samp{[2, 3, -4]} takes 12 objects and creates a
-@c{$2\times3$}
-@asis{2x3} matrix of error forms: @samp{[[a +/- b, c +/- d ... ]]}.
+@texline @tmath{2\times3}
+@infoline 2x3
+matrix of error forms: @samp{[[a +/- b, c +/- d ... ]]}.
 Also, @samp{[-4, -10]} will convert four integers into an
 error form consisting of two fractions:  @samp{a:b +/- c:d}.
 
@@ -19346,7 +19557,7 @@ number, you can use @samp{unpack(-10, @var{x})_1}.
 
 @noindent
 Vectors and matrices can be added,
-subtracted, multiplied, and divided; @pxref{Basic Arithmetic}.@refill
+subtracted, multiplied, and divided; @pxref{Basic Arithmetic}.
 
 @kindex |
 @pindex calc-concat
@@ -19392,11 +19603,12 @@ prefix, if specified, must match the size of the vector.  If the value on
 the stack is a scalar, it is used for each element on the diagonal, and
 the prefix argument is required.
 
-To build a constant square matrix, e.g., a @c{$3\times3$}
-@asis{3x3} matrix filled with ones,
-use @kbd{0 M-3 v d 1 +}, i.e., build a zero matrix first and then add a
-constant value to that matrix.  (Another alternative would be to use
-@kbd{v b} and @kbd{v a}; see below.)
+To build a constant square matrix, e.g., a 
+@texline @tmath{3\times3}
+@infoline 3x3
+matrix filled with ones, use @kbd{0 M-3 v d 1 +}, i.e., build a zero
+matrix first and then add a constant value to that matrix.  (Another
+alternative would be to use @kbd{v b} and @kbd{v a}; see below.)
 
 @kindex v i
 @pindex calc-ident
@@ -19407,8 +19619,8 @@ where the diagonal element is always one.  If no prefix argument is given,
 this command prompts for one.
 
 In algebraic notation, @samp{idn(a,n)} acts much like @samp{diag(a,n)},
-except that @cite{a} is required to be a scalar (non-vector) quantity.
-If @cite{n} is omitted, @samp{idn(a)} represents @cite{a} times an
+except that @expr{a} is required to be a scalar (non-vector) quantity.
+If @expr{n} is omitted, @samp{idn(a)} represents @expr{a} times an
 identity matrix of unknown size.  Calc can operate algebraically on
 such generic identity matrices, and if one is combined with a matrix
 whose size is known, it is converted automatically to an identity
@@ -19531,10 +19743,10 @@ submatrix is returned.
 @tindex _
 Subscript notation in algebraic formulas (@samp{a_b}) stands for the
 Calc function @code{subscr}, which is synonymous with @code{mrow}.
-Thus, @samp{[x, y, z]_k} produces @cite{x}, @cite{y}, or @cite{z} if
-@cite{k} is one, two, or three, respectively.  A double subscript
+Thus, @samp{[x, y, z]_k} produces @expr{x}, @expr{y}, or @expr{z} if
+@expr{k} is one, two, or three, respectively.  A double subscript
 (@samp{M_i_j}, equivalent to @samp{subscr(subscr(M, i), j)}) will
-access the element at row @cite{i}, column @cite{j} of a matrix.
+access the element at row @expr{i}, column @expr{j} of a matrix.
 The @kbd{a _} (@code{calc-subscript}) command creates a subscript
 formula @samp{a_b} out of two stack entries.  (It is on the @kbd{a}
 ``algebra'' prefix because subscripted variables are often used
@@ -19561,13 +19773,13 @@ the analogous operation on columns of a matrix.  Given a plain vector
 it extracts (or removes) one element, just like @kbd{v r}.  If the
 index in @kbd{C-u v c} is an interval or vector and the argument is a
 matrix, the result is a submatrix with only the specified columns
-retained (and possibly permuted in the case of a vector index).@refill
+retained (and possibly permuted in the case of a vector index).
 
 To extract a matrix element at a given row and column, use @kbd{v r} to
 extract the row as a vector, then @kbd{v c} to extract the column element
 from that vector.  In algebraic formulas, it is often more convenient to
-use subscript notation:  @samp{m_i_j} gives row @cite{i}, column @cite{j}
-of matrix @cite{m}.
+use subscript notation:  @samp{m_i_j} gives row @expr{i}, column @expr{j}
+of matrix @expr{m}.
 
 @kindex v s
 @pindex calc-subvector
@@ -19610,15 +19822,17 @@ vectors one element at a time.
 The @kbd{v l} (@code{calc-vlength}) [@code{vlen}] command computes the
 length of a vector.  The length of a non-vector is considered to be zero.
 Note that matrices are just vectors of vectors for the purposes of this
-command.@refill
+command.
 
 @kindex H v l
 @tindex mdims
 With the Hyperbolic flag, @kbd{H v l} [@code{mdims}] computes a vector
 of the dimensions of a vector, matrix, or higher-order object.  For
 example, @samp{mdims([[a,b,c],[d,e,f]])} returns @samp{[2, 3]} since
-its argument is a @c{$2\times3$}
-@asis{2x3} matrix.
+its argument is a 
+@texline @tmath{2\times3}
+@infoline 2x3
+matrix.
 
 @kindex v f
 @pindex calc-vector-find
@@ -19647,14 +19861,18 @@ If the number of columns does not evenly divide the number of elements
 in the vector, the last row will be short and the result will not be
 suitable for use as a matrix.  For example, with the matrix
 @samp{[[1, 2], @w{[3, 4]}]} on the stack, @kbd{v a 4} produces
-@samp{[[1, 2, 3, 4]]} (a @c{$1\times4$}
-@asis{1x4} matrix), @kbd{v a 1} produces
-@samp{[[1], [2], [3], [4]]} (a @c{$4\times1$}
-@asis{4x1} matrix), @kbd{v a 2} produces
-@samp{[[1, 2], [3, 4]]} (the original @c{$2\times2$}
-@asis{2x2} matrix), @w{@kbd{v a 3}} produces
-@samp{[[1, 2, 3], [4]]} (not a matrix), and @kbd{v a 0} produces
-the flattened list @samp{[1, 2, @w{3, 4}]}.
+@samp{[[1, 2, 3, 4]]} (a 
+@texline @tmath{1\times4}
+@infoline 1x4
+matrix), @kbd{v a 1} produces @samp{[[1], [2], [3], [4]]} (a 
+@texline @tmath{4\times1}
+@infoline 4x1
+matrix), @kbd{v a 2} produces @samp{[[1, 2], [3, 4]]} (the original 
+@texline @tmath{2\times2}
+@infoline 2x2
+matrix), @w{@kbd{v a 3}} produces @samp{[[1, 2, 3], [4]]} (not a
+matrix), and @kbd{v a 0} produces the flattened list 
+@samp{[1, 2, @w{3, 4}]}.
 
 @cindex Sorting data
 @kindex V S
@@ -19810,7 +20028,7 @@ matrix actually uses LU-decomposition for greater accuracy and speed.)
 The following functions are applied element-wise if their arguments are
 vectors or matrices: @code{change-sign}, @code{conj}, @code{arg},
 @code{re}, @code{im}, @code{polar}, @code{rect}, @code{clean},
-@code{float}, @code{frac}.  @xref{Function Index}.@refill
+@code{float}, @code{frac}.  @xref{Function Index}.
 
 @kindex V J
 @pindex calc-conj-transpose
@@ -19832,7 +20050,7 @@ Frobenius norm of a vector or matrix argument.  This is the square
 root of the sum of the squares of the absolute values of the
 elements of the vector or matrix.  If the vector is interpreted as
 a point in two- or three-dimensional space, this is the distance
-from that point to the origin.@refill
+from that point to the origin.
 
 @kindex v n
 @pindex calc-rnorm
@@ -19851,7 +20069,7 @@ The @kbd{V N} (@code{calc-cnorm}) [@code{cnorm}] command computes
 the column norm, or one-norm, of a vector or matrix.  For a plain
 vector, this is the sum of the absolute values of the elements.
 For a matrix, this is the maximum of the column-absolute-value-sums.
-General @cite{k}-norms for @cite{k} other than one or infinity are
+General @expr{k}-norms for @expr{k} other than one or infinity are
 not provided.
 
 @kindex V C
@@ -19877,8 +20095,8 @@ that once an inverse (or determinant) of a particular matrix has been
 computed, the inverse and determinant of the matrix can be recomputed
 quickly in the future.
 
-If the argument to @kbd{&} is a plain number @cite{x}, this
-command simply computes @cite{1/x}.  This is okay, because the
+If the argument to @kbd{&} is a plain number @expr{x}, this
+command simply computes @expr{1/x}.  This is okay, because the
 @samp{/} operator also does a matrix inversion when dividing one
 by a matrix.
 
@@ -19936,8 +20154,8 @@ The result is always a vector, except that if the set consists of a
 single interval, the interval itself is returned instead.
 
 @xref{Logical Operations}, for the @code{in} function which tests if
-a certain value is a member of a given set.  To test if the set @cite{A}
-is a subset of the set @cite{B}, use @samp{vdiff(A, B) = []}.
+a certain value is a member of a given set.  To test if the set @expr{A}
+is a subset of the set @expr{B}, use @samp{vdiff(A, B) = []}.
 
 @kindex V +
 @pindex calc-remove-duplicates
@@ -19969,20 +20187,23 @@ and only if it is in both of the input sets.  Thus if the input
 sets are disjoint, i.e., if they share no common elements, the result
 will be the empty vector @samp{[]}.  Note that the characters @kbd{V}
 and @kbd{^} were chosen to be close to the conventional mathematical
-notation for set union@c{ ($A \cup B$)}
-@asis{} and intersection@c{ ($A \cap B$)}
-@asis{}.
+notation for set 
+@texline union@tie{}(@tmath{A \cup B})
+@infoline union
+and 
+@texline intersection@tie{}(@tmath{A \cap B}).
+@infoline intersection.
 
 @kindex V -
 @pindex calc-set-difference
 @tindex vdiff
 The @kbd{V -} (@code{calc-set-difference}) [@code{vdiff}] command computes
 the difference between two sets.  An object is in the difference
-@cite{A - B} if and only if it is in @cite{A} but not in @cite{B}.
+@expr{A - B} if and only if it is in @expr{A} but not in @expr{B}.
 Thus subtracting @samp{[y,z]} from a set will remove the elements
 @samp{y} and @samp{z} if they are present.  You can also think of this
-as a general @dfn{set complement} operator; if @cite{A} is the set of
-all possible values, then @cite{A - B} is the ``complement'' of @cite{B}.
+as a general @dfn{set complement} operator; if @expr{A} is the set of
+all possible values, then @expr{A - B} is the ``complement'' of @expr{B}.
 Obviously this is only practical if the set of all possible values in
 your problem is small enough to list in a Calc vector (or simple
 enough to express in a few intervals).
@@ -20078,8 +20299,9 @@ the same set.  The set may include positive infinity, but must
 not include any negative numbers.  The input is interpreted as a
 set of integers in the sense of @kbd{V F} (@code{vfloor}).  Beware
 that a simple input like @samp{[100]} can result in a huge integer
-representation (@c{$2^{100}$}
-@cite{2^100}, a 31-digit integer, in this case).
+representation 
+@texline (@tmath{2^{100}}, a 31-digit integer, in this case).
+@infoline (@expr{2^100}, a 31-digit integer, in this case).
 
 @node Statistical Operations, Reducing and Mapping, Set Operations, Matrix Functions
 @section Statistical Operations on Vectors
@@ -20167,7 +20389,7 @@ computes the sum of the data values.  The @kbd{u *}
 (@code{calc-vector-prod}) [@code{vprod}] command computes the
 product of the data values.  If the input is a single flat vector,
 these are the same as @kbd{V R +} and @kbd{V R *}
-(@pxref{Reducing and Mapping}).@refill
+(@pxref{Reducing and Mapping}).
 
 @kindex u X
 @kindex u N
@@ -20189,21 +20411,25 @@ plus or minus infinity.
 @cindex Mean of data values
 The @kbd{u M} (@code{calc-vector-mean}) [@code{vmean}] command
 computes the average (arithmetic mean) of the data values.
-If the inputs are error forms @c{$x$ @code{+/-} $\sigma$}
-@samp{x +/- s}, this is the weighted
-mean of the @cite{x} values with weights @c{$1 / \sigma^2$}
-@cite{1 / s^2}.
+If the inputs are error forms 
+@texline @tmath{x \pm \sigma},
+@infoline @samp{x +/- s}, 
+this is the weighted mean of the @expr{x} values with weights 
+@texline @tmath{1 /\sigma^2}.
+@infoline @expr{1 / s^2}.
 @tex
 \turnoffactive
 $$ \mu = { \displaystyle \sum { x_i \over \sigma_i^2 } \over
            \displaystyle \sum { 1 \over \sigma_i^2 } } $$
 @end tex
 If the inputs are not error forms, this is simply the sum of the
-values divided by the count of the values.@refill
+values divided by the count of the values.
 
 Note that a plain number can be considered an error form with
-error @c{$\sigma = 0$}
-@cite{s = 0}.  If the input to @kbd{u M} is a mixture of
+error 
+@texline @tmath{\sigma = 0}.
+@infoline @expr{s = 0}.  
+If the input to @kbd{u M} is a mixture of
 plain numbers and error forms, the result is the mean of the
 plain numbers, ignoring all values with non-zero errors.  (By the
 above definitions it's clear that a plain number effectively
@@ -20212,7 +20438,7 @@ weight is completely negligible.)
 
 This function also works for distributions (error forms or
 intervals).  The mean of an error form `@var{a} @t{+/-} @var{b}' is simply
-@cite{a}.  The mean of an interval is the mean of the minimum
+@expr{a}.  The mean of an interval is the mean of the minimum
 and maximum values of the interval.
 
 @kindex I u M
@@ -20234,7 +20460,7 @@ numbers, the error is equal to the standard deviation of the values
 divided by the square root of the number of values.  (This works
 out to be equivalent to calculating the standard deviation and
 then assuming each value's error is equal to this standard
-deviation.)@refill
+deviation.)
 @tex
 \turnoffactive
 $$ \sigma_\mu^2 = {\sigma^2 \over N} $$
@@ -20309,13 +20535,14 @@ for a vector of numbers simply by using the @kbd{A} command.
 @cindex Standard deviation
 @cindex Sample statistics
 The @kbd{u S} (@code{calc-vector-sdev}) [@code{vsdev}] command
-computes the standard deviation@c{ $\sigma$}
-@asis{} of the data values.  If the
-values are error forms, the errors are used as weights just
-as for @kbd{u M}.  This is the @emph{sample} standard deviation,
-whose value is the square root of the sum of the squares of the
-differences between the values and the mean of the @cite{N} values,
-divided by @cite{N-1}.
+computes the standard 
+@texline deviation@tie{}@tmath{\sigma}
+@infoline deviation
+of the data values.  If the values are error forms, the errors are used
+as weights just as for @kbd{u M}.  This is the @emph{sample} standard
+deviation, whose value is the square root of the sum of the squares of
+the differences between the values and the mean of the @expr{N} values,
+divided by @expr{N-1}.
 @tex
 \turnoffactive
 $$ \sigma^2 = {1 \over N - 1} \sum (x_i - \mu)^2 $$
@@ -20324,10 +20551,11 @@ $$ \sigma^2 = {1 \over N - 1} \sum (x_i - \mu)^2 $$
 This function also applies to distributions.  The standard deviation
 of a single error form is simply the error part.  The standard deviation
 of a continuous interval happens to equal the difference between the
-limits, divided by @c{$\sqrt{12}$}
-@cite{sqrt(12)}.  The standard deviation of an
-integer interval is the same as the standard deviation of a vector
-of those integers.
+limits, divided by 
+@texline @tmath{\sqrt{12}}.
+@infoline @expr{sqrt(12)}.  
+The standard deviation of an integer interval is the same as the
+standard deviation of a vector of those integers.
 
 @kindex I u S
 @pindex calc-vector-pop-sdev
@@ -20336,7 +20564,7 @@ of those integers.
 The @kbd{I u S} (@code{calc-vector-pop-sdev}) [@code{vpsdev}]
 command computes the @emph{population} standard deviation.
 It is defined by the same formula as above but dividing
-by @cite{N} instead of by @cite{N-1}.  The population standard
+by @expr{N} instead of by @expr{N-1}.  The population standard
 deviation is used when the input represents the entire set of
 data values in the distribution; the sample standard deviation
 is used when the input represents a sample of the set of all
@@ -20361,8 +20589,10 @@ population standard deviation of the equivalent vector of integers.
 The @kbd{H u S} (@code{calc-vector-variance}) [@code{vvar}] and
 @kbd{H I u S} (@code{calc-vector-pop-variance}) [@code{vpvar}]
 commands compute the variance of the data values.  The variance
-is the square@c{ $\sigma^2$}
-@asis{} of the standard deviation, i.e., the sum of the
+is the 
+@texline square@tie{}@tmath{\sigma^2}
+@infoline square
+of the standard deviation, i.e., the sum of the
 squares of the deviations of the data values from the mean.
 (This definition also applies when the argument is a distribution.)
 
@@ -20383,10 +20613,11 @@ The functions in this section take two arguments, which must be
 vectors of equal size.  The vectors are each flattened in the same
 way as by the single-variable statistical functions.  Given a numeric
 prefix argument of 1, these functions instead take one object from
-the stack, which must be an @c{$N\times2$}
-@asis{Nx2} matrix of data values.  Once
-again, variable names can be used in place of actual vectors and
-matrices.
+the stack, which must be an 
+@texline @tmath{N\times2}
+@infoline Nx2
+matrix of data values.  Once again, variable names can be used in place
+of actual vectors and matrices.
 
 @kindex u C
 @pindex calc-vector-covariance
@@ -20397,7 +20628,7 @@ computes the sample covariance of two vectors.  The covariance
 of vectors @var{x} and @var{y} is the sum of the products of the
 differences between the elements of @var{x} and the mean of @var{x}
 times the differences between the corresponding elements of @var{y}
-and the mean of @var{y}, all divided by @cite{N-1}.  Note that
+and the mean of @var{y}, all divided by @expr{N-1}.  Note that
 the variance of a vector is just the covariance of the vector
 with itself.  Once again, if the inputs are error forms the
 errors are used as weight factors.  If both @var{x} and @var{y}
@@ -20419,8 +20650,8 @@ $$
 @tindex vpcov
 The @kbd{I u C} (@code{calc-vector-pop-covariance}) [@code{vpcov}]
 command computes the population covariance, which is the same as the
-sample covariance computed by @kbd{u C} except dividing by @cite{N}
-instead of @cite{N-1}.
+sample covariance computed by @kbd{u C} except dividing by @expr{N}
+instead of @expr{N-1}.
 
 @kindex H u C
 @pindex calc-vector-correlation
@@ -20598,7 +20829,7 @@ and is either a variable whose name is the same as the function name,
 or a nameless function like @samp{<#^3+1>}.  Operators that are normally
 written as algebraic symbols have the names @code{add}, @code{sub},
 @code{mul}, @code{div}, @code{pow}, @code{neg}, @code{mod}, and
-@code{vconcat}.@refill
+@code{vconcat}.
 
 @ignore
 @starindex
@@ -20635,24 +20866,26 @@ is duplicated for each element of the other vector.  For example,
 With the 2 listed first, it would have computed a vector of powers of
 two.  Mapping a user-defined function pops as many arguments from the
 stack as the function requires.  If you give an undefined name, you will
-be prompted for the number of arguments to use.@refill
+be prompted for the number of arguments to use.
 
 If any argument to @kbd{V M} is a matrix, the operator is normally mapped
 across all elements of the matrix.  For example, given the matrix
-@cite{[[1, -2, 3], [-4, 5, -6]]}, @kbd{V M A} takes six absolute values to
-produce another @c{$3\times2$}
-@asis{3x2} matrix, @cite{[[1, 2, 3], [4, 5, 6]]}.
+@expr{[[1, -2, 3], [-4, 5, -6]]}, @kbd{V M A} takes six absolute values to
+produce another 
+@texline @tmath{3\times2}
+@infoline 3x2
+matrix, @expr{[[1, 2, 3], [4, 5, 6]]}.
 
 @tindex mapr
 The command @kbd{V M _} [@code{mapr}] (i.e., type an underscore at the
 operator prompt) maps by rows instead.  For example, @kbd{V M _ A} views
 the above matrix as a vector of two 3-element row vectors.  It produces
 a new vector which contains the absolute values of those row vectors,
-namely @cite{[3.74, 8.77]}.  (Recall, the absolute value of a vector is
+namely @expr{[3.74, 8.77]}.  (Recall, the absolute value of a vector is
 defined as the square root of the sum of the squares of the elements.)
 Some operators accept vectors and return new vectors; for example,
 @kbd{v v} reverses a vector, so @kbd{V M _ v v} would reverse each row
-of the matrix to get a new matrix, @cite{[[3, -2, 1], [-6, 5, -4]]}.
+of the matrix to get a new matrix, @expr{[[3, -2, 1], [-6, 5, -4]]}.
 
 Sometimes a vector of vectors (representing, say, strings, sets, or lists)
 happens to look like a matrix.  If so, remember to use @kbd{V M _} if you
@@ -20665,7 +20898,7 @@ transposes the input matrix, maps by rows, and then, if the result is a
 matrix, transposes again.  For example, @kbd{V M : A} takes the absolute
 values of the three columns of the matrix, treating each as a 2-vector,
 and @kbd{V M : v v} reverses the columns to get the matrix
-@cite{[[-4, 5, -6], [1, -2, 3]]}.
+@expr{[[-4, 5, -6], [1, -2, 3]]}.
 
 (The symbols @kbd{_} and @kbd{:} were chosen because they had row-like
 and column-like appearances, and were not already taken by useful
@@ -20756,13 +20989,13 @@ vector @samp{[a - b + c - d, b - c + d, c - d, d]}.
 @tindex reduced
 @tindex rreduced
 As for @kbd{V M}, @kbd{V R} normally reduces a matrix elementwise.  For
-example, given the matrix @cite{[[a, b, c], [d, e, f]]}, @kbd{V R +} will
-compute @cite{a + b + c + d + e + f}.  You can type @kbd{V R _} or
+example, given the matrix @expr{[[a, b, c], [d, e, f]]}, @kbd{V R +} will
+compute @expr{a + b + c + d + e + f}.  You can type @kbd{V R _} or
 @kbd{V R :} to modify this behavior.  The @kbd{V R _} [@code{reducea}]
 command reduces ``across'' the matrix; it reduces each row of the matrix
 as a vector, then collects the results.  Thus @kbd{V R _ +} of this
-matrix would produce @cite{[a + b + c, d + e + f]}.  Similarly, @kbd{V R :}
-[@code{reduced}] reduces down; @kbd{V R : +} would produce @cite{[a + d,
+matrix would produce @expr{[a + b + c, d + e + f]}.  Similarly, @kbd{V R :}
+[@code{reduced}] reduces down; @kbd{V R : +} would produce @expr{[a + d,
 b + e, c + f]}.
 
 @tindex reducer
@@ -20919,7 +21152,7 @@ influenced by the @kbd{d O} (@code{calc-flat-language}) mode;
 The commands @kbd{v <} (@code{calc-matrix-left-justify}), @kbd{v >}
 (@code{calc-matrix-right-justify}), and @w{@kbd{v =}}
 (@code{calc-matrix-center-justify}) control whether matrix elements
-are justified to the left, right, or center of their columns.@refill
+are justified to the left, right, or center of their columns.
 
 @kindex V [
 @pindex calc-vector-brackets
@@ -20936,7 +21169,7 @@ be used in preparation for yanking a matrix into a buffer running
 Mathematica.  (In fact, the Mathematica language mode uses this mode;
 @pxref{Mathematica Language Mode}.)  Note that, regardless of the
 display mode, either brackets or braces may be used to enter vectors,
-and parentheses may never be used for this purpose.@refill
+and parentheses may never be used for this purpose.
 
 @kindex V ]
 @pindex calc-matrix-brackets
@@ -20989,7 +21222,7 @@ the others are useful for display only.
 @kindex V ,
 @pindex calc-vector-commas
 The @kbd{v ,} (@code{calc-vector-commas}) command turns commas on and
-off in vector and matrix display.@refill
+off in vector and matrix display.
 
 In vectors of length one, and in all vectors when commas have been
 turned off, Calc adds extra parentheses around formulas that might
@@ -21047,7 +21280,7 @@ commands use the @kbd{j} (for ``just a letter that wasn't used
 for anything else'') prefix.
 
 @xref{Editing Stack Entries}, to see how to manipulate formulas
-using regular Emacs editing commands.@refill
+using regular Emacs editing commands.
 
 When doing algebraic work, you may find several of the Calculator's
 modes to be helpful, including algebraic-simplification mode (@kbd{m A})
@@ -21055,7 +21288,7 @@ or no-simplification mode (@kbd{m O}),
 algebraic-entry mode (@kbd{m a}), fraction mode (@kbd{m f}), and
 symbolic mode (@kbd{m s}).  @xref{Mode Settings}, for discussions
 of these modes.  You may also wish to select ``big'' display mode (@kbd{d B}).
-@xref{Normal Language Modes}.@refill
+@xref{Normal Language Modes}.
 
 @menu
 * Selecting Subformulas::
@@ -21213,7 +21446,7 @@ has a selection they have no effect.  This is analogous to the
 behavior of some commands such as @kbd{j r} (@code{calc-rewrite-selection};
 @pxref{Selections with Rewrite Rules}) and is mainly intended to be
 used in keyboard macros that implement your own selection-oriented
-commands.@refill
+commands.
 
 Selection of sub-formulas normally treats associative terms like
 @samp{a + b - c + d} and @samp{x * y * z} as single levels of the formula.
@@ -21311,7 +21544,7 @@ If there is no current selection, @kbd{j 1} through @kbd{j 9} select
 the @var{n}th top-level sub-formula.  (In other words, they act as if
 the entire stack entry were selected first.)  To select the @var{n}th
 sub-formula where @var{n} is greater than nine, you must instead invoke
-@w{@kbd{j 1}} with @var{n} as a numeric prefix argument.@refill
+@w{@kbd{j 1}} with @var{n} as a numeric prefix argument.
 
 @kindex j n
 @kindex j p
@@ -21493,7 +21726,7 @@ the command will abort with an error message.
 Operations on sub-formulas sometimes leave the formula as a whole
 in an ``un-natural'' state.  Consider negating the @samp{2 x} term
 of our sample formula by selecting it and pressing @kbd{n}
-(@code{calc-change-sign}).@refill
+(@code{calc-change-sign}).
 
 @smallexample
 @group
@@ -21850,7 +22083,7 @@ a given function or operator to one or more equations.  It is analogous
 to @kbd{V M}, which operates on vectors instead of equations.
 @pxref{Reducing and Mapping}.  For example, @kbd{a M S} changes
 @samp{x = y+1} to @samp{sin(x) = sin(y+1)}, and @kbd{a M +} with
-@samp{x = y+1} and @cite{6} on the stack produces @samp{x+6 = y+7}.
+@samp{x = y+1} and @expr{6} on the stack produces @samp{x+6 = y+7}.
 With two equations on the stack, @kbd{a M +} would add the lefthand
 sides together and the righthand sides together to get the two
 respective sides of a new equation.
@@ -21899,7 +22132,7 @@ in @samp{2 sin(x)^2 + x sin(x) + sin(2 x)} produces
 Note that this is a purely structural substitution; the lone @samp{x} and
 the @samp{sin(2 x)} stayed the same because they did not look like
 @samp{sin(x)}.  @xref{Rewrite Rules}, for a more general method for
-doing substitutions.@refill
+doing substitutions.
 
 The @kbd{a b} command normally prompts for two formulas, the old
 one and the new one.  If you enter a blank line for the first
@@ -21966,26 +22199,27 @@ simplifications'' occur.
 @cindex Default simplifications
 This section describes the ``default simplifications,'' those which are
 normally applied to all results.  For example, if you enter the variable
-@cite{x} on the stack twice and push @kbd{+}, Calc's default
-simplifications automatically change @cite{x + x} to @cite{2 x}.
+@expr{x} on the stack twice and push @kbd{+}, Calc's default
+simplifications automatically change @expr{x + x} to @expr{2 x}.
 
 The @kbd{m O} command turns off the default simplifications, so that
-@cite{x + x} will remain in this form unless you give an explicit
+@expr{x + x} will remain in this form unless you give an explicit
 ``simplify'' command like @kbd{=} or @kbd{a v}.  @xref{Algebraic
 Manipulation}.  The @kbd{m D} command turns the default simplifications
 back on.
 
 The most basic default simplification is the evaluation of functions.
-For example, @cite{2 + 3} is evaluated to @cite{5}, and @cite{@t{sqrt}(9)}
-is evaluated to @cite{3}.  Evaluation does not occur if the arguments
-to a function are somehow of the wrong type (@cite{@t{tan}([2,3,4])}),
-range (@cite{@t{tan}(90)}), or number (@cite{@t{tan}(3,5)}), or if the
-function name is not recognized (@cite{@t{f}(5)}), or if ``symbolic''
-mode (@pxref{Symbolic Mode}) prevents evaluation (@cite{@t{sqrt}(2)}).
+For example, @expr{2 + 3} is evaluated to @expr{5}, and @expr{@t{sqrt}(9)}
+is evaluated to @expr{3}.  Evaluation does not occur if the arguments
+to a function are somehow of the wrong type @expr{@t{tan}([2,3,4])}),
+range (@expr{@t{tan}(90)}), or number (@expr{@t{tan}(3,5)}), 
+or if the function name is not recognized (@expr{@t{f}(5)}), or if
+``symbolic'' mode (@pxref{Symbolic Mode}) prevents evaluation
+(@expr{@t{sqrt}(2)}).
 
 Calc simplifies (evaluates) the arguments to a function before it
-simplifies the function itself.  Thus @cite{@t{sqrt}(5+4)} is
-simplified to @cite{@t{sqrt}(9)} before the @code{sqrt} function
+simplifies the function itself.  Thus @expr{@t{sqrt}(5+4)} is
+simplified to @expr{@t{sqrt}(9)} before the @code{sqrt} function
 itself is applied.  There are very few exceptions to this rule:
 @code{quote}, @code{lambda}, and @code{condition} (the @code{::}
 operator) do not evaluate their arguments, @code{if} (the @code{? :}
@@ -22024,9 +22258,9 @@ And now, on with the default simplifications:
 Arithmetic operators like @kbd{+} and @kbd{*} always take two
 arguments in Calc's internal form.  Sums and products of three or
 more terms are arranged by the associative law of algebra into
-a left-associative form for sums, @cite{((a + b) + c) + d}, and
-a right-associative form for products, @cite{a * (b * (c * d))}.
-Formulas like @cite{(a + b) + (c + d)} are rearranged to
+a left-associative form for sums, @expr{((a + b) + c) + d}, and
+a right-associative form for products, @expr{a * (b * (c * d))}.
+Formulas like @expr{(a + b) + (c + d)} are rearranged to
 left-associative form, though this rarely matters since Calc's
 algebra commands are designed to hide the inner structure of
 sums and products as much as possible.  Sums and products in
@@ -22034,199 +22268,213 @@ their proper associative form will be written without parentheses
 in the examples below.
 
 Sums and products are @emph{not} rearranged according to the
-commutative law (@cite{a + b} to @cite{b + a}) except in a few
+commutative law (@expr{a + b} to @expr{b + a}) except in a few
 special cases described below.  Some algebra programs always
 rearrange terms into a canonical order, which enables them to
-see that @cite{a b + b a} can be simplified to @cite{2 a b}.
+see that @expr{a b + b a} can be simplified to @expr{2 a b}.
 Calc assumes you have put the terms into the order you want
 and generally leaves that order alone, with the consequence
 that formulas like the above will only be simplified if you
 explicitly give the @kbd{a s} command.  @xref{Algebraic
 Simplifications}.
 
-Differences @cite{a - b} are treated like sums @cite{a + (-b)}
+Differences @expr{a - b} are treated like sums @expr{a + (-b)}
 for purposes of simplification; one of the default simplifications
-is to rewrite @cite{a + (-b)} or @cite{(-b) + a}, where @cite{-b}
-represents a ``negative-looking'' term, into @cite{a - b} form.
+is to rewrite @expr{a + (-b)} or @expr{(-b) + a}, where @expr{-b}
+represents a ``negative-looking'' term, into @expr{a - b} form.
 ``Negative-looking'' means negative numbers, negated formulas like
-@cite{-x}, and products or quotients in which either term is
+@expr{-x}, and products or quotients in which either term is
 negative-looking.
 
-Other simplifications involving negation are @cite{-(-x)} to @cite{x};
-@cite{-(a b)} or @cite{-(a/b)} where either @cite{a} or @cite{b} is
+Other simplifications involving negation are @expr{-(-x)} to @expr{x};
+@expr{-(a b)} or @expr{-(a/b)} where either @expr{a} or @expr{b} is
 negative-looking, simplified by negating that term, or else where
-@cite{a} or @cite{b} is any number, by negating that number;
-@cite{-(a + b)} to @cite{-a - b}, and @cite{-(b - a)} to @cite{a - b}.
-(This, and rewriting @cite{(-b) + a} to @cite{a - b}, are the only
+@expr{a} or @expr{b} is any number, by negating that number;
+@expr{-(a + b)} to @expr{-a - b}, and @expr{-(b - a)} to @expr{a - b}.
+(This, and rewriting @expr{(-b) + a} to @expr{a - b}, are the only
 cases where the order of terms in a sum is changed by the default
 simplifications.)
 
 The distributive law is used to simplify sums in some cases:
-@cite{a x + b x} to @cite{(a + b) x}, where @cite{a} represents
-a number or an implicit 1 or @i{-1} (as in @cite{x} or @cite{-x})
-and similarly for @cite{b}.  Use the @kbd{a c}, @w{@kbd{a f}}, or
+@expr{a x + b x} to @expr{(a + b) x}, where @expr{a} represents
+a number or an implicit 1 or @i{-1} (as in @expr{x} or @expr{-x})
+and similarly for @expr{b}.  Use the @kbd{a c}, @w{@kbd{a f}}, or
 @kbd{j M} commands to merge sums with non-numeric coefficients
 using the distributive law.
 
 The distributive law is only used for sums of two terms, or
-for adjacent terms in a larger sum.  Thus @cite{a + b + b + c}
-is simplified to @cite{a + 2 b + c}, but @cite{a + b + c + b}
+for adjacent terms in a larger sum.  Thus @expr{a + b + b + c}
+is simplified to @expr{a + 2 b + c}, but @expr{a + b + c + b}
 is not simplified.  The reason is that comparing all terms of a
 sum with one another would require time proportional to the
 square of the number of terms; Calc relegates potentially slow
 operations like this to commands that have to be invoked
 explicitly, like @kbd{a s}.
 
-Finally, @cite{a + 0} and @cite{0 + a} are simplified to @cite{a}.
-A consequence of the above rules is that @cite{0 - a} is simplified
-to @cite{-a}.
+Finally, @expr{a + 0} and @expr{0 + a} are simplified to @expr{a}.
+A consequence of the above rules is that @expr{0 - a} is simplified
+to @expr{-a}.
 
 @tex
 \bigskip
 @end tex
 
-The products @cite{1 a} and @cite{a 1} are simplified to @cite{a};
-@cite{(-1) a} and @cite{a (-1)} are simplified to @cite{-a};
-@cite{0 a} and @cite{a 0} are simplified to @cite{0}, except that
-in matrix mode where @cite{a} is not provably scalar the result
-is the generic zero matrix @samp{idn(0)}, and that if @cite{a} is
+The products @expr{1 a} and @expr{a 1} are simplified to @expr{a};
+@expr{(-1) a} and @expr{a (-1)} are simplified to @expr{-a};
+@expr{0 a} and @expr{a 0} are simplified to @expr{0}, except that
+in matrix mode where @expr{a} is not provably scalar the result
+is the generic zero matrix @samp{idn(0)}, and that if @expr{a} is
 infinite the result is @samp{nan}.
 
-Also, @cite{(-a) b} and @cite{a (-b)} are simplified to @cite{-(a b)},
+Also, @expr{(-a) b} and @expr{a (-b)} are simplified to @expr{-(a b)},
 where this occurs for negated formulas but not for regular negative
 numbers.
 
 Products are commuted only to move numbers to the front:
-@cite{a b 2} is commuted to @cite{2 a b}.
+@expr{a b 2} is commuted to @expr{2 a b}.
 
-The product @cite{a (b + c)} is distributed over the sum only if
-@cite{a} and at least one of @cite{b} and @cite{c} are numbers:
-@cite{2 (x + 3)} goes to @cite{2 x + 6}.  The formula
-@cite{(-a) (b - c)}, where @cite{-a} is a negative number, is
-rewritten to @cite{a (c - b)}.
+The product @expr{a (b + c)} is distributed over the sum only if
+@expr{a} and at least one of @expr{b} and @expr{c} are numbers:
+@expr{2 (x + 3)} goes to @expr{2 x + 6}.  The formula
+@expr{(-a) (b - c)}, where @expr{-a} is a negative number, is
+rewritten to @expr{a (c - b)}.
 
 The distributive law of products and powers is used for adjacent
-terms of the product: @cite{x^a x^b} goes to @c{$x^{a+b}$}
-@cite{x^(a+b)}
-where @cite{a} is a number, or an implicit 1 (as in @cite{x}),
-or the implicit one-half of @cite{@t{sqrt}(x)}, and similarly for
-@cite{b}.  The result is written using @samp{sqrt} or @samp{1/sqrt}
-if the sum of the powers is @cite{1/2} or @cite{-1/2}, respectively.
+terms of the product: @expr{x^a x^b} goes to 
+@texline @tmath{x^{a+b}}
+@infoline @expr{x^(a+b)}
+where @expr{a} is a number, or an implicit 1 (as in @expr{x}),
+or the implicit one-half of @expr{@t{sqrt}(x)}, and similarly for
+@expr{b}.  The result is written using @samp{sqrt} or @samp{1/sqrt}
+if the sum of the powers is @expr{1/2} or @expr{-1/2}, respectively.
 If the sum of the powers is zero, the product is simplified to
-@cite{1} or to @samp{idn(1)} if matrix mode is enabled.
+@expr{1} or to @samp{idn(1)} if matrix mode is enabled.
 
 The product of a negative power times anything but another negative
-power is changed to use division:  @c{$x^{-2} y$}
-@cite{x^(-2) y} goes to @cite{y / x^2} unless matrix mode is
-in effect and neither @cite{x} nor @cite{y} are scalar (in which
+power is changed to use division:  
+@texline @tmath{x^{-2} y}
+@infoline @expr{x^(-2) y} 
+goes to @expr{y / x^2} unless matrix mode is
+in effect and neither @expr{x} nor @expr{y} are scalar (in which
 case it is considered unsafe to rearrange the order of the terms).
 
-Finally, @cite{a (b/c)} is rewritten to @cite{(a b)/c}, and also
-@cite{(a/b) c} is changed to @cite{(a c)/b} unless in matrix mode.
+Finally, @expr{a (b/c)} is rewritten to @expr{(a b)/c}, and also
+@expr{(a/b) c} is changed to @expr{(a c)/b} unless in matrix mode.
 
 @tex
 \bigskip
 @end tex
 
 Simplifications for quotients are analogous to those for products.
-The quotient @cite{0 / x} is simplified to @cite{0}, with the same
-exceptions that were noted for @cite{0 x}.  Likewise, @cite{x / 1}
-and @cite{x / (-1)} are simplified to @cite{x} and @cite{-x},
+The quotient @expr{0 / x} is simplified to @expr{0}, with the same
+exceptions that were noted for @expr{0 x}.  Likewise, @expr{x / 1}
+and @expr{x / (-1)} are simplified to @expr{x} and @expr{-x},
 respectively.
 
-The quotient @cite{x / 0} is left unsimplified or changed to an
+The quotient @expr{x / 0} is left unsimplified or changed to an
 infinite quantity, as directed by the current infinite mode.
 @xref{Infinite Mode}.
 
-The expression @c{$a / b^{-c}$}
-@cite{a / b^(-c)} is changed to @cite{a b^c},
-where @cite{-c} is any negative-looking power.  Also, @cite{1 / b^c}
-is changed to @c{$b^{-c}$}
-@cite{b^(-c)} for any power @cite{c}.
-
-Also, @cite{(-a) / b} and @cite{a / (-b)} go to @cite{-(a/b)};
-@cite{(a/b) / c} goes to @cite{a / (b c)}; and @cite{a / (b/c)}
-goes to @cite{(a c) / b} unless matrix mode prevents this
-rearrangement.  Similarly, @cite{a / (b:c)} is simplified to
-@cite{(c:b) a} for any fraction @cite{b:c}.
-
-The distributive law is applied to @cite{(a + b) / c} only if
-@cite{c} and at least one of @cite{a} and @cite{b} are numbers.
+The expression 
+@texline @tmath{a / b^{-c}}
+@infoline @expr{a / b^(-c)} 
+is changed to @expr{a b^c}, where @expr{-c} is any negative-looking
+power.  Also, @expr{1 / b^c} is changed to 
+@texline @tmath{b^{-c}}
+@infoline @expr{b^(-c)} 
+for any power @expr{c}.
+
+Also, @expr{(-a) / b} and @expr{a / (-b)} go to @expr{-(a/b)};
+@expr{(a/b) / c} goes to @expr{a / (b c)}; and @expr{a / (b/c)}
+goes to @expr{(a c) / b} unless matrix mode prevents this
+rearrangement.  Similarly, @expr{a / (b:c)} is simplified to
+@expr{(c:b) a} for any fraction @expr{b:c}.
+
+The distributive law is applied to @expr{(a + b) / c} only if
+@expr{c} and at least one of @expr{a} and @expr{b} are numbers.
 Quotients of powers and square roots are distributed just as
 described for multiplication.
 
 Quotients of products cancel only in the leading terms of the
-numerator and denominator.  In other words, @cite{a x b / a y b}
-is cancelled to @cite{x b / y b} but not to @cite{x / y}.  Once
+numerator and denominator.  In other words, @expr{a x b / a y b}
+is cancelled to @expr{x b / y b} but not to @expr{x / y}.  Once
 again this is because full cancellation can be slow; use @kbd{a s}
 to cancel all terms of the quotient.
 
 Quotients of negative-looking values are simplified according
-to @cite{(-a) / (-b)} to @cite{a / b}, @cite{(-a) / (b - c)}
-to @cite{a / (c - b)}, and @cite{(a - b) / (-c)} to @cite{(b - a) / c}.
+to @expr{(-a) / (-b)} to @expr{a / b}, @expr{(-a) / (b - c)}
+to @expr{a / (c - b)}, and @expr{(a - b) / (-c)} to @expr{(b - a) / c}.
 
 @tex
 \bigskip
 @end tex
 
-The formula @cite{x^0} is simplified to @cite{1}, or to @samp{idn(1)}
-in matrix mode.  The formula @cite{0^x} is simplified to @cite{0}
-unless @cite{x} is a negative number or complex number, in which
+The formula @expr{x^0} is simplified to @expr{1}, or to @samp{idn(1)}
+in matrix mode.  The formula @expr{0^x} is simplified to @expr{0}
+unless @expr{x} is a negative number or complex number, in which
 case the result is an infinity or an unsimplified formula according
-to the current infinite mode.  Note that @cite{0^0} is an
+to the current infinite mode.  Note that @expr{0^0} is an
 indeterminate form, as evidenced by the fact that the simplifications
-for @cite{x^0} and @cite{0^x} conflict when @cite{x=0}.
-
-Powers of products or quotients @cite{(a b)^c}, @cite{(a/b)^c}
-are distributed to @cite{a^c b^c}, @cite{a^c / b^c} only if @cite{c}
-is an integer, or if either @cite{a} or @cite{b} are nonnegative
-real numbers.  Powers of powers @cite{(a^b)^c} are simplified to
-@c{$a^{b c}$}
-@cite{a^(b c)} only when @cite{c} is an integer and @cite{b c} also
+for @expr{x^0} and @expr{0^x} conflict when @expr{x=0}.
+
+Powers of products or quotients @expr{(a b)^c}, @expr{(a/b)^c}
+are distributed to @expr{a^c b^c}, @expr{a^c / b^c} only if @expr{c}
+is an integer, or if either @expr{a} or @expr{b} are nonnegative
+real numbers.  Powers of powers @expr{(a^b)^c} are simplified to
+@texline @tmath{a^{b c}}
+@infoline @expr{a^(b c)} 
+only when @expr{c} is an integer and @expr{b c} also
 evaluates to an integer.  Without these restrictions these simplifications
 would not be safe because of problems with principal values.
-(In other words, @c{$((-3)^{1/2})^2$}
-@cite{((-3)^1:2)^2} is safe to simplify, but
-@c{$((-3)^2)^{1/2}$}
-@cite{((-3)^2)^1:2} is not.)  @xref{Declarations}, for ways to inform
-Calc that your variables satisfy these requirements.
-
-As a special case of this rule, @cite{@t{sqrt}(x)^n} is simplified to
-@c{$x^{n/2}$}
-@cite{x^(n/2)} only for even integers @cite{n}.
-
-If @cite{a} is known to be real, @cite{b} is an even integer, and
-@cite{c} is a half- or quarter-integer, then @cite{(a^b)^c} is
-simplified to @c{$@t{abs}(a^{b c})$}
-@cite{@t{abs}(a^(b c))}.
-
-Also, @cite{(-a)^b} is simplified to @cite{a^b} if @cite{b} is an
-even integer, or to @cite{-(a^b)} if @cite{b} is an odd integer,
-for any negative-looking expression @cite{-a}.
-
-Square roots @cite{@t{sqrt}(x)} generally act like one-half powers
-@c{$x^{1:2}$}
-@cite{x^1:2} for the purposes of the above-listed simplifications.
-
-Also, note that @c{$1 / x^{1:2}$}
-@cite{1 / x^1:2} is changed to @c{$x^{-1:2}$}
-@cite{x^(-1:2)},
-but @cite{1 / @t{sqrt}(x)} is left alone.
+(In other words, 
+@texline @tmath{((-3)^{1/2})^2}
+@infoline @expr{((-3)^1:2)^2} 
+is safe to simplify, but
+@texline @tmath{((-3)^2)^{1/2}}
+@infoline @expr{((-3)^2)^1:2} 
+is not.)  @xref{Declarations}, for ways to inform Calc that your
+variables satisfy these requirements.
+
+As a special case of this rule, @expr{@t{sqrt}(x)^n} is simplified to
+@texline @tmath{x^{n/2}}
+@infoline @expr{x^(n/2)} 
+only for even integers @expr{n}.
+
+If @expr{a} is known to be real, @expr{b} is an even integer, and
+@expr{c} is a half- or quarter-integer, then @expr{(a^b)^c} is
+simplified to @expr{@t{abs}(a^(b c))}.
+
+Also, @expr{(-a)^b} is simplified to @expr{a^b} if @expr{b} is an
+even integer, or to @expr{-(a^b)} if @expr{b} is an odd integer,
+for any negative-looking expression @expr{-a}.
+
+Square roots @expr{@t{sqrt}(x)} generally act like one-half powers
+@texline @tmath{x^{1:2}}
+@infoline @expr{x^1:2} 
+for the purposes of the above-listed simplifications.
+
+Also, note that 
+@texline @tmath{1 / x^{1:2}}
+@infoline @expr{1 / x^1:2} 
+is changed to 
+@texline @tmath{x^{-1:2}},
+@infoline @expr{x^(-1:2)},
+but @expr{1 / @t{sqrt}(x)} is left alone.
 
 @tex
 \bigskip
 @end tex
 
 Generic identity matrices (@pxref{Matrix Mode}) are simplified by the
-following rules:  @cite{@t{idn}(a) + b} to @cite{a + b} if @cite{b}
-is provably scalar, or expanded out if @cite{b} is a matrix;
-@cite{@t{idn}(a) + @t{idn}(b)} to @cite{@t{idn}(a + b)};
-@cite{-@t{idn}(a)} to @cite{@t{idn}(-a)}; @cite{a @t{idn}(b)} to
-@cite{@t{idn}(a b)} if @cite{a} is provably scalar, or to @cite{a b}
-if @cite{a} is provably non-scalar; @cite{@t{idn}(a) @t{idn}(b)}
-to @cite{@t{idn}(a b)}; analogous simplifications for quotients
-involving @code{idn}; and @cite{@t{idn}(a)^n} to @cite{@t{idn}(a^n)}
-where @cite{n} is an integer.
+following rules:  @expr{@t{idn}(a) + b} to @expr{a + b} if @expr{b}
+is provably scalar, or expanded out if @expr{b} is a matrix;
+@expr{@t{idn}(a) + @t{idn}(b)} to @expr{@t{idn}(a + b)}; 
+@expr{-@t{idn}(a)} to @expr{@t{idn}(-a)}; @expr{a @t{idn}(b)} to 
+@expr{@t{idn}(a b)} if @expr{a} is provably scalar, or to @expr{a b} 
+if @expr{a} is provably non-scalar;  @expr{@t{idn}(a) @t{idn}(b)} to
+@expr{@t{idn}(a b)}; analogous simplifications for quotients involving
+@code{idn}; and @expr{@t{idn}(a)^n} to @expr{@t{idn}(a^n)} where
+@expr{n} is an integer.
 
 @tex
 \bigskip
@@ -22234,26 +22482,28 @@ where @cite{n} is an integer.
 
 The @code{floor} function and other integer truncation functions
 vanish if the argument is provably integer-valued, so that
-@cite{@t{floor}(@t{round}(x))} simplifies to @cite{@t{round}(x)}.
+@expr{@t{floor}(@t{round}(x))} simplifies to @expr{@t{round}(x)}.
 Also, combinations of @code{float}, @code{floor} and its friends,
 and @code{ffloor} and its friends, are simplified in appropriate
 ways.  @xref{Integer Truncation}.
 
-The expression @cite{@t{abs}(-x)} changes to @cite{@t{abs}(x)}.
-The expression @cite{@t{abs}(@t{abs}(x))} changes to @cite{@t{abs}(x)};
-in fact, @cite{@t{abs}(x)} changes to @cite{x} or @cite{-x} if @cite{x}
-is provably nonnegative or nonpositive (@pxref{Declarations}).
+The expression @expr{@t{abs}(-x)} changes to @expr{@t{abs}(x)}.
+The expression @expr{@t{abs}(@t{abs}(x))} changes to
+@expr{@t{abs}(x)};  in fact, @expr{@t{abs}(x)} changes to @expr{x} or
+@expr{-x} if @expr{x} is provably nonnegative or nonpositive
+(@pxref{Declarations}). 
 
 While most functions do not recognize the variable @code{i} as an
 imaginary number, the @code{arg} function does handle the two cases
-@cite{@t{arg}(@t{i})} and @cite{@t{arg}(-@t{i})} just for convenience.
+@expr{@t{arg}(@t{i})} and @expr{@t{arg}(-@t{i})} just for convenience.
 
-The expression @cite{@t{conj}(@t{conj}(x))} simplifies to @cite{x}.
+The expression @expr{@t{conj}(@t{conj}(x))} simplifies to @expr{x}.
 Various other expressions involving @code{conj}, @code{re}, and
 @code{im} are simplified, especially if some of the arguments are
 provably real or involve the constant @code{i}.  For example,
-@cite{@t{conj}(a + b i)} is changed to @cite{@t{conj}(a) - @t{conj}(b) i},
-or to @cite{a - b i} if @cite{a} and @cite{b} are known to be real.
+@expr{@t{conj}(a + b i)} is changed to 
+@expr{@t{conj}(a) - @t{conj}(b) i},  or to @expr{a - b i} if @expr{a}
+and @expr{b} are known to be real.
 
 Functions like @code{sin} and @code{arctan} generally don't have
 any default simplifications beyond simply evaluating the functions
@@ -22261,18 +22511,18 @@ for suitable numeric arguments and infinity.  The @kbd{a s} command
 described in the next section does provide some simplifications for
 these functions, though.
 
-One important simplification that does occur is that @cite{@t{ln}(@t{e})}
-is simplified to 1, and @cite{@t{ln}(@t{e}^x)} is simplified to @cite{x}
-for any @cite{x}.  This occurs even if you have stored a different
-value in the Calc variable @samp{e}; but this would be a bad idea
-in any case if you were also using natural logarithms!
+One important simplification that does occur is that
+@expr{@t{ln}(@t{e})} is simplified to 1, and @expr{@t{ln}(@t{e}^x)} is
+simplified to @expr{x} for any @expr{x}.  This occurs even if you have
+stored a different value in the Calc variable @samp{e}; but this would
+be a bad idea in any case if you were also using natural logarithms!
 
 Among the logical functions, @t{(@var{a} <= @var{b})} changes to
 @t{@var{a} > @var{b}} and so on.  Equations and inequalities where both sides
 are either negative-looking or zero are simplified by negating both sides
 and reversing the inequality.  While it might seem reasonable to simplify
-@cite{!!x} to @cite{x}, this would not be valid in general because
-@cite{!!2} is 1, not 2.
+@expr{!!x} to @expr{x}, this would not be valid in general because
+@expr{!!2} is 1, not 2.
 
 Most other Calc functions have few if any default simplifications
 defined, aside of course from evaluation when the arguments are
@@ -22309,13 +22559,13 @@ then the built-in simplifications, and so on.
 @end tex
 
 Sums are simplified in two ways.  Constant terms are commuted to the
-end of the sum, so that @cite{a + 2 + b} changes to @cite{a + b + 2}.
+end of the sum, so that @expr{a + 2 + b} changes to @expr{a + b + 2}.
 The only exception is that a constant will not be commuted away
-from the first position of a difference, i.e., @cite{2 - x} is not
-commuted to @cite{-x + 2}.
+from the first position of a difference, i.e., @expr{2 - x} is not
+commuted to @expr{-x + 2}.
 
 Also, terms of sums are combined by the distributive law, as in
-@cite{x + y + 2 x} to @cite{y + 3 x}.  This always occurs for
+@expr{x + y + 2 x} to @expr{y + 3 x}.  This always occurs for
 adjacent terms, but @kbd{a s} compares all pairs of terms including
 non-adjacent ones.
 
@@ -22324,10 +22574,10 @@ non-adjacent ones.
 @end tex
 
 Products are sorted into a canonical order using the commutative
-law.  For example, @cite{b c a} is commuted to @cite{a b c}.
+law.  For example, @expr{b c a} is commuted to @expr{a b c}.
 This allows easier comparison of products; for example, the default
-simplifications will not change @cite{x y + y x} to @cite{2 x y},
-but @kbd{a s} will; it first rewrites the sum to @cite{x y + x y},
+simplifications will not change @expr{x y + y x} to @expr{2 x y},
+but @kbd{a s} will; it first rewrites the sum to @expr{x y + x y},
 and then the default simplifications are able to recognize a sum
 of identical terms.
 
@@ -22346,15 +22596,15 @@ use for adjacent terms of products.
 
 Even though sums are not sorted, the commutative law is still
 taken into account when terms of a product are being compared.
-Thus @cite{(x + y) (y + x)} will be simplified to @cite{(x + y)^2}.
-A subtle point is that @cite{(x - y) (y - x)} will @emph{not}
-be simplified to @cite{-(x - y)^2}; Calc does not notice that
+Thus @expr{(x + y) (y + x)} will be simplified to @expr{(x + y)^2}.
+A subtle point is that @expr{(x - y) (y - x)} will @emph{not}
+be simplified to @expr{-(x - y)^2}; Calc does not notice that
 one term can be written as a constant times the other, even if
 that constant is @i{-1}.
 
-A fraction times any expression, @cite{(a:b) x}, is changed to
-a quotient involving integers:  @cite{a x / b}.  This is not
-done for floating-point numbers like @cite{0.5}, however.  This
+A fraction times any expression, @expr{(a:b) x}, is changed to
+a quotient involving integers:  @expr{a x / b}.  This is not
+done for floating-point numbers like @expr{0.5}, however.  This
 is one reason why you may find it convenient to turn Fraction mode
 on while doing algebra; @pxref{Fraction Mode}.
 
@@ -22364,25 +22614,25 @@ on while doing algebra; @pxref{Fraction Mode}.
 
 Quotients are simplified by comparing all terms in the numerator
 with all terms in the denominator for possible cancellation using
-the distributive law.  For example, @cite{a x^2 b / c x^3 d} will
-cancel @cite{x^2} from both sides to get @cite{a b / c x d}.
-(The terms in the denominator will then be rearranged to @cite{c d x}
+the distributive law.  For example, @expr{a x^2 b / c x^3 d} will
+cancel @expr{x^2} from both sides to get @expr{a b / c x d}.
+(The terms in the denominator will then be rearranged to @expr{c d x}
 as described above.)  If there is any common integer or fractional
 factor in the numerator and denominator, it is cancelled out;
-for example, @cite{(4 x + 6) / 8 x} simplifies to @cite{(2 x + 3) / 4 x}.
+for example, @expr{(4 x + 6) / 8 x} simplifies to @expr{(2 x + 3) / 4 x}.
 
 Non-constant common factors are not found even by @kbd{a s}.  To
-cancel the factor @cite{a} in @cite{(a x + a) / a^2} you could first
-use @kbd{j M} on the product @cite{a x} to Merge the numerator to
-@cite{a (1+x)}, which can then be simplified successfully.
+cancel the factor @expr{a} in @expr{(a x + a) / a^2} you could first
+use @kbd{j M} on the product @expr{a x} to Merge the numerator to
+@expr{a (1+x)}, which can then be simplified successfully.
 
 @tex
 \bigskip
 @end tex
 
 Integer powers of the variable @code{i} are simplified according
-to the identity @cite{i^2 = -1}.  If you store a new value other
-than the complex number @cite{(0,1)} in @code{i}, this simplification
+to the identity @expr{i^2 = -1}.  If you store a new value other
+than the complex number @expr{(0,1)} in @code{i}, this simplification
 will no longer occur.  This is done by @kbd{a s} instead of by default
 in case someone (unwisely) uses the name @code{i} for a variable
 unrelated to complex numbers; it would be unfortunate if Calc
@@ -22392,26 +22642,26 @@ user might not have been thinking of.
 Square roots of integer or rational arguments are simplified in
 several ways.  (Note that these will be left unevaluated only in
 Symbolic mode.)  First, square integer or rational factors are
-pulled out so that @cite{@t{sqrt}(8)} is rewritten as
-@c{$2\,\t{sqrt}(2)$}
-@cite{2 sqrt(2)}.  Conceptually speaking this implies factoring
-the argument into primes and moving pairs of primes out of the
-square root, but for reasons of efficiency Calc only looks for
-primes up to 29.
+pulled out so that @expr{@t{sqrt}(8)} is rewritten as
+@texline @tmath{$2\,\t{sqrt}(2)$}.
+@infoline @expr{2 sqrt(2)}.  
+Conceptually speaking this implies factoring the argument into primes
+and moving pairs of primes out of the square root, but for reasons of
+efficiency Calc only looks for primes up to 29.
 
 Square roots in the denominator of a quotient are moved to the
-numerator:  @cite{1 / @t{sqrt}(3)} changes to @cite{@t{sqrt}(3) / 3}.
+numerator:  @expr{1 / @t{sqrt}(3)} changes to @expr{@t{sqrt}(3) / 3}.
 The same effect occurs for the square root of a fraction:
-@cite{@t{sqrt}(2:3)} changes to @cite{@t{sqrt}(6) / 3}.
+@expr{@t{sqrt}(2:3)} changes to @expr{@t{sqrt}(6) / 3}.
 
 @tex
 \bigskip
 @end tex
 
 The @code{%} (modulo) operator is simplified in several ways
-when the modulus @cite{M} is a positive real number.  First, if
-the argument is of the form @cite{x + n} for some real number
-@cite{n}, then @cite{n} is itself reduced modulo @cite{M}.  For
+when the modulus @expr{M} is a positive real number.  First, if
+the argument is of the form @expr{x + n} for some real number
+@expr{n}, then @expr{n} is itself reduced modulo @expr{M}.  For
 example, @samp{(x - 23) % 10} is simplified to @samp{(x + 7) % 10}.
 
 If the argument is multiplied by a constant, and this constant
@@ -22435,16 +22685,16 @@ declared to be an integer.
 @end tex
 
 Trigonometric functions are simplified in several ways.  First,
-@cite{@t{sin}(@t{arcsin}(x))} is simplified to @cite{x}, and
+@expr{@t{sin}(@t{arcsin}(x))} is simplified to @expr{x}, and
 similarly for @code{cos} and @code{tan}.  If the argument to
-@code{sin} is negative-looking, it is simplified to @cite{-@t{sin}(x)},
-and similarly for @code{cos} and @code{tan}.  Finally, certain
-special values of the argument are recognized;
+@code{sin} is negative-looking, it is simplified to 
+@expr{-@t{sin}(x),},  and similarly for @code{cos} and @code{tan}.
+Finally, certain special values of the argument are recognized;
 @pxref{Trigonometric and Hyperbolic Functions}.
 
 Trigonometric functions of inverses of different trigonometric
-functions can also be simplified, as in @cite{@t{sin}(@t{arccos}(x))}
-to @cite{@t{sqrt}(1 - x^2)}.
+functions can also be simplified, as in @expr{@t{sin}(@t{arccos}(x))}
+to @expr{@t{sqrt}(1 - x^2)}.
 
 Hyperbolic functions of their inverses and of negative-looking
 arguments are also handled, as are exponentials of inverse
@@ -22453,26 +22703,31 @@ hyperbolic functions.
 No simplifications for inverse trigonometric and hyperbolic
 functions are known, except for negative arguments of @code{arcsin},
 @code{arctan}, @code{arcsinh}, and @code{arctanh}.  Note that
-@cite{@t{arcsin}(@t{sin}(x))} can @emph{not} safely change to
-@cite{x}, since this only correct within an integer multiple
-of @c{$2 \pi$}
-@cite{2 pi} radians or 360 degrees.  However,
-@cite{@t{arcsinh}(@t{sinh}(x))} is simplified to @cite{x} if
-@cite{x} is known to be real.
+@expr{@t{arcsin}(@t{sin}(x))} can @emph{not} safely change to
+@expr{x}, since this only correct within an integer multiple of 
+@texline @tmath{2 \pi}
+@infoline @expr{2 pi} 
+radians or 360 degrees.  However, @expr{@t{arcsinh}(@t{sinh}(x))} is
+simplified to @expr{x} if @expr{x} is known to be real.
 
 Several simplifications that apply to logarithms and exponentials
-are that @cite{@t{exp}(@t{ln}(x))}, @c{$@t{e}^{\ln(x)}$}
-@cite{e^@t{ln}(x)}, and
-@c{$10^{{\rm log10}(x)}$}
-@cite{10^@t{log10}(x)} all reduce to @cite{x}.
-Also, @cite{@t{ln}(@t{exp}(x))}, etc., can reduce to @cite{x} if
-@cite{x} is provably real.  The form @cite{@t{exp}(x)^y} is simplified
-to @cite{@t{exp}(x y)}.  If @cite{x} is a suitable multiple of @c{$\pi i$}
-@cite{pi i}
-(as described above for the trigonometric functions), then @cite{@t{exp}(x)}
-or @cite{e^x} will be expanded.  Finally, @cite{@t{ln}(x)} is simplified
-to a form involving @code{pi} and @code{i} where @cite{x} is provably
-negative, positive imaginary, or negative imaginary.
+are that @expr{@t{exp}(@t{ln}(x))}, 
+@texline @t{e}@tmath{^{\ln(x)}},
+@infoline @expr{e^@t{ln}(x)}, 
+and
+@texline @tmath{10^{{\rm log10}(x)}}
+@infoline @expr{10^@t{log10}(x)} 
+all reduce to @expr{x}.  Also, @expr{@t{ln}(@t{exp}(x))}, etc., can
+reduce to @expr{x} if @expr{x} is provably real.  The form
+@expr{@t{exp}(x)^y} is simplified to @expr{@t{exp}(x y)}.  If @expr{x}
+is a suitable multiple of 
+@texline @tmath{\pi i} 
+@infoline @expr{pi i}
+(as described above for the trigonometric functions), then
+@expr{@t{exp}(x)} or @expr{e^x} will be expanded.  Finally,
+@expr{@t{ln}(x)} is simplified to a form involving @code{pi} and
+@code{i} where @expr{x} is provably negative, positive imaginary, or
+negative imaginary. 
 
 The error functions @code{erf} and @code{erfc} are simplified when
 their arguments are negative-looking or are calls to the @code{conj}
@@ -22485,7 +22740,7 @@ function.
 Equations and inequalities are simplified by cancelling factors
 of products, quotients, or sums on both sides.  Inequalities
 change sign if a negative multiplicative factor is cancelled.
-Non-constant multiplicative factors as in @cite{a b = a c} are
+Non-constant multiplicative factors as in @expr{a b = a c} are
 cancelled from equations only if they are provably nonzero (generally
 because they were declared so; @pxref{Declarations}).  Factors
 are cancelled from inequalities only if they are nonzero and their
@@ -22493,11 +22748,11 @@ sign is known.
 
 Simplification also replaces an equation or inequality with
 1 or 0 (``true'' or ``false'') if it can through the use of
-declarations.  If @cite{x} is declared to be an integer greater
-than 5, then @cite{x < 3}, @cite{x = 3}, and @cite{x = 7.5} are
-all simplified to 0, but @cite{x > 3} is simplified to 1.
-By a similar analysis, @cite{abs(x) >= 0} is simplified to 1,
-as is @cite{x^2 >= 0} if @cite{x} is known to be real.
+declarations.  If @expr{x} is declared to be an integer greater
+than 5, then @expr{x < 3}, @expr{x = 3}, and @expr{x = 7.5} are
+all simplified to 0, but @expr{x > 3} is simplified to 1.
+By a similar analysis, @expr{abs(x) >= 0} is simplified to 1,
+as is @expr{x^2 >= 0} if @expr{x} is known to be real.
 
 @node Unsafe Simplifications, Simplification of Units, Algebraic Simplifications, Simplifying Formulas
 @subsection ``Unsafe'' Simplifications
@@ -22519,8 +22774,8 @@ formula lie in the restricted ranges for which these simplifications
 are valid.  The symbolic integrator uses @kbd{a e};
 one effect of this is that the integrator's results must be used with
 caution.  Where an integral table will often attach conditions like
-``for positive @cite{a} only,'' Calc (like most other symbolic
-integration programs) will simply produce an unqualified result.@refill
+``for positive @expr{a} only,'' Calc (like most other symbolic
+integration programs) will simply produce an unqualified result.
 
 Because @kbd{a e}'s simplifications are unsafe, it is sometimes better
 to type @kbd{C-u -3 a v}, which does extended simplification only
@@ -22542,45 +22797,49 @@ by @kbd{a e}.
 
 Inverse trigonometric or hyperbolic functions, called with their
 corresponding non-inverse functions as arguments, are simplified
-by @kbd{a e}.  For example, @cite{@t{arcsin}(@t{sin}(x))} changes
-to @cite{x}.  Also, @cite{@t{arcsin}(@t{cos}(x))} and
-@cite{@t{arccos}(@t{sin}(x))} both change to @cite{@t{pi}/2 - x}.
+by @kbd{a e}.  For example, @expr{@t{arcsin}(@t{sin}(x))} changes
+to @expr{x}.  Also, @expr{@t{arcsin}(@t{cos}(x))} and
+@expr{@t{arccos}(@t{sin}(x))} both change to @expr{@t{pi}/2 - x}.
 These simplifications are unsafe because they are valid only for
-values of @cite{x} in a certain range; outside that range, values
+values of @expr{x} in a certain range; outside that range, values
 are folded down to the 360-degree range that the inverse trigonometric
 functions always produce.
 
-Powers of powers @cite{(x^a)^b} are simplified to @c{$x^{a b}$}
-@cite{x^(a b)}
-for all @cite{a} and @cite{b}.  These results will be valid only
-in a restricted range of @cite{x}; for example, in @c{$(x^2)^{1:2}$}
-@cite{(x^2)^1:2}
-the powers cancel to get @cite{x}, which is valid for positive values
-of @cite{x} but not for negative or complex values.
-
-Similarly, @cite{@t{sqrt}(x^a)} and @cite{@t{sqrt}(x)^a} are both
-simplified (possibly unsafely) to @c{$x^{a/2}$}
-@cite{x^(a/2)}.
-
-Forms like @cite{@t{sqrt}(1 - @t{sin}(x)^2)} are simplified to, e.g.,
-@cite{@t{cos}(x)}.  Calc has identities of this sort for @code{sin},
+Powers of powers @expr{(x^a)^b} are simplified to 
+@texline @tmath{x^{a b}}
+@infoline @expr{x^(a b)}
+for all @expr{a} and @expr{b}.  These results will be valid only
+in a restricted range of @expr{x}; for example, in 
+@texline @tmath{(x^2)^{1:2}}
+@infoline @expr{(x^2)^1:2}
+the powers cancel to get @expr{x}, which is valid for positive values
+of @expr{x} but not for negative or complex values.
+
+Similarly, @expr{@t{sqrt}(x^a)} and @expr{@t{sqrt}(x)^a} are both
+simplified (possibly unsafely) to 
+@texline @tmath{x^{a/2}}.
+@infoline @expr{x^(a/2)}.
+
+Forms like @expr{@t{sqrt}(1 - sin(x)^2)} are simplified to, e.g.,
+@expr{@t{cos}(x)}.  Calc has identities of this sort for @code{sin},
 @code{cos}, @code{tan}, @code{sinh}, and @code{cosh}.
 
 Arguments of square roots are partially factored to look for
 squared terms that can be extracted.  For example,
-@cite{@t{sqrt}(a^2 b^3 + a^3 b^2)} simplifies to @cite{a b @t{sqrt}(a+b)}.
+@expr{@t{sqrt}(a^2 b^3 + a^3 b^2)} simplifies to 
+@expr{a b @t{sqrt}(a+b)}.
 
-The simplifications of @cite{@t{ln}(@t{exp}(x))}, @cite{@t{ln}(@t{e}^x)},
-and @cite{@t{log10}(10^x)} to @cite{x} are also unsafe because
-of problems with principal values (although these simplifications
-are safe if @cite{x} is known to be real).
+The simplifications of @expr{@t{ln}(@t{exp}(x))},
+@expr{@t{ln}(@t{e}^x)}, and @expr{@t{log10}(10^x)} to @expr{x} are also
+unsafe because of problems with principal values (although these
+simplifications are safe if @expr{x} is known to be real).
 
 Common factors are cancelled from products on both sides of an
-equation, even if those factors may be zero:  @cite{a x / b x}
-to @cite{a / b}.  Such factors are never cancelled from
+equation, even if those factors may be zero:  @expr{a x / b x}
+to @expr{a / b}.  Such factors are never cancelled from
 inequalities:  Even @kbd{a e} is not bold enough to reduce
-@cite{a x < b x} to @cite{a < b} (or @cite{a > b}, depending
-on whether you believe @cite{x} is positive or negative).
+@expr{a x < b x} to @expr{a < b} (or @expr{a > b}, depending
+on whether you believe @expr{x} is positive or negative).
 The @kbd{a M /} command can be used to divide a factor out of
 both sides of an inequality.
 
@@ -22600,12 +22859,12 @@ and @code{AlgSimpRules}.
 Scalar mode is automatically put into effect when simplifying units.
 @xref{Matrix Mode}.
 
-Sums @cite{a + b} involving units are simplified by extracting the
-units of @cite{a} as if by the @kbd{u x} command (call the result
-@cite{u_a}), then simplifying the expression @cite{b / u_a}
+Sums @expr{a + b} involving units are simplified by extracting the
+units of @expr{a} as if by the @kbd{u x} command (call the result
+@expr{u_a}), then simplifying the expression @expr{b / u_a}
 using @kbd{u b} and @kbd{u s}.  If the result has units then the sum
 is inconsistent and is left alone.  Otherwise, it is rewritten
-in terms of the units @cite{u_a}.
+in terms of the units @expr{u_a}.
 
 If units auto-ranging mode is enabled, products or quotients in
 which the first argument is a number which is out of range for the
@@ -22617,39 +22876,44 @@ For example, @samp{2 km m} is simplified to @samp{2000 m^2}.
 However, compatible but different units like @code{ft} and @code{in}
 are not combined in this way.
 
-Quotients @cite{a / b} are simplified in three additional ways.  First,
-if @cite{b} is a number or a product beginning with a number, Calc
+Quotients @expr{a / b} are simplified in three additional ways.  First,
+if @expr{b} is a number or a product beginning with a number, Calc
 computes the reciprocal of this number and moves it to the numerator.
 
 Second, for each pair of unit names from the numerator and denominator
 of a quotient, if the units are compatible (e.g., they are both
 units of area) then they are replaced by the ratio between those
 units.  For example, in @samp{3 s in N / kg cm} the units
-@samp{in / cm} will be replaced by @cite{2.54}.
+@samp{in / cm} will be replaced by @expr{2.54}.
 
 Third, if the units in the quotient exactly cancel out, so that
 a @kbd{u b} command on the quotient would produce a dimensionless
 number for an answer, then the quotient simplifies to that number.
 
 For powers and square roots, the ``unsafe'' simplifications
-@cite{(a b)^c} to @cite{a^c b^c}, @cite{(a/b)^c} to @cite{a^c / b^c},
-and @cite{(a^b)^c} to @c{$a^{b c}$}
-@cite{a^(b c)} are done if the powers are
-real numbers.  (These are safe in the context of units because
-all numbers involved can reasonably be assumed to be real.)
+@expr{(a b)^c} to @expr{a^c b^c}, @expr{(a/b)^c} to @expr{a^c / b^c},
+and @expr{(a^b)^c} to 
+@texline @tmath{a^{b c}}
+@infoline @expr{a^(b c)} 
+are done if the powers are real numbers.  (These are safe in the context
+of units because all numbers involved can reasonably be assumed to be
+real.)
 
 Also, if a unit name is raised to a fractional power, and the
 base units in that unit name all occur to powers which are a
 multiple of the denominator of the power, then the unit name
 is expanded out into its base units, which can then be simplified
 according to the previous paragraph.  For example, @samp{acre^1.5}
-is simplified by noting that @cite{1.5 = 3:2}, that @samp{acre}
+is simplified by noting that @expr{1.5 = 3:2}, that @samp{acre}
 is defined in terms of @samp{m^2}, and that the 2 in the power of
-@code{m} is a multiple of 2 in @cite{3:2}.  Thus, @code{acre^1.5} is
-replaced by approximately @c{$(4046 m^2)^{1.5}$}
-@cite{(4046 m^2)^1.5}, which is then
-changed to @c{$4046^{1.5} \, (m^2)^{1.5}$}
-@cite{4046^1.5 (m^2)^1.5}, then to @cite{257440 m^3}.
+@code{m} is a multiple of 2 in @expr{3:2}.  Thus, @code{acre^1.5} is
+replaced by approximately 
+@texline @tmath{(4046 m^2)^{1.5}}
+@infoline @expr{(4046 m^2)^1.5}, 
+which is then changed to 
+@texline @tmath{4046^{1.5} \, (m^2)^{1.5}},
+@infoline @expr{4046^1.5 (m^2)^1.5}, 
+then to @expr{257440 m^3}.
 
 The functions @code{float}, @code{frac}, @code{clean}, @code{abs},
 as well as @code{floor} and the other integer truncation functions,
@@ -22667,10 +22931,10 @@ with the angular mode temporarily set to radians.
 @section Polynomials
 
 A @dfn{polynomial} is a sum of terms which are coefficients times
-various powers of a ``base'' variable.  For example, @cite{2 x^2 + 3 x - 4}
-is a polynomial in @cite{x}.  Some formulas can be considered
-polynomials in several different variables:  @cite{1 + 2 x + 3 y + 4 x y^2}
-is a polynomial in both @cite{x} and @cite{y}.  Polynomial coefficients
+various powers of a ``base'' variable.  For example, @expr{2 x^2 + 3 x - 4}
+is a polynomial in @expr{x}.  Some formulas can be considered
+polynomials in several different variables:  @expr{1 + 2 x + 3 y + 4 x y^2}
+is a polynomial in both @expr{x} and @expr{y}.  Polynomial coefficients
 are often numbers, but they may in general be any formulas not
 involving the base variable.
 
@@ -22679,9 +22943,9 @@ involving the base variable.
 @tindex factor
 The @kbd{a f} (@code{calc-factor}) [@code{factor}] command factors a
 polynomial into a product of terms.  For example, the polynomial
-@cite{x^3 + 2 x^2 + x} is factored into @samp{x*(x+1)^2}.  As another
-example, @cite{a c + b d + b c + a d} is factored into the product
-@cite{(a + b) (c + d)}.
+@expr{x^3 + 2 x^2 + x} is factored into @samp{x*(x+1)^2}.  As another
+example, @expr{a c + b d + b c + a d} is factored into the product
+@expr{(a + b) (c + d)}.
 
 Calc currently has three algorithms for factoring.  Formulas which are
 linear in several variables, such as the second example above, are
@@ -22689,7 +22953,7 @@ merged according to the distributive law.  Formulas which are
 polynomials in a single variable, with constant integer or fractional
 coefficients, are factored into irreducible linear and/or quadratic
 terms.  The first example above factors into three linear terms
-(@cite{x}, @cite{x+1}, and @cite{x+1} again).  Finally, formulas
+(@expr{x}, @expr{x+1}, and @expr{x+1} again).  Finally, formulas
 which do not fit the above criteria are handled by the algebraic
 rewrite mechanism.
 
@@ -22721,7 +22985,7 @@ The rewrite-based factorization method uses rules stored in the variable
 @code{FactorRules}.  @xref{Rewrite Rules}, for a discussion of the
 operation of rewrite rules.  The default @code{FactorRules} are able
 to factor quadratic forms symbolically into two linear terms,
-@cite{(a x + b) (c x + d)}.  You can edit these rules to include other
+@expr{(a x + b) (c x + d)}.  You can edit these rules to include other
 cases if you wish.  To use the rules, Calc builds the formula
 @samp{thecoefs(x, [a, b, c, ...])} where @code{x} is the polynomial
 base variable and @code{a}, @code{b}, etc., are polynomial coefficients
@@ -22742,13 +23006,13 @@ The @kbd{H a f} [@code{factors}] command also factors a polynomial,
 but it returns a list of factors instead of an expression which is the
 product of the factors.  Each factor is represented by a sub-vector
 of the factor, and the power with which it appears.  For example,
-@cite{x^5 + x^4 - 33 x^3 + 63 x^2} factors to @cite{(x + 7) x^2 (x - 3)^2}
-in @kbd{a f}, or to @cite{[ [x, 2], [x+7, 1], [x-3, 2] ]} in @kbd{H a f}.
+@expr{x^5 + x^4 - 33 x^3 + 63 x^2} factors to @expr{(x + 7) x^2 (x - 3)^2}
+in @kbd{a f}, or to @expr{[ [x, 2], [x+7, 1], [x-3, 2] ]} in @kbd{H a f}.
 If there is an overall numeric factor, it always comes first in the list.
 The functions @code{factor} and @code{factors} allow a second argument
-when written in algebraic form; @samp{factor(x,v)} factors @cite{x} with
-respect to the specific variable @cite{v}.  The default is to factor with
-respect to all the variables that appear in @cite{x}.
+when written in algebraic form; @samp{factor(x,v)} factors @expr{x} with
+respect to the specific variable @expr{v}.  The default is to factor with
+respect to all the variables that appear in @expr{x}.
 
 @kindex a c
 @pindex calc-collect
@@ -22756,12 +23020,12 @@ respect to all the variables that appear in @cite{x}.
 The @kbd{a c} (@code{calc-collect}) [@code{collect}] command rearranges a
 formula as a
 polynomial in a given variable, ordered in decreasing powers of that
-variable.  For example, given @cite{1 + 2 x + 3 y + 4 x y^2} on
-the stack, @kbd{a c x} would produce @cite{(2 + 4 y^2) x + (1 + 3 y)},
-and @kbd{a c y} would produce @cite{(4 x) y^2 + 3 y + (1 + 2 x)}.
+variable.  For example, given @expr{1 + 2 x + 3 y + 4 x y^2} on
+the stack, @kbd{a c x} would produce @expr{(2 + 4 y^2) x + (1 + 3 y)},
+and @kbd{a c y} would produce @expr{(4 x) y^2 + 3 y + (1 + 2 x)}.
 The polynomial will be expanded out using the distributive law as
-necessary:  Collecting @cite{x} in @cite{(x - 1)^3} produces
-@cite{x^3 - 3 x^2 + 3 x - 1}.  Terms not involving @cite{x} will
+necessary:  Collecting @expr{x} in @expr{(x - 1)^3} produces
+@expr{x^3 - 3 x^2 + 3 x - 1}.  Terms not involving @expr{x} will
 not be expanded.
 
 The ``variable'' you specify at the prompt can actually be any
@@ -22790,10 +23054,10 @@ also know many other kinds of expansions, such as
 do not do.)
 
 Calc's automatic simplifications will sometimes reverse a partial
-expansion.  For example, the first step in expanding @cite{(x+1)^3} is
-to write @cite{(x+1) (x+1)^2}.  If @kbd{a x} stops there and tries
+expansion.  For example, the first step in expanding @expr{(x+1)^3} is
+to write @expr{(x+1) (x+1)^2}.  If @kbd{a x} stops there and tries
 to put this formula onto the stack, though, Calc will automatically
-simplify it back to @cite{(x+1)^3} form.  The solution is to turn
+simplify it back to @expr{(x+1)^3} form.  The solution is to turn
 simplification off first (@pxref{Simplification Modes}), or to run
 @kbd{a x} without a numeric prefix argument so that it expands all
 the way in one step.
@@ -22814,21 +23078,21 @@ chooses the base variable automatically.
 @tindex nrat
 The @kbd{a n} (@code{calc-normalize-rat}) [@code{nrat}] command
 attempts to arrange a formula into a quotient of two polynomials.
-For example, given @cite{1 + (a + b/c) / d}, the result would be
-@cite{(b + a c + c d) / c d}.  The quotient is reduced, so that
-@kbd{a n} will simplify @cite{(x^2 + 2x + 1) / (x^2 - 1)} by dividing
-out the common factor @cite{x + 1}, yielding @cite{(x + 1) / (x - 1)}.
+For example, given @expr{1 + (a + b/c) / d}, the result would be
+@expr{(b + a c + c d) / c d}.  The quotient is reduced, so that
+@kbd{a n} will simplify @expr{(x^2 + 2x + 1) / (x^2 - 1)} by dividing
+out the common factor @expr{x + 1}, yielding @expr{(x + 1) / (x - 1)}.
 
 @kindex a \
 @pindex calc-poly-div
 @tindex pdiv
 The @kbd{a \} (@code{calc-poly-div}) [@code{pdiv}] command divides
-two polynomials @cite{u} and @cite{v}, yielding a new polynomial
-@cite{q}.  If several variables occur in the inputs, the inputs are
+two polynomials @expr{u} and @expr{v}, yielding a new polynomial
+@expr{q}.  If several variables occur in the inputs, the inputs are
 considered multivariate polynomials.  (Calc divides by the variable
-with the largest power in @cite{u} first, or, in the case of equal
+with the largest power in @expr{u} first, or, in the case of equal
 powers, chooses the variables in alphabetical order.)  For example,
-dividing @cite{x^2 + 3 x + 2} by @cite{x + 2} yields @cite{x + 1}.
+dividing @expr{x^2 + 3 x + 2} by @expr{x + 2} yields @expr{x + 1}.
 The remainder from the division, if any, is reported at the bottom
 of the screen and is also placed in the Trail along with the quotient.
 
@@ -22842,9 +23106,9 @@ above.
 @pindex calc-poly-rem
 @tindex prem
 The @kbd{a %} (@code{calc-poly-rem}) [@code{prem}] command divides
-two polynomials and keeps the remainder @cite{r}.  The quotient
-@cite{q} is discarded.  For any formulas @cite{a} and @cite{b}, the
-results of @kbd{a \} and @kbd{a %} satisfy @cite{a = q b + r}.
+two polynomials and keeps the remainder @expr{r}.  The quotient
+@expr{q} is discarded.  For any formulas @expr{a} and @expr{b}, the
+results of @kbd{a \} and @kbd{a %} satisfy @expr{a = q b + r}.
 (This is analogous to plain @kbd{\} and @kbd{%}, which compute the
 integer quotient and remainder from dividing two numbers.)
 
@@ -22855,10 +23119,10 @@ integer quotient and remainder from dividing two numbers.)
 @tindex pdivide
 The @kbd{a /} (@code{calc-poly-div-rem}) [@code{pdivrem}] command
 divides two polynomials and reports both the quotient and the
-remainder as a vector @cite{[q, r]}.  The @kbd{H a /} [@code{pdivide}]
+remainder as a vector @expr{[q, r]}.  The @kbd{H a /} [@code{pdivide}]
 command divides two polynomials and constructs the formula
-@cite{q + r/b} on the stack.  (Naturally if the remainder is zero,
-this will immediately simplify to @cite{q}.)
+@expr{q + r/b} on the stack.  (Naturally if the remainder is zero,
+this will immediately simplify to @expr{q}.)
 
 @kindex a g
 @pindex calc-poly-gcd
@@ -22936,8 +23200,9 @@ answer!
 
 If you use the @code{deriv} function directly in an algebraic formula,
 you can write @samp{deriv(f,x,x0)} which represents the derivative
-of @cite{f} with respect to @cite{x}, evaluated at the point @c{$x=x_0$}
-@cite{x=x0}.
+of @expr{f} with respect to @expr{x}, evaluated at the point 
+@texline @tmath{x=x_0}.
+@infoline @expr{x=x0}.
 
 If the formula being differentiated contains functions which Calc does
 not know, the derivatives of those functions are produced by adding
@@ -22960,7 +23225,7 @@ respect to the other arguments are @samp{f'2(x,y,z)} and @samp{f'3(x,y,z)}.
 Various higher-order derivatives can be formed in the obvious way, e.g.,
 @samp{f'@var{}'(x)} (the second derivative of @code{f}) or
 @samp{f'@var{}'2'3(x,y,z)} (@code{f} differentiated with respect to each
-argument once).@refill
+argument once).
 
 @node Integration, Customizing the Integrator, Differentiation, Calculus
 @subsection Integration
@@ -22975,11 +23240,12 @@ respect to a variable.  The integrator is not guaranteed to work for
 all integrable functions, but it is able to integrate several large
 classes of formulas.  In particular, any polynomial or rational function
 (a polynomial divided by a polynomial) is acceptable.  (Rational functions
-don't have to be in explicit quotient form, however; @c{$x/(1+x^{-2})$}
-@cite{x/(1+x^-2)}
+don't have to be in explicit quotient form, however; 
+@texline @tmath{x/(1+x^{-2})}
+@infoline @expr{x/(1+x^-2)}
 is not strictly a quotient of polynomials, but it is equivalent to
-@cite{x^3/(x^2+1)}, which is.)  Also, square roots of terms involving
-@cite{x} and @cite{x^2} may appear in rational functions being
+@expr{x^3/(x^2+1)}, which is.)  Also, square roots of terms involving
+@expr{x} and @expr{x^2} may appear in rational functions being
 integrated.  Finally, rational functions involving trigonometric or
 hyperbolic functions can be integrated.
 
@@ -23000,17 +23266,21 @@ integral $\int_a^b f(x) \, dx$.
 
 Please note that the current implementation of Calc's integrator sometimes
 produces results that are significantly more complex than they need to
-be.  For example, the integral Calc finds for @c{$1/(x+\sqrt{x^2+1})$}
-@cite{1/(x+sqrt(x^2+1))}
+be.  For example, the integral Calc finds for 
+@texline @tmath{1/(x+\sqrt{x^2+1})}
+@infoline @expr{1/(x+sqrt(x^2+1))}
 is several times more complicated than the answer Mathematica
 returns for the same input, although the two forms are numerically
 equivalent.  Also, any indefinite integral should be considered to have
 an arbitrary constant of integration added to it, although Calc does not
 write an explicit constant of integration in its result.  For example,
-Calc's solution for @c{$1/(1+\tan x)$}
-@cite{1/(1+tan(x))} differs from the solution given
-in the @emph{CRC Math Tables} by a constant factor of @c{$\pi i / 2$}
-@cite{pi i / 2},
+Calc's solution for 
+@texline @tmath{1/(1+\tan x)}
+@infoline @expr{1/(1+tan(x))} 
+differs from the solution given in the @emph{CRC Math Tables} by a
+constant factor of  
+@texline @tmath{\pi i / 2}
+@infoline @expr{pi i / 2},
 due to a different choice of constant of integration.
 
 The Calculator remembers all the integrals it has done.  If conditions
@@ -23068,8 +23338,10 @@ in your @code{IntegRules}.
 @tindex Ei
 As a more serious example, the expression @samp{exp(x)/x} cannot be
 integrated in terms of the standard functions, so the ``exponential
-integral'' function @c{${\rm Ei}(x)$}
-@cite{Ei(x)} was invented to describe it.
+integral'' function 
+@texline @tmath{{\rm Ei}(x)}
+@infoline @expr{Ei(x)} 
+was invented to describe it.
 We can get Calc to do this integral in terms of a made-up @code{Ei}
 function by adding the rule @samp{[integtry(exp(x)/x, x) := Ei(x)]}
 to @code{IntegRules}.  Now entering @samp{exp(2x)/x} on the stack
@@ -23215,7 +23487,7 @@ of just a variable to produce a Taylor expansion about the point @var{a}.
 You may specify the number of terms with a numeric prefix argument;
 otherwise the command will prompt you for the number of terms.  Note that
 many series expansions have coefficients of zero for some terms, so you
-may appear to get fewer terms than you asked for.@refill
+may appear to get fewer terms than you asked for.
 
 If the @kbd{a i} command is unable to find a symbolic integral for a
 function, you can get an approximation by integrating the function's
@@ -23232,28 +23504,32 @@ Taylor series.
 @cindex Solving equations
 The @kbd{a S} (@code{calc-solve-for}) [@code{solve}] command rearranges
 an equation to solve for a specific variable.  An equation is an
-expression of the form @cite{L = R}.  For example, the command @kbd{a S x}
-will rearrange @cite{y = 3x + 6} to the form, @cite{x = y/3 - 2}.  If the
+expression of the form @expr{L = R}.  For example, the command @kbd{a S x}
+will rearrange @expr{y = 3x + 6} to the form, @expr{x = y/3 - 2}.  If the
 input is not an equation, it is treated like an equation of the
-form @cite{X = 0}.
+form @expr{X = 0}.
 
-This command also works for inequalities, as in @cite{y < 3x + 6}.
+This command also works for inequalities, as in @expr{y < 3x + 6}.
 Some inequalities cannot be solved where the analogous equation could
-be; for example, solving @c{$a < b \, c$}
-@cite{a < b c} for @cite{b} is impossible
-without knowing the sign of @cite{c}.  In this case, @kbd{a S} will
-produce the result @c{$b \mathbin{\hbox{\code{!=}}} a/c$}
-@cite{b != a/c} (using the not-equal-to operator)
-to signify that the direction of the inequality is now unknown.  The
-inequality @c{$a \le b \, c$}
-@cite{a <= b c} is not even partially solved.
-@xref{Declarations}, for a way to tell Calc that the signs of the
-variables in a formula are in fact known.
+be; for example, solving 
+@texline @tmath{a < b \, c}
+@infoline @expr{a < b c} 
+for @expr{b} is impossible
+without knowing the sign of @expr{c}.  In this case, @kbd{a S} will
+produce the result 
+@texline @tmath{b \mathbin{\hbox{\code{!=}}} a/c}
+@infoline @expr{b != a/c} 
+(using the not-equal-to operator) to signify that the direction of the
+inequality is now unknown.  The inequality 
+@texline @tmath{a \le b \, c}
+@infoline @expr{a <= b c} 
+is not even partially solved.  @xref{Declarations}, for a way to tell
+Calc that the signs of the variables in a formula are in fact known.
 
 Two useful commands for working with the result of @kbd{a S} are
-@kbd{a .} (@pxref{Logical Operations}), which converts @cite{x = y/3 - 2}
-to @cite{y/3 - 2}, and @kbd{s l} (@pxref{Let Command}) which evaluates
-another formula with @cite{x} set equal to @cite{y/3 - 2}.
+@kbd{a .} (@pxref{Logical Operations}), which converts @expr{x = y/3 - 2}
+to @expr{y/3 - 2}, and @kbd{s l} (@pxref{Let Command}) which evaluates
+another formula with @expr{x} set equal to @expr{y/3 - 2}.
 
 @menu
 * Multiple Solutions::
@@ -23293,7 +23569,7 @@ There is a similar phenomenon going the other direction:  Suppose
 we solve @samp{sqrt(y) = x} for @code{y}.  Calc squares both sides
 to get @samp{y = x^2}.  This is correct, except that it introduces
 some dubious solutions.  Consider solving @samp{sqrt(y) = -3}:
-Calc will report @cite{y = 9} as a valid solution, which is true
+Calc will report @expr{y = 9} as a valid solution, which is true
 in the mathematical sense of square-root, but false (there is no
 solution) for the actual Calc positive-valued @code{sqrt}.  This
 happens for both @kbd{a S} and @kbd{H a S}.
@@ -23337,7 +23613,7 @@ in that variable is not a positive integer, the regular
 With the Inverse flag, @kbd{I a S} [@code{finv}] treats the expression
 on top of the stack as a function of the specified variable and solves
 to find the inverse function, written in terms of the same variable.
-For example, @kbd{I a S x} inverts @cite{2x + 6} to @cite{x/2 - 3}.
+For example, @kbd{I a S x} inverts @expr{2x + 6} to @expr{x/2 - 3}.
 You can use both Inverse and Hyperbolic [@code{ffinv}] to obtain a
 fully general inverse, as described above.
 
@@ -23361,12 +23637,12 @@ reported; @pxref{Declarations}.)
 Note that because @kbd{a P} uses @kbd{H a S}, it is able to deliver
 symbolic solutions if the polynomial has symbolic coefficients.  Also
 note that Calc's solver is not able to get exact symbolic solutions
-to all polynomials.  Polynomials containing powers up to @cite{x^4}
+to all polynomials.  Polynomials containing powers up to @expr{x^4}
 can always be solved exactly; polynomials of higher degree sometimes
-can be:  @cite{x^6 + x^3 + 1} is converted to @cite{(x^3)^2 + (x^3) + 1},
-which can be solved for @cite{x^3} using the quadratic equation, and then
-for @cite{x} by taking cube roots.  But in many cases, like
-@cite{x^6 + x + 1}, Calc does not know how to rewrite the polynomial
+can be:  @expr{x^6 + x^3 + 1} is converted to @expr{(x^3)^2 + (x^3) + 1},
+which can be solved for @expr{x^3} using the quadratic equation, and then
+for @expr{x} by taking cube roots.  But in many cases, like
+@expr{x^6 + x + 1}, Calc does not know how to rewrite the polynomial
 into a form it can solve.  The @kbd{a P} command can still deliver a
 list of numerical roots, however, provided that symbolic mode (@kbd{m s})
 is not turned on.  (If you work with symbolic mode on, recall that the
@@ -23392,7 +23668,7 @@ and typing @kbd{a S x,y @key{RET}} produces the vector of solutions
 have the same length as the variables vector, and the variables
 will be listed in the same order there.  Note that the solutions
 are not always simplified as far as possible; the solution for
-@cite{x} here could be improved by an application of the @kbd{a n}
+@expr{x} here could be improved by an application of the @kbd{a n}
 command.
 
 Calc's algorithm works by trying to eliminate one variable at a
@@ -23453,23 +23729,23 @@ to satisfy the equations.  @xref{Curve Fitting}.
 The @code{poly} function takes a polynomial and a variable as
 arguments, and returns a vector of polynomial coefficients (constant
 coefficient first).  For example, @samp{poly(x^3 + 2 x, x)} returns
-@cite{[0, 2, 0, 1]}.  If the input is not a polynomial in @cite{x},
+@expr{[0, 2, 0, 1]}.  If the input is not a polynomial in @expr{x},
 the call to @code{poly} is left in symbolic form.  If the input does
-not involve the variable @cite{x}, the input is returned in a list
+not involve the variable @expr{x}, the input is returned in a list
 of length one, representing a polynomial with only a constant
-coefficient.  The call @samp{poly(x, x)} returns the vector @cite{[0, 1]}.
+coefficient.  The call @samp{poly(x, x)} returns the vector @expr{[0, 1]}.
 The last element of the returned vector is guaranteed to be nonzero;
-note that @samp{poly(0, x)} returns the empty vector @cite{[]}.
-Note also that @cite{x} may actually be any formula; for example,
-@samp{poly(sin(x)^2 - sin(x) + 3, sin(x))} returns @cite{[3, -1, 1]}.
+note that @samp{poly(0, x)} returns the empty vector @expr{[]}.
+Note also that @expr{x} may actually be any formula; for example,
+@samp{poly(sin(x)^2 - sin(x) + 3, sin(x))} returns @expr{[3, -1, 1]}.
 
 @cindex Coefficients of polynomial
 @cindex Degree of polynomial
-To get the @cite{x^k} coefficient of polynomial @cite{p}, use
-@samp{poly(p, x)_(k+1)}.  To get the degree of polynomial @cite{p},
+To get the @expr{x^k} coefficient of polynomial @expr{p}, use
+@samp{poly(p, x)_(k+1)}.  To get the degree of polynomial @expr{p},
 use @samp{vlen(poly(p, x)) - 1}.  For example, @samp{poly((x+1)^4, x)}
 returns @samp{[1, 4, 6, 4, 1]}, so @samp{poly((x+1)^4, x)_(2+1)}
-gives the @cite{x^2} coefficient of this polynomial, 6.
+gives the @expr{x^2} coefficient of this polynomial, 6.
 
 @ignore
 @starindex
@@ -23494,13 +23770,13 @@ their arguments as polynomials, will not because the decomposition
 is considered trivial.
 
 For example, @samp{gpoly((x-2)^2, x)} returns @samp{[x, [4, -4, 1], 1]},
-since the expanded form of this polynomial is @cite{4 - 4 x + x^2}.
+since the expanded form of this polynomial is @expr{4 - 4 x + x^2}.
 
 The term @var{x} may itself be a polynomial in @var{var}.  This is
 done to reduce the size of the @var{c} vector.  For example,
 @samp{gpoly(x^4 + x^2 - 1, x)} returns @samp{[x^2, [-1, 1, 1], 1]},
-since a quadratic polynomial in @cite{x^2} is easier to solve than
-a quartic polynomial in @cite{x}.
+since a quadratic polynomial in @expr{x^2} is easier to solve than
+a quartic polynomial in @expr{x}.
 
 A few more examples of the kinds of polynomials @code{gpoly} can
 discover:
@@ -23517,7 +23793,7 @@ x^(2a) + 2 x^a + 5       [x^a, [5, 2, 1], 1]
 
 The @code{poly} and @code{gpoly} functions accept a third integer argument
 which specifies the largest degree of polynomial that is acceptable.
-If this is @cite{n}, then only @var{c} vectors of length @cite{n+1}
+If this is @expr{n}, then only @var{c} vectors of length @expr{n+1}
 or less will be returned.  Otherwise, the @code{poly} or @code{gpoly}
 call will remain in symbolic form.  For example, the equation solver
 can handle quartics and smaller polynomials, so it calls
@@ -23549,7 +23825,7 @@ The @code{plead} function finds the leading term of a polynomial.
 Thus @samp{plead(p,x)} is equivalent to @samp{poly(p,x)_vlen(poly(p,x))},
 though again more efficient.  In particular, @samp{plead((2x+1)^10, x)}
 returns 1024 without expanding out the list of coefficients.  The
-value of @code{plead(p,x)} will be zero only if @cite{p = 0}.
+value of @code{plead(p,x)} will be zero only if @expr{p = 0}.
 
 @ignore
 @starindex
@@ -23618,7 +23894,7 @@ on numerical data.)
 The @kbd{a R} (@code{calc-find-root}) [@code{root}] command finds a
 numerical solution (or @dfn{root}) of an equation.  (This command treats
 inequalities the same as equations.  If the input is any other kind
-of formula, it is interpreted as an equation of the form @cite{X = 0}.)
+of formula, it is interpreted as an equation of the form @expr{X = 0}.)
 
 The @kbd{a R} command requires an initial guess on the top of the
 stack, and a formula in the second-to-top position.  It prompts for a
@@ -23704,22 +23980,25 @@ value of the variable which minimizes the formula's value, along
 with the minimum value itself.
 
 Note that this command looks for a @emph{local} minimum.  Many functions
-have more than one minimum; some, like @c{$x \sin x$}
-@cite{x sin(x)}, have infinitely
-many.  In fact, there is no easy way to define the ``global'' minimum
-of @c{$x \sin x$}
-@cite{x sin(x)} but Calc can still locate any particular local minimum
+have more than one minimum; some, like 
+@texline @tmath{x \sin x},
+@infoline @expr{x sin(x)}, 
+have infinitely many.  In fact, there is no easy way to define the
+``global'' minimum of 
+@texline @tmath{x \sin x}
+@infoline @expr{x sin(x)} 
+but Calc can still locate any particular local minimum
 for you.  Calc basically goes downhill from the initial guess until it
 finds a point at which the function's value is greater both to the left
 and to the right.  Calc does not use derivatives when minimizing a function.
 
 If your initial guess is an interval and it looks like the minimum
 occurs at one or the other endpoint of the interval, Calc will return
-that endpoint only if that endpoint is closed; thus, minimizing @cite{17 x}
-over @cite{[2..3]} will return @cite{[2, 38]}, but minimizing over
-@cite{(2..3]} would report no minimum found.  In general, you should
+that endpoint only if that endpoint is closed; thus, minimizing @expr{17 x}
+over @expr{[2..3]} will return @expr{[2, 38]}, but minimizing over
+@expr{(2..3]} would report no minimum found.  In general, you should
 use closed intervals to find literally the minimum value in that
-range of @cite{x}, or open intervals to find the local minimum, if
+range of @expr{x}, or open intervals to find the local minimum, if
 any, that happens to lie in that range.
 
 Most functions are smooth and flat near their minimum values.  Because
@@ -23781,9 +24060,9 @@ multidimensional minimization is currently @emph{very} slow.
 
 @noindent
 The @kbd{a F} command fits a set of data to a @dfn{model formula},
-such as @cite{y = m x + b} where @cite{m} and @cite{b} are parameters
+such as @expr{y = m x + b} where @expr{m} and @expr{b} are parameters
 to be determined.  For a typical set of measured data there will be
-no single @cite{m} and @cite{b} that exactly fit the data; in this
+no single @expr{m} and @expr{b} that exactly fit the data; in this
 case, Calc chooses values of the parameters that provide the closest
 possible fit.
 
@@ -23806,46 +24085,50 @@ possible fit.
 @cindex Linear regression
 @cindex Least-squares fits
 The @kbd{a F} (@code{calc-curve-fit}) [@code{fit}] command attempts
-to fit a set of data (@cite{x} and @cite{y} vectors of numbers) to a
-straight line, polynomial, or other function of @cite{x}.  For the
+to fit a set of data (@expr{x} and @expr{y} vectors of numbers) to a
+straight line, polynomial, or other function of @expr{x}.  For the
 moment we will consider only the case of fitting to a line, and we
 will ignore the issue of whether or not the model was in fact a good
 fit for the data.
 
-In a standard linear least-squares fit, we have a set of @cite{(x,y)}
-data points that we wish to fit to the model @cite{y = m x + b}
-by adjusting the parameters @cite{m} and @cite{b} to make the @cite{y}
+In a standard linear least-squares fit, we have a set of @expr{(x,y)}
+data points that we wish to fit to the model @expr{y = m x + b}
+by adjusting the parameters @expr{m} and @expr{b} to make the @expr{y}
 values calculated from the formula be as close as possible to the actual
-@cite{y} values in the data set.  (In a polynomial fit, the model is
-instead, say, @cite{y = a x^3 + b x^2 + c x + d}.  In a multilinear fit,
-we have data points of the form @cite{(x_1,x_2,x_3,y)} and our model is
-@cite{y = a x_1 + b x_2 + c x_3 + d}.  These will be discussed later.)
-
-In the model formula, variables like @cite{x} and @cite{x_2} are called
-the @dfn{independent variables}, and @cite{y} is the @dfn{dependent
-variable}.  Variables like @cite{m}, @cite{a}, and @cite{b} are called
+@expr{y} values in the data set.  (In a polynomial fit, the model is
+instead, say, @expr{y = a x^3 + b x^2 + c x + d}.  In a multilinear fit,
+we have data points of the form @expr{(x_1,x_2,x_3,y)} and our model is
+@expr{y = a x_1 + b x_2 + c x_3 + d}.  These will be discussed later.)
+
+In the model formula, variables like @expr{x} and @expr{x_2} are called
+the @dfn{independent variables}, and @expr{y} is the @dfn{dependent
+variable}.  Variables like @expr{m}, @expr{a}, and @expr{b} are called
 the @dfn{parameters} of the model.
 
 The @kbd{a F} command takes the data set to be fitted from the stack.
 By default, it expects the data in the form of a matrix.  For example,
-for a linear or polynomial fit, this would be a @c{$2\times N$}
-@asis{2xN} matrix where
-the first row is a list of @cite{x} values and the second row has the
-corresponding @cite{y} values.  For the multilinear fit shown above,
-the matrix would have four rows (@cite{x_1}, @cite{x_2}, @cite{x_3}, and
-@cite{y}, respectively).
-
-If you happen to have an @c{$N\times2$}
-@asis{Nx2} matrix instead of a @c{$2\times N$}
-@asis{2xN} matrix,
-just press @kbd{v t} first to transpose the matrix.
+for a linear or polynomial fit, this would be a 
+@texline @tmath{2\times N}
+@infoline 2xN
+matrix where the first row is a list of @expr{x} values and the second
+row has the corresponding @expr{y} values.  For the multilinear fit
+shown above, the matrix would have four rows (@expr{x_1}, @expr{x_2},
+@expr{x_3}, and @expr{y}, respectively).
+
+If you happen to have an 
+@texline @tmath{N\times2}
+@infoline Nx2
+matrix instead of a 
+@texline @tmath{2\times N}
+@infoline 2xN
+matrix, just press @kbd{v t} first to transpose the matrix.
 
 After you type @kbd{a F}, Calc prompts you to select a model.  For a
 linear fit, press the digit @kbd{1}.
 
 Calc then prompts for you to name the variables.  By default it chooses
-high letters like @cite{x} and @cite{y} for independent variables and
-low letters like @cite{a} and @cite{b} for parameters.  (The dependent
+high letters like @expr{x} and @expr{y} for independent variables and
+low letters like @expr{a} and @expr{b} for parameters.  (The dependent
 variable doesn't need a name.)  The two kinds of variables are separated
 by a semicolon.  Since you generally care more about the names of the
 independent variables than of the parameters, Calc also allows you to
 @noindent
 is on the stack and we wish to do a simple linear fit.  Type
 @kbd{a F}, then @kbd{1} for the model, then @key{RET} to use
-the default names.  The result will be the formula @cite{3 + 2 x}
+the default names.  The result will be the formula @expr{3 + 2 x}
 on the stack.  Calc has created the model expression @kbd{a + b x},
-then found the optimal values of @cite{a} and @cite{b} to fit the
+then found the optimal values of @expr{a} and @expr{b} to fit the
 data.  (In this case, it was able to find an exact fit.)  Calc then
-substituted those values for @cite{a} and @cite{b} in the model
+substituted those values for @expr{a} and @expr{b} in the model
 formula.
 
 The @kbd{a F} command puts two entries in the trail.  One is, as
 always, a copy of the result that went to the stack; the other is
 a vector of the actual parameter values, written as equations:
-@cite{[a = 3, b = 2]}, in case you'd rather read them in a list
+@expr{[a = 3, b = 2]}, in case you'd rather read them in a list
 than pick them out of the formula.  (You can type @kbd{t y}
 to move this vector to the stack; see @ref{Trail Commands}.
 
@@ -23930,17 +24213,20 @@ $$ \chi^2 = \sum_{i=1}^N (y_i - (a + b x_i))^2 $$
 @end tex
 
 @noindent
-which is clearly zero if @cite{a + b x} exactly fits all data points,
-and increases as various @cite{a + b x_i} values fail to match the
-corresponding @cite{y_i} values.  There are several reasons why the
-summand is squared, one of them being to ensure that @c{$\chi^2 \ge 0$}
-@cite{chi^2 >= 0}.
-Least-squares fitting simply chooses the values of @cite{a} and @cite{b}
-for which the error @c{$\chi^2$}
-@cite{chi^2} is as small as possible.
+which is clearly zero if @expr{a + b x} exactly fits all data points,
+and increases as various @expr{a + b x_i} values fail to match the
+corresponding @expr{y_i} values.  There are several reasons why the
+summand is squared, one of them being to ensure that 
+@texline @tmath{\chi^2 \ge 0}.
+@infoline @expr{chi^2 >= 0}.
+Least-squares fitting simply chooses the values of @expr{a} and @expr{b}
+for which the error 
+@texline @tmath{\chi^2}
+@infoline @expr{chi^2} 
+is as small as possible.
 
 Other kinds of models do the same thing but with a different model
-formula in place of @cite{a + b x_i}.
+formula in place of @expr{a + b x_i}.
 
 @tex
 \bigskip
@@ -23953,9 +24239,9 @@ of a data matrix.  In the linear case, @var{n} must be 2 since there
 is always one independent variable and one dependent variable.
 
 A prefix of zero or plain @kbd{C-u} is a compromise; Calc takes two
-items from the stack, an @var{n}-row matrix of @cite{x} values, and a
-vector of @cite{y} values.  If there is only one independent variable,
-the @cite{x} values can be either a one-row matrix or a plain vector,
+items from the stack, an @var{n}-row matrix of @expr{x} values, and a
+vector of @expr{y} values.  If there is only one independent variable,
+the @expr{x} values can be either a one-row matrix or a plain vector,
 in which case the @kbd{C-u} prefix is the same as a @w{@kbd{C-u 2}} prefix.
 
 @node Polynomial and Multilinear Fits, Error Estimates for Fits, Linear Fits, Curve Fitting
@@ -23974,15 +24260,15 @@ we could fit the original data matrix from the previous section
 
 Note that since the constant and linear terms are enough to fit the
 data exactly, it's no surprise that Calc chose a tiny contribution
-for @cite{x^2}.  (The fact that it's not exactly zero is due only
+for @expr{x^2}.  (The fact that it's not exactly zero is due only
 to roundoff error.  Since our data are exact integers, we could get
 an exact answer by typing @kbd{m f} first to get fraction mode.
-Then the @cite{x^2} term would vanish altogether.  Usually, though,
+Then the @expr{x^2} term would vanish altogether.  Usually, though,
 the data being fitted will be approximate floats so fraction mode
 won't help.)
 
 Doing the @kbd{a F 2} fit on the data set with 14 instead of 13
-gives a much larger @cite{x^2} contribution, as Calc bends the
+gives a much larger @expr{x^2} contribution, as Calc bends the
 line slightly to improve the fit.
 
 @example
@@ -24000,7 +24286,7 @@ a polynomial that exactly matches all five data points:
 @end example
 
 The actual coefficients we get with a precision of 12, like
-@cite{0.0416666663588}, clearly suffer from loss of precision.
+@expr{0.0416666663588}, clearly suffer from loss of precision.
 It is a good idea to increase the working precision to several
 digits beyond what you need when you do a fitting operation.
 Or, if your data are exact, use fraction mode to get exact
@@ -24023,8 +24309,8 @@ command described below.  @xref{Interpolation}.
 @end tex
 
 Another generalization of the linear model is to assume the
-@cite{y} values are a sum of linear contributions from several
-@cite{x} values.  This is a @dfn{multilinear} fit, and it is also
+@expr{y} values are a sum of linear contributions from several
+@expr{x} values.  This is a @dfn{multilinear} fit, and it is also
 selected by the @kbd{1} digit key.  (Calc decides whether the fit
 is linear or multilinear by counting the rows in the data matrix.)
 
@@ -24039,9 +24325,9 @@ Given the data matrix,
 @end example
 
 @noindent
-the command @kbd{a F 1 @key{RET}} will call the first row @cite{x} and the
-second row @cite{y}, and will fit the values in the third row to the
-model @cite{a + b x + c y}.
+the command @kbd{a F 1 @key{RET}} will call the first row @expr{x} and the
+second row @expr{y}, and will fit the values in the third row to the
+model @expr{a + b x + c y}.
 
 @example
 8. + 3. x + 0.5 y
@@ -24056,20 +24342,20 @@ Calc can do multilinear fits with any number of independent variables
 
 Yet another variation is @dfn{homogeneous} linear models, in which
 the constant term is known to be zero.  In the linear case, this
-means the model formula is simply @cite{a x}; in the multilinear
-case, the model might be @cite{a x + b y + c z}; and in the polynomial
-case, the model could be @cite{a x + b x^2 + c x^3}.  You can get
+means the model formula is simply @expr{a x}; in the multilinear
+case, the model might be @expr{a x + b y + c z}; and in the polynomial
+case, the model could be @expr{a x + b x^2 + c x^3}.  You can get
 a homogeneous linear or multilinear model by pressing the letter
 @kbd{h} followed by a regular model key, like @kbd{1} or @kbd{2}.
 
 It is certainly possible to have other constrained linear models,
-like @cite{2.3 + a x} or @cite{a - 4 x}.  While there is no single
+like @expr{2.3 + a x} or @expr{a - 4 x}.  While there is no single
 key to select models like these, a later section shows how to enter
 any desired model by hand.  In the first case, for example, you
 would enter @kbd{a F ' 2.3 + a x}.
 
 Another class of models that will work but must be entered by hand
-are multinomial fits, e.g., @cite{a + b x + c y + d x^2 + e y^2 + f x y}.
+are multinomial fits, e.g., @expr{a + b x + c y + d x^2 + e y^2 + f x y}.
 
 @node Error Estimates for Fits, Standard Nonlinear Models, Polynomial and Multilinear Fits, Curve Fitting
 @subsection Error Estimates for Fits
@@ -24096,9 +24382,11 @@ contain error forms.  The data values must either all include errors
 or all be plain numbers.  Error forms can go anywhere but generally
 go on the numbers in the last row of the data matrix.  If the last
 row contains error forms
-`@var{y_i}@w{ @t{+/-} }@c{$\sigma_i$}
-@var{sigma_i}', then the @c{$\chi^2$}
-@cite{chi^2}
+@texline `@var{y_i}@w{ @t{+/-} }@tmath{\sigma_i}', 
+@infoline `@var{y_i}@w{ @t{+/-} }@var{sigma_i}', 
+then the 
+@texline @tmath{\chi^2}
+@infoline @expr{chi^2}
 statistic is now,
 
 @ifinfo
@@ -24119,24 +24407,29 @@ the fitting operation.
 
 If there are error forms on other rows of the data matrix, all the
 errors for a given data point are combined; the square root of the
-sum of the squares of the errors forms the @c{$\sigma_i$}
-@cite{sigma_i} used for
-the data point.
+sum of the squares of the errors forms the 
+@texline @tmath{\sigma_i}
+@infoline @expr{sigma_i} 
+used for the data point.
 
 Both @kbd{a F} and @kbd{H a F} can accept error forms in the input
 matrix, although if you are concerned about error analysis you will
 probably use @kbd{H a F} so that the output also contains error
 estimates.
 
-If the input contains error forms but all the @c{$\sigma_i$}
-@cite{sigma_i} values are
-the same, it is easy to see that the resulting fitted model will be
-the same as if the input did not have error forms at all (@c{$\chi^2$}
-@cite{chi^2}
-is simply scaled uniformly by @c{$1 / \sigma^2$}
-@cite{1 / sigma^2}, which doesn't affect
-where it has a minimum).  But there @emph{will} be a difference
-in the estimated errors of the coefficients reported by @kbd{H a F}.
+If the input contains error forms but all the 
+@texline @tmath{\sigma_i}
+@infoline @expr{sigma_i} 
+values are the same, it is easy to see that the resulting fitted model
+will be the same as if the input did not have error forms at all 
+@texline (@tmath{\chi^2}
+@infoline (@expr{chi^2}
+is simply scaled uniformly by 
+@texline @tmath{1 / \sigma^2},
+@infoline @expr{1 / sigma^2}, 
+which doesn't affect where it has a minimum).  But there @emph{will} be
+a difference in the estimated errors of the coefficients reported by
+@kbd{H a F}. 
 
 Consult any text on statistical modeling of data for a discussion
 of where these error estimates come from and how they should be
@@ -24161,54 +24454,66 @@ produced.
 A vector of ``raw'' parameter values for the model.  These are the
 polynomial coefficients or other parameters as plain numbers, in the
 same order as the parameters appeared in the final prompt of the
-@kbd{I a F} command.  For polynomials of degree @cite{d}, this vector
-will have length @cite{M = d+1} with the constant term first.
+@kbd{I a F} command.  For polynomials of degree @expr{d}, this vector
+will have length @expr{M = d+1} with the constant term first.
 
 @item
-The covariance matrix @cite{C} computed from the fit.  This is
+The covariance matrix @expr{C} computed from the fit.  This is
 an @var{m}x@var{m} symmetric matrix; the diagonal elements
-@c{$C_{jj}$}
-@cite{C_j_j} are the variances @c{$\sigma_j^2$}
-@cite{sigma_j^2} of the parameters.
-The other elements are covariances @c{$\sigma_{ij}^2$}
-@cite{sigma_i_j^2} that describe the
-correlation between pairs of parameters.  (A related set of
-numbers, the @dfn{linear correlation coefficients} @c{$r_{ij}$}
-@cite{r_i_j},
-are defined as @c{$\sigma_{ij}^2 / \sigma_i \, \sigma_j$}
-@cite{sigma_i_j^2 / sigma_i sigma_j}.)
+@texline @tmath{C_{jj}}
+@infoline @expr{C_j_j} 
+are the variances 
+@texline @tmath{\sigma_j^2}
+@infoline @expr{sigma_j^2} 
+of the parameters.  The other elements are covariances
+@texline @tmath{\sigma_{ij}^2} 
+@infoline @expr{sigma_i_j^2} 
+that describe the correlation between pairs of parameters.  (A related
+set of numbers, the @dfn{linear correlation coefficients} 
+@texline @tmath{r_{ij}},
+@infoline @expr{r_i_j},
+are defined as 
+@texline @tmath{\sigma_{ij}^2 / \sigma_i \, \sigma_j}.)
+@infoline @expr{sigma_i_j^2 / sigma_i sigma_j}.)
 
 @item
-A vector of @cite{M} ``parameter filter'' functions whose
+A vector of @expr{M} ``parameter filter'' functions whose
 meanings are described below.  If no filters are necessary this
 will instead be an empty vector; this is always the case for the
 polynomial and multilinear fits described so far.
 
 @item
-The value of @c{$\chi^2$}
-@cite{chi^2} for the fit, calculated by the formulas
-shown above.  This gives a measure of the quality of the fit;
-statisticians consider @c{$\chi^2 \approx N - M$}
-@cite{chi^2 = N - M} to indicate a moderately good fit
-(where again @cite{N} is the number of data points and @cite{M}
-is the number of parameters).
+The value of 
+@texline @tmath{\chi^2}
+@infoline @expr{chi^2} 
+for the fit, calculated by the formulas shown above.  This gives a
+measure of the quality of the fit; statisticians consider
+@texline @tmath{\chi^2 \approx N - M}
+@infoline @expr{chi^2 = N - M} 
+to indicate a moderately good fit (where again @expr{N} is the number of
+data points and @expr{M} is the number of parameters).
 
 @item
-A measure of goodness of fit expressed as a probability @cite{Q}.
+A measure of goodness of fit expressed as a probability @expr{Q}.
 This is computed from the @code{utpc} probability distribution
-function using @c{$\chi^2$}
-@cite{chi^2} with @cite{N - M} degrees of freedom.  A
+function using 
+@texline @tmath{\chi^2}
+@infoline @expr{chi^2} 
+with @expr{N - M} degrees of freedom.  A
 value of 0.5 implies a good fit; some texts recommend that often
-@cite{Q = 0.1} or even 0.001 can signify an acceptable fit.  In
-particular, @c{$\chi^2$}
-@cite{chi^2} statistics assume the errors in your inputs
+@expr{Q = 0.1} or even 0.001 can signify an acceptable fit.  In
+particular, 
+@texline @tmath{\chi^2}
+@infoline @expr{chi^2} 
+statistics assume the errors in your inputs
 follow a normal (Gaussian) distribution; if they don't, you may
-have to accept smaller values of @cite{Q}.
+have to accept smaller values of @expr{Q}.
 
-The @cite{Q} value is computed only if the input included error
+The @expr{Q} value is computed only if the input included error
 estimates.  Otherwise, Calc will report the symbol @code{nan}
-for @cite{Q}.  The reason is that in this case the @c{$\chi^2$}
-@cite{chi^2}
+for @expr{Q}.  The reason is that in this case the 
+@texline @tmath{\chi^2}
+@infoline @expr{chi^2}
 value has effectively been used to estimate the original errors
 in the input, and thus there is no redundant information left
 over to use for a confidence test.
@@ -24248,8 +24553,9 @@ Power law.  @i{a x^b y^c}.
 @item q
 Quadratic.  @i{a + b (x-c)^2 + d (x-e)^2}.
 @item g
-Gaussian.  @c{${a \over b \sqrt{2 \pi}} \exp\left( -{1 \over 2} \left( x - c \over b \right)^2 \right)$}
-@i{(a / b sqrt(2 pi)) exp(-0.5*((x-c)/b)^2)}.
+Gaussian.  
+@texline @tmath{{a \over b \sqrt{2 \pi}} \exp\left( -{1 \over 2} \left( x - c \over b \right)^2 \right)}.
+@infoline @i{(a / b sqrt(2 pi)) exp(-0.5*((x-c)/b)^2)}.
 @end table
 
 All of these models are used in the usual way; just press the appropriate
@@ -24260,12 +24566,12 @@ the parameter values from the vector that is placed in the trail.)
 
 All models except Gaussian and polynomials can generalize as shown to any
 number of independent variables.  Also, all the built-in models have an
-additive or multiplicative parameter shown as @cite{a} in the above table
+additive or multiplicative parameter shown as @expr{a} in the above table
 which can be replaced by zero or one, as appropriate, by typing @kbd{h}
 before the model key.
 
 Note that many of these models are essentially equivalent, but express
-the parameters slightly differently.  For example, @cite{a b^x} and
+the parameters slightly differently.  For example, @expr{a b^x} and
 the other two exponential models are all algebraic rearrangements of
 each other.  Also, the ``quadratic'' model is just a degree-2 polynomial
 with the parameters expressed differently.  Use whichever form best
@@ -24275,8 +24581,8 @@ The HP-28/48 calculators support four different models for curve
 fitting, called @code{LIN}, @code{LOG}, @code{EXP}, and @code{PWR}.
 These correspond to Calc models @samp{a + b x}, @samp{a + b ln(x)},
 @samp{a exp(b x)}, and @samp{a x^b}, respectively.  In each case,
-@cite{a} is what the HP-48 identifies as the ``intercept,'' and
-@cite{b} is what it calls the ``slope.''
+@expr{a} is what the HP-48 identifies as the ``intercept,'' and
+@expr{b} is what it calls the ``slope.''
 
 @tex
 \bigskip
@@ -24287,13 +24593,13 @@ If the model you want doesn't appear on this list, press @kbd{'}
 formula, such as @kbd{m x - b}, as the model.  (Not all models
 will work, though---see the next section for details.)
 
-The model can also be an equation like @cite{y = m x + b}.
+The model can also be an equation like @expr{y = m x + b}.
 In this case, Calc thinks of all the rows of the data matrix on
 equal terms; this model effectively has two parameters
-(@cite{m} and @cite{b}) and two independent variables (@cite{x}
-and @cite{y}), with no ``dependent'' variables.  Model equations
-do not need to take this @cite{y =} form.  For example, the
-implicit line equation @cite{a x + b y = 1} works fine as a
+(@expr{m} and @expr{b}) and two independent variables (@expr{x}
+and @expr{y}), with no ``dependent'' variables.  Model equations
+do not need to take this @expr{y =} form.  For example, the
+implicit line equation @expr{a x + b y = 1} works fine as a
 model.
 
 When you enter a model, Calc makes an alphabetical list of all
@@ -24303,12 +24609,12 @@ default parameters, independent variables, and dependent variable
 Calc assumes the dependent variable does not appear in the formula
 and thus does not need a name.
 
-For example, if the model formula has the variables @cite{a,mu,sigma,t,x},
+For example, if the model formula has the variables @expr{a,mu,sigma,t,x},
 and the data matrix has three rows (meaning two independent variables),
-Calc will use @cite{a,mu,sigma} as the default parameters, and the
-data rows will be named @cite{t} and @cite{x}, respectively.  If you
-enter an equation instead of a plain formula, Calc will use @cite{a,mu}
-as the parameters, and @cite{sigma,t,x} as the three independent
+Calc will use @expr{a,mu,sigma} as the default parameters, and the
+data rows will be named @expr{t} and @expr{x}, respectively.  If you
+enter an equation instead of a plain formula, Calc will use @expr{a,mu}
+as the parameters, and @expr{sigma,t,x} as the three independent
 variables.
 
 You can, of course, override these choices by entering something
@@ -24332,11 +24638,11 @@ choose which variables in the formula are independent by default and
 which are parameters.
 
 Models taken from the stack can also be expressed as vectors of
-two or three elements, @cite{[@var{model}, @var{vars}]} or
-@cite{[@var{model}, @var{vars}, @var{params}]}.  Each of @var{vars}
+two or three elements, @expr{[@var{model}, @var{vars}]} or
+@expr{[@var{model}, @var{vars}, @var{params}]}.  Each of @var{vars}
 and @var{params} may be either a variable or a vector of variables.
 (If @var{params} is omitted, all variables in @var{model} except
-those listed as @var{vars} are parameters.)@refill
+those listed as @var{vars} are parameters.)
 
 When you enter a model manually with @kbd{'}, Calc puts a 3-vector
 describing the model in the trail so you can get it back if you wish.
@@ -24364,14 +24670,16 @@ form @samp{arcsin(y) = a t + b}.  The @code{arcsin} function always
 returns results in the range from @i{-90} to 90 degrees (or the
 equivalent range in radians).  Suppose you had data that you
 believed to represent roughly three oscillations of a sine wave,
-so that the argument of the sine might go from zero to @c{$3\times360$}
-@i{3*360} degrees.
+so that the argument of the sine might go from zero to 
+@texline @tmath{3\times360}
+@infoline @i{3*360} 
+degrees.
 The above model would appear to be a good way to determine the
 true frequency and phase of the sine wave, but in practice it
 would fail utterly.  The righthand side of the actual model
-@samp{arcsin(y) = a t + b} will grow smoothly with @cite{t}, but
+@samp{arcsin(y) = a t + b} will grow smoothly with @expr{t}, but
 the lefthand side will bounce back and forth between @i{-90} and 90.
-No values of @cite{a} and @cite{b} can make the two sides match,
+No values of @expr{a} and @expr{b} can make the two sides match,
 even approximately.
 
 There is no good solution to this problem at present.  You could
@@ -24388,14 +24696,14 @@ taking Fourier and related transforms.)
 @noindent
 Calc's internal least-squares fitter can only handle multilinear
 models.  More precisely, it can handle any model of the form
-@cite{a f(x,y,z) + b g(x,y,z) + c h(x,y,z)}, where @cite{a,b,c}
-are the parameters and @cite{x,y,z} are the independent variables
+@expr{a f(x,y,z) + b g(x,y,z) + c h(x,y,z)}, where @expr{a,b,c}
+are the parameters and @expr{x,y,z} are the independent variables
 (of course there can be any number of each, not just three).
 
 In a simple multilinear or polynomial fit, it is easy to see how
 to convert the model into this form.  For example, if the model
-is @cite{a + b x + c x^2}, then @cite{f(x) = 1}, @cite{g(x) = x},
-and @cite{h(x) = x^2} are suitable functions.
+is @expr{a + b x + c x^2}, then @expr{f(x) = 1}, @expr{g(x) = x},
+and @expr{h(x) = x^2} are suitable functions.
 
 For other models, Calc uses a variety of algebraic manipulations
 to try to put the problem into the form
@@ -24405,15 +24713,15 @@ Y(x,y,z) = A(a,b,c) F(x,y,z) + B(a,b,c) G(x,y,z) + C(a,b,c) H(x,y,z)
 @end smallexample
 
 @noindent
-where @cite{Y,A,B,C,F,G,H} are arbitrary functions.  It computes
-@cite{Y}, @cite{F}, @cite{G}, and @cite{H} for all the data points,
-does a standard linear fit to find the values of @cite{A}, @cite{B},
-and @cite{C}, then uses the equation solver to solve for @cite{a,b,c}
-in terms of @cite{A,B,C}.
+where @expr{Y,A,B,C,F,G,H} are arbitrary functions.  It computes
+@expr{Y}, @expr{F}, @expr{G}, and @expr{H} for all the data points,
+does a standard linear fit to find the values of @expr{A}, @expr{B},
+and @expr{C}, then uses the equation solver to solve for @expr{a,b,c}
+in terms of @expr{A,B,C}.
 
 A remarkable number of models can be cast into this general form.
 We'll look at two examples here to see how it works.  The power-law
-model @cite{y = a x^b} with two independent variables and two parameters
+model @expr{y = a x^b} with two independent variables and two parameters
 can be rewritten as follows:
 
 @example
@@ -24424,15 +24732,19 @@ ln(y) = ln(a) + b ln(x)
 @end example
 
 @noindent
-which matches the desired form with @c{$Y = \ln(y)$}
-@cite{Y = ln(y)}, @c{$A = \ln(a)$}
-@cite{A = ln(a)},
-@cite{F = 1}, @cite{B = b}, and @c{$G = \ln(x)$}
-@cite{G = ln(x)}.  Calc thus computes
-the logarithms of your @cite{y} and @cite{x} values, does a linear fit
-for @cite{A} and @cite{B}, then solves to get @c{$a = \exp(A)$}
-@cite{a = exp(A)} and
-@cite{b = B}.
+which matches the desired form with 
+@texline @tmath{Y = \ln(y)},
+@infoline @expr{Y = ln(y)}, 
+@texline @tmath{A = \ln(a)},
+@infoline @expr{A = ln(a)},
+@expr{F = 1}, @expr{B = b}, and 
+@texline @tmath{G = \ln(x)}.
+@infoline @expr{G = ln(x)}.  
+Calc thus computes the logarithms of your @expr{y} and @expr{x} values,
+does a linear fit for @expr{A} and @expr{B}, then solves to get 
+@texline @tmath{a = \exp(A)} 
+@infoline @expr{a = exp(A)} 
+and @expr{b = B}.
 
 Another interesting example is the ``quadratic'' model, which can
 be handled by expanding according to the distributive law.
@@ -24443,27 +24755,27 @@ y = a + b c^2 - 2 b c x + b x^2
 @end example
 
 @noindent
-which matches with @cite{Y = y}, @cite{A = a + b c^2}, @cite{F = 1},
-@cite{B = -2 b c}, @cite{G = x} (the @i{-2} factor could just as easily
-have been put into @cite{G} instead of @cite{B}), @cite{C = b}, and
-@cite{H = x^2}.
+which matches with @expr{Y = y}, @expr{A = a + b c^2}, @expr{F = 1},
+@expr{B = -2 b c}, @expr{G = x} (the @i{-2} factor could just as easily
+have been put into @expr{G} instead of @expr{B}), @expr{C = b}, and
+@expr{H = x^2}.
 
 The Gaussian model looks quite complicated, but a closer examination
 shows that it's actually similar to the quadratic model but with an
-exponential that can be brought to the top and moved into @cite{Y}.
+exponential that can be brought to the top and moved into @expr{Y}.
 
 An example of a model that cannot be put into general linear
 form is a Gaussian with a constant background added on, i.e.,
-@cite{d} + the regular Gaussian formula.  If you have a model like
+@expr{d} + the regular Gaussian formula.  If you have a model like
 this, your best bet is to replace enough of your parameters with
 constants to make the model linearizable, then adjust the constants
 manually by doing a series of fits.  You can compare the fits by
 graphing them, by examining the goodness-of-fit measures returned by
 @kbd{I a F}, or by some other method suitable to your application.
 Note that some models can be linearized in several ways.  The
-Gaussian-plus-@var{d} model can be linearized by setting @cite{d}
-(the background) to a constant, or by setting @cite{b} (the standard
-deviation) and @cite{c} (the mean) to constants.
+Gaussian-plus-@var{d} model can be linearized by setting @expr{d}
+(the background) to a constant, or by setting @expr{b} (the standard
+deviation) and @expr{c} (the mean) to constants.
 
 To fit a model with constants substituted for some parameters, just
 store suitable values in those parameter variables, then omit them
@@ -24475,8 +24787,9 @@ from the list of parameters when you answer the variables prompt.
 
 A last desperate step would be to use the general-purpose
 @code{minimize} function rather than @code{fit}.  After all, both
-functions solve the problem of minimizing an expression (the @c{$\chi^2$}
-@cite{chi^2}
+functions solve the problem of minimizing an expression (the 
+@texline @tmath{\chi^2}
+@infoline @expr{chi^2}
 sum) by adjusting certain parameters in the expression.  The @kbd{a F}
 command is able to use a vastly more efficient algorithm due to its
 special knowledge about linear chi-square sums, but the @kbd{a N}
@@ -24485,9 +24798,10 @@ command can do the same thing by brute force.
 A compromise would be to pick out a few parameters without which the
 fit is linearizable, and use @code{minimize} on a call to @code{fit}
 which efficiently takes care of the rest of the parameters.  The thing
-to be minimized would be the value of @c{$\chi^2$}
-@cite{chi^2} returned as
-the fifth result of the @code{xfit} function:
+to be minimized would be the value of 
+@texline @tmath{\chi^2}
+@infoline @expr{chi^2} 
+returned as the fifth result of the @code{xfit} function:
 
 @smallexample
 minimize(xfit(gaus(a,b,c,d,x), x, [a,b,c], data)_5, d, guess)
@@ -24496,7 +24810,7 @@ minimize(xfit(gaus(a,b,c,d,x), x, [a,b,c], data)_5, d, guess)
 @noindent
 where @code{gaus} represents the Gaussian model with background,
 @code{data} represents the data matrix, and @code{guess} represents
-the initial guess for @cite{d} that @code{minimize} requires.
+the initial guess for @expr{d} that @code{minimize} requires.
 This operation will only be, shall we say, extraordinarily slow
 rather than astronomically slow (as would be the case if @code{minimize}
 were used by itself to solve the problem).
@@ -24507,17 +24821,17 @@ were used by itself to solve the problem).
 
 The @kbd{I a F} [@code{xfit}] command is somewhat trickier when
 nonlinear models are used.  The second item in the result is the
-vector of ``raw'' parameters @cite{A}, @cite{B}, @cite{C}.  The
+vector of ``raw'' parameters @expr{A}, @expr{B}, @expr{C}.  The
 covariance matrix is written in terms of those raw parameters.
 The fifth item is a vector of @dfn{filter} expressions.  This
 is the empty vector @samp{[]} if the raw parameters were the same
-as the requested parameters, i.e., if @cite{A = a}, @cite{B = b},
+as the requested parameters, i.e., if @expr{A = a}, @expr{B = b},
 and so on (which is always true if the model is already linear
 in the parameters as written, e.g., for polynomial fits).  If the
 parameters had to be rearranged, the fifth item is instead a vector
 of one formula per parameter in the original model.  The raw
 parameters are expressed in these ``filter'' formulas as
-@samp{fitdummy(1)} for @cite{A}, @samp{fitdummy(2)} for @cite{B},
+@samp{fitdummy(1)} for @expr{A}, @samp{fitdummy(2)} for @expr{B},
 and so on.
 
 When Calc needs to modify the model to return the result, it replaces
@@ -24537,30 +24851,33 @@ figure out how to interpret the covariances in the presence of
 nontrivial filter functions.
 
 Things are also complicated when the input contains error forms.
-Suppose there are three independent and dependent variables, @cite{x},
-@cite{y}, and @cite{z}, one or more of which are error forms in the
+Suppose there are three independent and dependent variables, @expr{x},
+@expr{y}, and @expr{z}, one or more of which are error forms in the
 data.  Calc combines all the error values by taking the square root
-of the sum of the squares of the errors.  It then changes @cite{x}
-and @cite{y} to be plain numbers, and makes @cite{z} into an error
-form with this combined error.  The @cite{Y(x,y,z)} part of the
+of the sum of the squares of the errors.  It then changes @expr{x}
+and @expr{y} to be plain numbers, and makes @expr{z} into an error
+form with this combined error.  The @expr{Y(x,y,z)} part of the
 linearized model is evaluated, and the result should be an error
-form.  The error part of that result is used for @c{$\sigma_i$}
-@cite{sigma_i} for
-the data point.  If for some reason @cite{Y(x,y,z)} does not return
-an error form, the combined error from @cite{z} is used directly
-for @c{$\sigma_i$}
-@cite{sigma_i}.  Finally, @cite{z} is also stripped of its error
-for use in computing @cite{F(x,y,z)}, @cite{G(x,y,z)} and so on;
+form.  The error part of that result is used for 
+@texline @tmath{\sigma_i}
+@infoline @expr{sigma_i} 
+for the data point.  If for some reason @expr{Y(x,y,z)} does not return 
+an error form, the combined error from @expr{z} is used directly for 
+@texline @tmath{\sigma_i}.
+@infoline @expr{sigma_i}.  
+Finally, @expr{z} is also stripped of its error
+for use in computing @expr{F(x,y,z)}, @expr{G(x,y,z)} and so on;
 the righthand side of the linearized model is computed in regular
 arithmetic with no error forms.
 
 (While these rules may seem complicated, they are designed to do
-the most reasonable thing in the typical case that @cite{Y(x,y,z)}
-depends only on the dependent variable @cite{z}, and in fact is
-often simply equal to @cite{z}.  For common cases like polynomials
+the most reasonable thing in the typical case that @expr{Y(x,y,z)}
+depends only on the dependent variable @expr{z}, and in fact is
+often simply equal to @expr{z}.  For common cases like polynomials
 and multilinear models, the combined error is simply used as the
-@c{$\sigma$}
-@cite{sigma} for the data point with no further ado.)
+@texline @tmath{\sigma}
+@infoline @expr{sigma} 
+for the data point with no further ado.)
 
 @tex
 \bigskip
@@ -24617,7 +24934,7 @@ Parameter variables are renamed to function calls @samp{fitparam(1)},
 @samp{fitparam(2)}, and so on, and independent variables are renamed
 to @samp{fitvar(1)}, @samp{fitvar(2)}, etc.  The dependent variable
 is the highest-numbered @code{fitvar}.  For example, the power law
-model @cite{a x^b} is converted to @cite{y = a x^b}, then to
+model @expr{a x^b} is converted to @expr{y = a x^b}, then to
 
 @smallexample
 @group
@@ -24637,11 +24954,11 @@ fitsystem(@var{Y}, @var{FGH}, @var{abc})
 @end example
 
 @noindent
-where @var{Y} is a formula that describes the function @cite{Y(x,y,z)},
-@var{FGH} is the vector of formulas @cite{[F(x,y,z), G(x,y,z), H(x,y,z)]},
+where @var{Y} is a formula that describes the function @expr{Y(x,y,z)},
+@var{FGH} is the vector of formulas @expr{[F(x,y,z), G(x,y,z), H(x,y,z)]},
 and @var{abc} is the vector of parameter filters which refer to the
-raw parameters as @samp{fitdummy(1)} for @cite{A}, @samp{fitdummy(2)}
-for @cite{B}, etc.  While the number of raw parameters (the length of
+raw parameters as @samp{fitdummy(1)} for @expr{A}, @samp{fitdummy(2)}
+for @expr{B}, etc.  While the number of raw parameters (the length of
 the @var{FGH} vector) is usually the same as the number of original
 parameters (the length of the @var{abc} vector), this is not required.
 
@@ -24664,7 +24981,7 @@ be put into @var{abc} or @var{FGH}).  In particular, all
 non-constant powers are converted to logs-and-exponentials form,
 and the distributive law is used to expand products of sums.
 Quotients are rewritten to use the @samp{fitinv} function, where
-@samp{fitinv(x)} represents @cite{1/x} while the @code{FitRules}
+@samp{fitinv(x)} represents @expr{1/x} while the @code{FitRules}
 are operating.  (The use of @code{fitinv} makes recognition of
 linear-looking forms easier.)  If you modify @code{FitRules}, you
 will probably only need to modify the rules for this phase.
@@ -24672,8 +24989,8 @@ will probably only need to modify the rules for this phase.
 Phase two, whose rules can actually also apply during phases one
 and three, first rewrites @code{fitmodel} to a two-argument
 form @samp{fitmodel(@var{Y}, @var{model})}, where @var{Y} is
-initially zero and @var{model} has been changed from @cite{a=b}
-to @cite{a-b} form.  It then tries to peel off invertible functions
+initially zero and @var{model} has been changed from @expr{a=b}
+to @expr{a-b} form.  It then tries to peel off invertible functions
 from the outside of @var{model} and put them into @var{Y} instead,
 calling the equation solver to invert the functions.  Finally, when
 this is no longer possible, the @code{fitmodel} is changed to a
@@ -24719,7 +25036,7 @@ least-squares solver wants to see.
 @tindex hasfitvars
 Two functions which are useful in connection with @code{FitRules}
 are @samp{hasfitparams(x)} and @samp{hasfitvars(x)}, which check
-whether @cite{x} refers to any parameters or independent variables,
+whether @expr{x} refers to any parameters or independent variables,
 respectively.  Specifically, these functions return ``true'' if the
 argument contains any @code{fitparam} (or @code{fitvar}) function
 calls, and ``false'' otherwise.  (Recall that ``true'' means a
@@ -24767,48 +25084,48 @@ The @code{efit} (corresponding to @kbd{H a F}) and @code{xfit}
 @pindex calc-poly-interp
 @tindex polint
 The @kbd{a p} (@code{calc-poly-interp}) [@code{polint}] command does
-a polynomial interpolation at a particular @cite{x} value.  It takes
+a polynomial interpolation at a particular @expr{x} value.  It takes
 two arguments from the stack:  A data matrix of the sort used by
-@kbd{a F}, and a single number which represents the desired @cite{x}
+@kbd{a F}, and a single number which represents the desired @expr{x}
 value.  Calc effectively does an exact polynomial fit as if by @kbd{a F i},
-then substitutes the @cite{x} value into the result in order to get an
-approximate @cite{y} value based on the fit.  (Calc does not actually
+then substitutes the @expr{x} value into the result in order to get an
+approximate @expr{y} value based on the fit.  (Calc does not actually
 use @kbd{a F i}, however; it uses a direct method which is both more
 efficient and more numerically stable.)
 
-The result of @kbd{a p} is actually a vector of two values:  The @cite{y}
-value approximation, and an error measure @cite{dy} that reflects Calc's
+The result of @kbd{a p} is actually a vector of two values:  The @expr{y}
+value approximation, and an error measure @expr{dy} that reflects Calc's
 estimation of the probable error of the approximation at that value of
-@cite{x}.  If the input @cite{x} is equal to any of the @cite{x} values
-in the data matrix, the output @cite{y} will be the corresponding @cite{y}
-value from the matrix, and the output @cite{dy} will be exactly zero.
+@expr{x}.  If the input @expr{x} is equal to any of the @expr{x} values
+in the data matrix, the output @expr{y} will be the corresponding @expr{y}
+value from the matrix, and the output @expr{dy} will be exactly zero.
 
 A prefix argument of 2 causes @kbd{a p} to take separate x- and
 y-vectors from the stack instead of one data matrix.
 
-If @cite{x} is a vector of numbers, @kbd{a p} will return a matrix of
-interpolated results for each of those @cite{x} values.  (The matrix will
-have two columns, the @cite{y} values and the @cite{dy} values.)
-If @cite{x} is a formula instead of a number, the @code{polint} function
+If @expr{x} is a vector of numbers, @kbd{a p} will return a matrix of
+interpolated results for each of those @expr{x} values.  (The matrix will
+have two columns, the @expr{y} values and the @expr{dy} values.)
+If @expr{x} is a formula instead of a number, the @code{polint} function
 remains in symbolic form; use the @kbd{a "} command to expand it out to
 a formula that describes the fit in symbolic terms.
 
 In all cases, the @kbd{a p} command leaves the data vectors or matrix
-on the stack.  Only the @cite{x} value is replaced by the result.
+on the stack.  Only the @expr{x} value is replaced by the result.
 
 @kindex H a p
 @tindex ratint
 The @kbd{H a p} [@code{ratint}] command does a rational function
 interpolation.  It is used exactly like @kbd{a p}, except that it
 uses as its model the quotient of two polynomials.  If there are
-@cite{N} data points, the numerator and denominator polynomials will
-each have degree @cite{N/2} (if @cite{N} is odd, the denominator will
+@expr{N} data points, the numerator and denominator polynomials will
+each have degree @expr{N/2} (if @expr{N} is odd, the denominator will
 have degree one higher than the numerator).
 
 Rational approximations have the advantage that they can accurately
 describe functions that have poles (points at which the function's value
 goes to infinity, so that the denominator polynomial of the approximation
-goes to zero).  If @cite{x} corresponds to a pole of the fitted rational
+goes to zero).  If @expr{x} corresponds to a pole of the fitted rational
 function, then the result will be a division by zero.  If Infinite mode
 is enabled, the result will be @samp{[uinf, uinf]}.
 
@@ -24842,9 +25159,9 @@ $$ \sum_{k=1}^5 k^2 = 55 $$
 The choice of index variable is arbitrary, but it's best not to
 use a variable with a stored value.  In particular, while
 @code{i} is often a favorite index variable, it should be avoided
-in Calc because @code{i} has the imaginary constant @cite{(0, 1)}
+in Calc because @code{i} has the imaginary constant @expr{(0, 1)}
 as a value.  If you pressed @kbd{=} on a sum over @code{i}, it would
-be changed to a nonsensical sum over the ``variable'' @cite{(0, 1)}!
+be changed to a nonsensical sum over the ``variable'' @expr{(0, 1)}!
 If you really want to use @code{i} as an index variable, use
 @w{@kbd{s u i @key{RET}}} first to ``unstore'' this variable.
 (@xref{Storing Variables}.)
@@ -24878,7 +25195,7 @@ is one.  If @var{low} is also omitted, the limits are @samp{-inf}
 and @samp{inf}, respectively.
 
 Infinite sums can sometimes be evaluated:  @samp{sum(.5^k, k, 1, inf)}
-returns @cite{1}.  This is done by evaluating the sum in closed
+returns @expr{1}.  This is done by evaluating the sum in closed
 form (to @samp{1. - 0.5^n} in this case), then evaluating this
 formula with @code{n} set to @code{inf}.  Calc's usual rules
 for ``infinite'' arithmetic can find the answer from there.  If
@@ -24916,31 +25233,32 @@ of iterations is @i{-1}.  Thus @samp{sum(f(k), k, n, n-1)} is zero
 but the sum from @samp{n} to @samp{n-2} may report a nonzero value
 if Calc used a closed form solution.
 
-Calc's logical predicates like @cite{a < b} return 1 for ``true''
+Calc's logical predicates like @expr{a < b} return 1 for ``true''
 and 0 for ``false.''  @xref{Logical Operations}.  This can be
 used to advantage for building conditional sums.  For example,
 @samp{sum(prime(k)*k^2, k, 1, 20)} is the sum of the squares of all
 prime numbers from 1 to 20; the @code{prime} predicate returns 1 if
 its argument is prime and 0 otherwise.  You can read this expression
-as ``the sum of @cite{k^2}, where @cite{k} is prime.''  Indeed,
+as ``the sum of @expr{k^2}, where @expr{k} is prime.''  Indeed,
 @samp{sum(prime(k)*k^2, k)} would represent the sum of @emph{all} primes
 squared, since the limits default to plus and minus infinity, but
 there are no such sums that Calc's built-in rules can do in
 closed form.
 
 As another example, @samp{sum((k != k_0) * f(k), k, 1, n)} is the
-sum of @cite{f(k)} for all @cite{k} from 1 to @cite{n}, excluding
-one value @cite{k_0}.  Slightly more tricky is the summand
+sum of @expr{f(k)} for all @expr{k} from 1 to @expr{n}, excluding
+one value @expr{k_0}.  Slightly more tricky is the summand
 @samp{(k != k_0) / (k - k_0)}, which is an attempt to describe
-the sum of all @cite{1/(k-k_0)} except at @cite{k = k_0}, where
-this would be a division by zero.  But at @cite{k = k_0}, this
-formula works out to the indeterminate form @cite{0 / 0}, which
+the sum of all @expr{1/(k-k_0)} except at @expr{k = k_0}, where
+this would be a division by zero.  But at @expr{k = k_0}, this
+formula works out to the indeterminate form @expr{0 / 0}, which
 Calc will not assume is zero.  Better would be to use
 @samp{(k != k_0) ? 1/(k-k_0) : 0}; the @samp{? :} operator does
-an ``if-then-else'' test:  This expression says, ``if @c{$k \ne k_0$}
-@cite{k != k_0},
-then @cite{1/(k-k_0)}, else zero.''  Now the formula @cite{1/(k-k_0)}
-will not even be evaluated by Calc when @cite{k = k_0}.
+an ``if-then-else'' test:  This expression says, ``if 
+@texline @tmath{k \ne k_0},
+@infoline @expr{k != k_0},
+then @expr{1/(k-k_0)}, else zero.''  Now the formula @expr{1/(k-k_0)}
+will not even be evaluated by Calc when @expr{k = k_0}.
 
 @cindex Alternating sums
 @kindex a -
@@ -24991,7 +25309,7 @@ for which @code{dnonzero} returns 1 is ``true,'' and anything for
 which @code{dnonzero} returns 0 or cannot decide is assumed ``false.''
 Note that this means that @w{@kbd{Z [ Z ]}} will execute the ``then''
 portion if its condition is provably true, but it will execute the
-``else'' portion for any condition like @cite{a = b} that is not
+``else'' portion for any condition like @expr{a = b} that is not
 provably true, even if it might be true.  Algebraic functions that
 have conditions as arguments, like @code{? :} and @code{&&}, remain
 unevaluated if the condition is neither provably true nor provably
@@ -25004,10 +25322,10 @@ false.  @xref{Declarations}.)
 @tindex ==
 The @kbd{a =} (@code{calc-equal-to}) command, or @samp{eq(a,b)} function
 (which can also be written @samp{a = b} or @samp{a == b} in an algebraic
-formula) is true if @cite{a} and @cite{b} are equal, either because they
+formula) is true if @expr{a} and @expr{b} are equal, either because they
 are identical expressions, or because they are numbers which are
 numerically equal.  (Thus the integer 1 is considered equal to the float
-1.0.)  If the equality of @cite{a} and @cite{b} cannot be determined,
+1.0.)  If the equality of @expr{a} and @expr{b} cannot be determined,
 the comparison is left in symbolic form.  Note that as a command, this
 operation pops two values from the stack and pushes back either a 1 or
 a 0, or a formula @samp{a = b} if the values' equality cannot be determined.
@@ -25035,9 +25353,9 @@ variables).
 @tindex neq
 @tindex !=
 The @kbd{a #} (@code{calc-not-equal-to}) command, or @samp{neq(a,b)} or
-@samp{a != b} function, is true if @cite{a} and @cite{b} are not equal.
+@samp{a != b} function, is true if @expr{a} and @expr{b} are not equal.
 This also works with more than two arguments; @samp{a != b != c != d}
-tests that all four of @cite{a}, @cite{b}, @cite{c}, and @cite{d} are
+tests that all four of @expr{a}, @expr{b}, @expr{c}, and @expr{d} are
 distinct numbers.
 
 @kindex a <
@@ -25087,7 +25405,7 @@ distinct numbers.
 @end ignore
 @tindex >=
 The @kbd{a <} (@code{calc-less-than}) [@samp{lt(a,b)} or @samp{a < b}]
-operation is true if @cite{a} is less than @cite{b}.  Similar functions
+operation is true if @expr{a} is less than @expr{b}.  Similar functions
 are @kbd{a >} (@code{calc-greater-than}) [@samp{gt(a,b)} or @samp{a > b}],
 @kbd{a [} (@code{calc-less-equal}) [@samp{leq(a,b)} or @samp{a <= b}], and
 @kbd{a ]} (@code{calc-greater-equal}) [@samp{geq(a,b)} or @samp{a >= b}].
@@ -25121,8 +25439,8 @@ taking the lefthand side.
 @tindex &&
 The @kbd{a &} (@code{calc-logical-and}) [@samp{land(a,b)} or @samp{a && b}]
 function is true if both of its arguments are true, i.e., are
-non-zero numbers.  In this case, the result will be either @cite{a} or
-@cite{b}, chosen arbitrarily.  If either argument is zero, the result is
+non-zero numbers.  In this case, the result will be either @expr{a} or
+@expr{b}, chosen arbitrarily.  If either argument is zero, the result is
 zero.  Otherwise, the formula is left in symbolic form.
 
 @kindex a |
@@ -25132,7 +25450,7 @@ zero.  Otherwise, the formula is left in symbolic form.
 The @kbd{a |} (@code{calc-logical-or}) [@samp{lor(a,b)} or @samp{a || b}]
 function is true if either or both of its arguments are true (nonzero).
 The result is whichever argument was nonzero, choosing arbitrarily if both
-are nonzero.  If both @cite{a} and @cite{b} are zero, the result is
+are nonzero.  If both @expr{a} and @expr{b} are zero, the result is
 zero.
 
 @kindex a !
@@ -25140,8 +25458,8 @@ zero.
 @tindex lnot
 @tindex !
 The @kbd{a !} (@code{calc-logical-not}) [@samp{lnot(a)} or @samp{!@: a}]
-function is true if @cite{a} is false (zero), or false if @cite{a} is
-true (nonzero).  It is left in symbolic form if @cite{a} is not a
+function is true if @expr{a} is false (zero), or false if @expr{a} is
+true (nonzero).  It is left in symbolic form if @expr{a} is not a
 number.
 
 @kindex a :
@@ -25157,9 +25475,9 @@ number.
 @tindex :
 @cindex Arguments, not evaluated
 The @kbd{a :} (@code{calc-logical-if}) [@samp{if(a,b,c)} or @samp{a ? b :@: c}]
-function is equal to either @cite{b} or @cite{c} if @cite{a} is a nonzero
-number or zero, respectively.  If @cite{a} is not a number, the test is
-left in symbolic form and neither @cite{b} nor @cite{c} is evaluated in
+function is equal to either @expr{b} or @expr{c} if @expr{a} is a nonzero
+number or zero, respectively.  If @expr{a} is not a number, the test is
+left in symbolic form and neither @expr{b} nor @expr{c} is evaluated in
 any way.  In algebraic formulas, this is one of the few Calc functions
 whose arguments are not automatically evaluated when the function itself
 is evaluated.  The others are @code{lambda}, @code{quote}, and
@@ -25170,24 +25488,24 @@ will not work because the @samp{3:4} is parsed as a fraction instead of
 as three separate symbols.  Type something like @samp{a ? 3 : 4} or
 @samp{a?(3):4} instead.
 
-As a special case, if @cite{a} evaluates to a vector, then both @cite{b}
-and @cite{c} are evaluated; the result is a vector of the same length
-as @cite{a} whose elements are chosen from corresponding elements of
-@cite{b} and @cite{c} according to whether each element of @cite{a}
-is zero or nonzero.  Each of @cite{b} and @cite{c} must be either a
-vector of the same length as @cite{a}, or a non-vector which is matched
-with all elements of @cite{a}.
+As a special case, if @expr{a} evaluates to a vector, then both @expr{b}
+and @expr{c} are evaluated; the result is a vector of the same length
+as @expr{a} whose elements are chosen from corresponding elements of
+@expr{b} and @expr{c} according to whether each element of @expr{a}
+is zero or nonzero.  Each of @expr{b} and @expr{c} must be either a
+vector of the same length as @expr{a}, or a non-vector which is matched
+with all elements of @expr{a}.
 
 @kindex a @{
 @pindex calc-in-set
 @tindex in
 The @kbd{a @{} (@code{calc-in-set}) [@samp{in(a,b)}] function is true if
-the number @cite{a} is in the set of numbers represented by @cite{b}.
-If @cite{b} is an interval form, @cite{a} must be one of the values
-encompassed by the interval.  If @cite{b} is a vector, @cite{a} must be
+the number @expr{a} is in the set of numbers represented by @expr{b}.
+If @expr{b} is an interval form, @expr{a} must be one of the values
+encompassed by the interval.  If @expr{b} is a vector, @expr{a} must be
 equal to one of the elements of the vector.  (If any vector elements are
-intervals, @cite{a} must be in any of the intervals.)  If @cite{b} is a
-plain number, @cite{a} must be numerically equal to @cite{b}.
+intervals, @expr{a} must be in any of the intervals.)  If @expr{b} is a
+plain number, @expr{a} must be numerically equal to @expr{b}.
 @xref{Set Operations}, for a group of commands that manipulate sets
 of this sort.
 
@@ -25196,7 +25514,7 @@ of this sort.
 @end ignore
 @tindex typeof
 The @samp{typeof(a)} function produces an integer or variable which
-characterizes @cite{a}.  If @cite{a} is a number, vector, or variable,
+characterizes @expr{a}.  If @expr{a} is a number, vector, or variable,
 the result will be one of the following numbers:
 
 @example
@@ -25217,7 +25535,7 @@ the result will be one of the following numbers:
 102  Matrix
 @end example
 
-Otherwise, @cite{a} is a formula, and the result is a variable which
+Otherwise, @expr{a} is a formula, and the result is a variable which
 represents the name of the top-level function call.
 
 @ignore
@@ -25232,15 +25550,15 @@ represents the name of the top-level function call.
 @starindex
 @end ignore
 @tindex constant
-The @samp{integer(a)} function returns true if @cite{a} is an integer.
+The @samp{integer(a)} function returns true if @expr{a} is an integer.
 The @samp{real(a)} function
-is true if @cite{a} is a real number, either integer, fraction, or
-float.  The @samp{constant(a)} function returns true if @cite{a} is
+is true if @expr{a} is a real number, either integer, fraction, or
+float.  The @samp{constant(a)} function returns true if @expr{a} is
 any of the objects for which @code{typeof} would produce an integer
 code result except for variables, and provided that the components of
 an object like a vector or error form are themselves constant.
 Note that infinities do not satisfy any of these tests, nor do
-special constants like @code{pi} and @code{e}.@refill
+special constants like @code{pi} and @code{e}.
 
 @xref{Declarations}, for a set of similar functions that recognize
 formulas as well as actual numbers.  For example, @samp{dint(floor(x))}
@@ -25253,21 +25571,21 @@ literally an integer constant.
 @end ignore
 @tindex refers
 The @samp{refers(a,b)} function is true if the variable (or sub-expression)
-@cite{b} appears in @cite{a}, or false otherwise.  Unlike the other
+@expr{b} appears in @expr{a}, or false otherwise.  Unlike the other
 tests described here, this function returns a definite ``no'' answer
 even if its arguments are still in symbolic form.  The only case where
-@code{refers} will be left unevaluated is if @cite{a} is a plain
-variable (different from @cite{b}).
+@code{refers} will be left unevaluated is if @expr{a} is a plain
+variable (different from @expr{b}).
 
 @ignore
 @starindex
 @end ignore
 @tindex negative
-The @samp{negative(a)} function returns true if @cite{a} ``looks'' negative,
-because it is a negative number, because it is of the form @cite{-x},
+The @samp{negative(a)} function returns true if @expr{a} ``looks'' negative,
+because it is a negative number, because it is of the form @expr{-x},
 or because it is a product or quotient with a term that looks negative.
 This is most useful in rewrite rules.  Beware that @samp{negative(a)}
-evaluates to 1 or 0 for @emph{any} argument @cite{a}, so it can only
+evaluates to 1 or 0 for @emph{any} argument @expr{a}, so it can only
 be stored in a formula if the default simplifications are turned off
 first with @kbd{m O} (or if it appears in an unevaluated context such
 as a rewrite rule condition).
@@ -25276,8 +25594,8 @@ as a rewrite rule condition).
 @starindex
 @end ignore
 @tindex variable
-The @samp{variable(a)} function is true if @cite{a} is a variable,
-or false if not.  If @cite{a} is a function call, this test is left
+The @samp{variable(a)} function is true if @expr{a} is a variable,
+or false if not.  If @expr{a} is a function call, this test is left
 in symbolic form.  Built-in variables like @code{pi} and @code{inf}
 are considered variables like any others by this test.
 
@@ -25285,7 +25603,7 @@ are considered variables like any others by this test.
 @starindex
 @end ignore
 @tindex nonvar
-The @samp{nonvar(a)} function is true if @cite{a} is a non-variable.
+The @samp{nonvar(a)} function is true if @expr{a} is a non-variable.
 If its argument is a variable it is left unsimplified; it never
 actually returns zero.  However, since Calc's condition-testing
 commands consider ``false'' anything not provably true, this is
@@ -25310,15 +25628,15 @@ often good enough.
 @cindex Linearity testing
 The functions @code{lin}, @code{linnt}, @code{islin}, and @code{islinnt}
 check if an expression is ``linear,'' i.e., can be written in the form
-@cite{a + b x} for some constants @cite{a} and @cite{b}, and some
-variable or subformula @cite{x}.  The function @samp{islin(f,x)} checks
-if formula @cite{f} is linear in @cite{x}, returning 1 if so.  For
+@expr{a + b x} for some constants @expr{a} and @expr{b}, and some
+variable or subformula @expr{x}.  The function @samp{islin(f,x)} checks
+if formula @expr{f} is linear in @expr{x}, returning 1 if so.  For
 example, @samp{islin(x,x)}, @samp{islin(-x,x)}, @samp{islin(3,x)}, and
 @samp{islin(x y / 3 - 2, x)} all return 1.  The @samp{lin(f,x)} function
 is similar, except that instead of returning 1 it returns the vector
-@cite{[a, b, x]}.  For the above examples, this vector would be
-@cite{[0, 1, x]}, @cite{[0, -1, x]}, @cite{[3, 0, x]}, and
-@cite{[-2, y/3, x]}, respectively.  Both @code{lin} and @code{islin}
+@expr{[a, b, x]}.  For the above examples, this vector would be
+@expr{[0, 1, x]}, @expr{[0, -1, x]}, @expr{[3, 0, x]}, and
+@expr{[-2, y/3, x]}, respectively.  Both @code{lin} and @code{islin}
 generally remain unevaluated for expressions which are not linear,
 e.g., @samp{lin(2 x^2, x)} and @samp{lin(sin(x), x)}.  The second
 argument can also be a formula; @samp{islin(2 + 3 sin(x), sin(x))}
@@ -25326,19 +25644,19 @@ returns true.
 
 The @code{linnt} and @code{islinnt} functions perform a similar check,
 but require a ``non-trivial'' linear form, which means that the
-@cite{b} coefficient must be non-zero.  For example, @samp{lin(2,x)}
-returns @cite{[2, 0, x]} and @samp{lin(y,x)} returns @cite{[y, 0, x]},
+@expr{b} coefficient must be non-zero.  For example, @samp{lin(2,x)}
+returns @expr{[2, 0, x]} and @samp{lin(y,x)} returns @expr{[y, 0, x]},
 but @samp{linnt(2,x)} and @samp{linnt(y,x)} are left unevaluated
 (in other words, these formulas are considered to be only ``trivially''
-linear in @cite{x}).
+linear in @expr{x}).
 
 All four linearity-testing functions allow you to omit the second
 argument, in which case the input may be linear in any non-constant
-formula.  Here, the @cite{a=0}, @cite{b=1} case is also considered
-trivial, and only constant values for @cite{a} and @cite{b} are
-recognized.  Thus, @samp{lin(2 x y)} returns @cite{[0, 2, x y]},
-@samp{lin(2 - x y)} returns @cite{[2, -1, x y]}, and @samp{lin(x y)}
-returns @cite{[0, 1, x y]}.  The @code{linnt} function would allow the
+formula.  Here, the @expr{a=0}, @expr{b=1} case is also considered
+trivial, and only constant values for @expr{a} and @expr{b} are
+recognized.  Thus, @samp{lin(2 x y)} returns @expr{[0, 2, x y]},
+@samp{lin(2 - x y)} returns @expr{[2, -1, x y]}, and @samp{lin(x y)}
+returns @expr{[0, 1, x y]}.  The @code{linnt} function would allow the
 first two cases but not the third.  Also, neither @code{lin} nor
 @code{linnt} accept plain constants as linear in the one-argument
 case: @samp{islin(2,x)} is true, but @samp{islin(2)} is false.
@@ -25347,8 +25665,8 @@ case: @samp{islin(2,x)} is true, but @samp{islin(2)} is false.
 @starindex
 @end ignore
 @tindex istrue
-The @samp{istrue(a)} function returns 1 if @cite{a} is a nonzero
-number or provably nonzero formula, or 0 if @cite{a} is anything else.
+The @samp{istrue(a)} function returns 1 if @expr{a} is a nonzero
+number or provably nonzero formula, or 0 if @expr{a} is anything else.
 Calls to @code{istrue} can only be manipulated if @kbd{m O} mode is
 used to make sure they are not evaluated prematurely.  (Note that
 declarations are used when deciding whether a formula is true;
@@ -25408,7 +25726,7 @@ This operator is equivalent to the function call @samp{assign(old, new)}.
 The @code{assign} function is undefined by itself in Calc, so an
 assignment formula such as a rewrite rule will be left alone by ordinary
 Calc commands.  But certain commands, like the rewrite system, interpret
-assignments in special ways.@refill
+assignments in special ways.
 
 For example, the rule @samp{sin(x)^2 := 1-cos(x)^2} says to replace
 every occurrence of the sine of something, squared, with one minus the
@@ -25451,7 +25769,7 @@ invoke them by giving the variable name.  The @kbd{s e}
 (@code{calc-edit-variable}) command is an easy way to create or edit a
 rule set stored in a variable.  You may also wish to use @kbd{s p}
 (@code{calc-permanent-variable}) to save your rules permanently;
-@pxref{Operations on Variables}.@refill
+@pxref{Operations on Variables}.
 
 Rewrite rules are compiled into a special internal form for faster
 matching.  If you enter a rule set directly it must be recompiled
@@ -25468,10 +25786,10 @@ vector of two rules, the use of this notation is no longer recommended.
 @subsection Basic Rewrite Rules
 
 @noindent
-To match a particular formula @cite{x} with a particular rewrite rule
-@samp{@var{old} := @var{new}}, Calc compares the structure of @cite{x} with
+To match a particular formula @expr{x} with a particular rewrite rule
+@samp{@var{old} := @var{new}}, Calc compares the structure of @expr{x} with
 the structure of @var{old}.  Variables that appear in @var{old} are
-treated as @dfn{meta-variables}; the corresponding positions in @cite{x}
+treated as @dfn{meta-variables}; the corresponding positions in @expr{x}
 may contain any sub-formulas.  For example, the pattern @samp{f(x,y)}
 would match the expression @samp{f(12, a+1)} with the meta-variable
 @samp{x} corresponding to 12 and with @samp{y} corresponding to
@@ -25481,7 +25799,7 @@ that will make the pattern match these expressions.  Notice that if
 the pattern is a single meta-variable, it will match any expression.
 
 If a given meta-variable appears more than once in @var{old}, the
-corresponding sub-formulas of @cite{x} must be identical.  Thus
+corresponding sub-formulas of @expr{x} must be identical.  Thus
 the pattern @samp{f(x,x)} would match @samp{f(12, 12)} and
 @samp{f(a+1, a+1)} but not @samp{f(12, a+1)} or @samp{f(a+b, b+a)}.
 (@xref{Conditional Rewrite Rules}, for a way to match the latter.)
@@ -25525,14 +25843,14 @@ number or any other object known to be nonzero (@pxref{Declarations}),
 the rule is accepted.  If the result is zero or if it is a symbolic
 formula that is not known to be nonzero, the rule is rejected.
 @xref{Logical Operations}, for a number of functions that return
-1 or 0 according to the results of various tests.@refill
+1 or 0 according to the results of various tests.
 
-For example, the formula @samp{n > 0} simplifies to 1 or 0 if @cite{n}
+For example, the formula @samp{n > 0} simplifies to 1 or 0 if @expr{n}
 is replaced by a positive or nonpositive number, respectively (or if
-@cite{n} has been declared to be positive or nonpositive).  Thus,
+@expr{n} has been declared to be positive or nonpositive).  Thus,
 the rule @samp{f(x,y) := g(y+x,x) :: x+y > 0} would apply to
 @samp{f(0, 4)} but not to @samp{f(-3, 2)} or @samp{f(12, a+1)}
-(assuming no outstanding declarations for @cite{a}).  In the case of
+(assuming no outstanding declarations for @expr{a}).  In the case of
 @samp{f(-3, 2)}, the condition can be shown not to be satisfied; in
 the case of @samp{f(12, a+1)}, the condition merely cannot be shown
 to be satisfied, but that is enough to reject the rule.
@@ -25562,12 +25880,12 @@ decides when it is best to test each condition while a rule is being
 matched.
 
 Certain conditions are handled as special cases by the rewrite rule
-system and are tested very efficiently:  Where @cite{x} is any
+system and are tested very efficiently:  Where @expr{x} is any
 meta-variable, these conditions are @samp{integer(x)}, @samp{real(x)},
-@samp{constant(x)}, @samp{negative(x)}, @samp{x >= y} where @cite{y}
+@samp{constant(x)}, @samp{negative(x)}, @samp{x >= y} where @expr{y}
 is either a constant or another meta-variable and @samp{>=} may be
 replaced by any of the six relational operators, and @samp{x % a = b}
-where @cite{a} and @cite{b} are constants.  Other conditions, like
+where @expr{a} and @expr{b} are constants.  Other conditions, like
 @samp{x >= y+1} or @samp{dreal(x)}, will be less efficient to check
 since Calc must bring the whole evaluator and simplifier into play.
 
@@ -25776,7 +26094,7 @@ are linear in @samp{x}.  You can also use the @code{lin} and @code{islin}
 functions with rewrite conditions to test for this; @pxref{Logical
 Operations}.  These functions are not as convenient to use in rewrite
 rules, but they recognize more kinds of formulas as linear:
-@samp{x/z} is considered linear with @cite{b = 1/z} by @code{lin},
+@samp{x/z} is considered linear with @expr{b = 1/z} by @code{lin},
 but it will not match the above pattern because that pattern calls
 for a multiplication, not a division.
 
@@ -25796,7 +26114,7 @@ opt(a) sin(x)^2 + opt(a) cos(x)^2  :=  a
 @end example
 
 Note that this rule will @emph{not} match @samp{sin(x)^2 + 6 cos(x)^2}
-because one @cite{a} would have ``matched'' 1 while the other matched 6.
+because one @expr{a} would have ``matched'' 1 while the other matched 6.
 
 Calc automatically converts a rule like
 
@@ -25944,20 +26262,25 @@ work in the righthand side of a rule.
 @end ignore
 @tindex import
 One kind of marker, @samp{import(x)}, takes the place of a whole
-rule.  Here @cite{x} is the name of a variable containing another
+rule.  Here @expr{x} is the name of a variable containing another
 rule set; those rules are ``spliced into'' the rule set that
 imports them.  For example, if @samp{[f(a+b) := f(a) + f(b),
 f(a b) := a f(b) :: real(a)]} is stored in variable @samp{linearF},
 then the rule set @samp{[f(0) := 0, import(linearF)]} will apply
 all three rules.  It is possible to modify the imported rules
 slightly:  @samp{import(x, v1, x1, v2, x2, @dots{})} imports
-the rule set @cite{x} with all occurrences of @c{$v_1$}
-@cite{v1}, as either
-a variable name or a function name, replaced with @c{$x_1$}
-@cite{x1} and
-so on.  (If @c{$v_1$}
-@cite{v1} is used as a function name, then @c{$x_1$}
-@cite{x1}
+the rule set @expr{x} with all occurrences of 
+@texline @tmath{v_1},
+@infoline @expr{v1}, 
+as either a variable name or a function name, replaced with 
+@texline @tmath{x_1}
+@infoline @expr{x1} 
+and so on.  (If 
+@texline @tmath{v_1}
+@infoline @expr{v1} 
+is used as a function name, then 
+@texline @tmath{x_1}
+@infoline @expr{x1}
 must be either a function name itself or a @w{@samp{< >}} nameless
 function; @pxref{Specifying Operators}.)  For example, @samp{[g(0) := 0,
 import(linearF, f, g)]} applies the linearity rules to the function
@@ -25972,7 +26295,7 @@ The special functions allowed in patterns are:
 @starindex
 @end ignore
 @tindex quote
-This pattern matches exactly @cite{x}; variable names in @cite{x} are
+This pattern matches exactly @expr{x}; variable names in @expr{x} are
 not interpreted as meta-variables.  The only flexibility is that
 numbers are compared for numeric equality, so that the pattern
 @samp{f(quote(12))} will match both @samp{f(12)} and @samp{f(12.0)}.
@@ -25986,10 +26309,10 @@ as a result in this case.)
 @starindex
 @end ignore
 @tindex plain
-Here @cite{x} must be a function call @samp{f(x1,x2,@dots{})}.  This
-pattern matches a call to function @cite{f} with the specified
+Here @expr{x} must be a function call @samp{f(x1,x2,@dots{})}.  This
+pattern matches a call to function @expr{f} with the specified
 argument patterns.  No special knowledge of the properties of the
-function @cite{f} is used in this case; @samp{+} is not commutative or
+function @expr{f} is used in this case; @samp{+} is not commutative or
 associative.  Unlike @code{quote}, the arguments @samp{x1,x2,@dots{}}
 are treated as patterns.  If you wish them to be treated ``plainly''
 as well, you must enclose them with more @code{plain} markers:
@@ -26000,24 +26323,24 @@ as well, you must enclose them with more @code{plain} markers:
 @starindex
 @end ignore
 @tindex opt
-Here @cite{x} must be a variable name.  This must appear as an
+Here @expr{x} must be a variable name.  This must appear as an
 argument to a function or an element of a vector; it specifies that
 the argument or element is optional.
 As an argument to @samp{+}, @samp{-}, @samp{*}, @samp{&&}, or @samp{||},
 or as the second argument to @samp{/} or @samp{^}, the value @var{def}
 may be omitted.  The pattern @samp{x + opt(y)} matches a sum by
-binding one summand to @cite{x} and the other to @cite{y}, and it
-matches anything else by binding the whole expression to @cite{x} and
-zero to @cite{y}.  The other operators above work similarly.@refill
+binding one summand to @expr{x} and the other to @expr{y}, and it
+matches anything else by binding the whole expression to @expr{x} and
+zero to @expr{y}.  The other operators above work similarly.
 
 For general miscellaneous functions, the default value @code{def}
 must be specified.  Optional arguments are dropped starting with
 the rightmost one during matching.  For example, the pattern
 @samp{f(opt(a,0), b, opt(c,b))} will match @samp{f(b)}, @samp{f(a,b)},
-or @samp{f(a,b,c)}.  Default values of zero and @cite{b} are
+or @samp{f(a,b,c)}.  Default values of zero and @expr{b} are
 supplied in this example for the omitted arguments.  Note that
-the literal variable @cite{b} will be the default in the latter
-case, @emph{not} the value that matched the meta-variable @cite{b}.
+the literal variable @expr{b} will be the default in the latter
+case, @emph{not} the value that matched the meta-variable @expr{b}.
 In other words, the default @var{def} is effectively quoted.
 
 @item condition(x,c)
@@ -26026,8 +26349,8 @@ In other words, the default @var{def} is effectively quoted.
 @end ignore
 @tindex condition
 @tindex ::
-This matches the pattern @cite{x}, with the attached condition
-@cite{c}.  It is the same as @samp{x :: c}.
+This matches the pattern @expr{x}, with the attached condition
+@expr{c}.  It is the same as @samp{x :: c}.
 
 @item pand(x,y)
 @ignore
@@ -26035,8 +26358,8 @@ This matches the pattern @cite{x}, with the attached condition
 @end ignore
 @tindex pand
 @tindex &&&
-This matches anything that matches both pattern @cite{x} and
-pattern @cite{y}.  It is the same as @samp{x &&& y}.
+This matches anything that matches both pattern @expr{x} and
+pattern @expr{y}.  It is the same as @samp{x &&& y}.
 @pxref{Composing Patterns in Rewrite Rules}.
 
 @item por(x,y)
@@ -26045,8 +26368,8 @@ pattern @cite{y}.  It is the same as @samp{x &&& y}.
 @end ignore
 @tindex por
 @tindex |||
-This matches anything that matches either pattern @cite{x} or
-pattern @cite{y}.  It is the same as @w{@samp{x ||| y}}.
+This matches anything that matches either pattern @expr{x} or
+pattern @expr{y}.  It is the same as @w{@samp{x ||| y}}.
 
 @item pnot(x)
 @ignore
@@ -26054,7 +26377,7 @@ pattern @cite{y}.  It is the same as @w{@samp{x ||| y}}.
 @end ignore
 @tindex pnot
 @tindex !!!
-This matches anything that does not match pattern @cite{x}.
+This matches anything that does not match pattern @expr{x}.
 It is the same as @samp{!!! x}.
 
 @item cons(h,t)
@@ -26063,8 +26386,8 @@ It is the same as @samp{!!! x}.
 @end ignore
 @tindex cons (rewrites)
 This matches any vector of one or more elements.  The first
-element is matched to @cite{h}; a vector of the remaining
-elements is matched to @cite{t}.  Note that vectors of fixed
+element is matched to @expr{h}; a vector of the remaining
+elements is matched to @expr{t}.  Note that vectors of fixed
 length can also be matched as actual vectors:  The rule
 @samp{cons(a,cons(b,[])) := cons(a+b,[])} is equivalent
 to the rule @samp{[a,b] := [a+b]}.
@@ -26075,8 +26398,8 @@ to the rule @samp{[a,b] := [a+b]}.
 @end ignore
 @tindex rcons (rewrites)
 This is like @code{cons}, except that the @emph{last} element
-is matched to @cite{h}, with the remaining elements matched
-to @cite{t}.
+is matched to @expr{h}, with the remaining elements matched
+to @expr{t}.
 
 @item apply(f,args)
 @ignore
@@ -26084,7 +26407,7 @@ to @cite{t}.
 @end ignore
 @tindex apply (rewrites)
 This matches any function call.  The name of the function, in
-the form of a variable, is matched to @cite{f}.  The arguments
+the form of a variable, is matched to @expr{f}.  The arguments
 of the function, as a vector of zero or more objects, are
 matched to @samp{args}.  Constants, variables, and vectors
 do @emph{not} match an @code{apply} pattern.  For example,
@@ -26152,7 +26475,7 @@ protecting rules from evaluation.)
 
 @item plain(x)
 Special properties of and simplifications for the function call
-@cite{x} are not used.  One interesting case where @code{plain}
+@expr{x} are not used.  One interesting case where @code{plain}
 is useful is the rule, @samp{q(x) := quote(x)}, trying to expand a
 shorthand notation for the @code{quote} function.  This rule will
 not work as shown; instead of replacing @samp{q(foo)} with
@@ -26160,7 +26483,7 @@ not work as shown; instead of replacing @samp{q(foo)} with
 rule would be @samp{q(x) := plain(quote(x))}.
 
 @item cons(h,t)
-Where @cite{t} is a vector, this is converted into an expanded
+Where @expr{t} is a vector, this is converted into an expanded
 vector during rewrite processing.  Note that @code{cons} is a regular
 Calc function which normally does this anyway; the only way @code{cons}
 is treated specially by rewrites is that @code{cons} on the righthand
@@ -26168,11 +26491,11 @@ side of a rule will be evaluated even if default simplifications
 have been turned off.
 
 @item rcons(t,h)
-Analogous to @code{cons} except putting @cite{h} at the @emph{end} of
-the vector @cite{t}.
+Analogous to @code{cons} except putting @expr{h} at the @emph{end} of
+the vector @expr{t}.
 
 @item apply(f,args)
-Where @cite{f} is a variable and @var{args} is a vector, this
+Where @expr{f} is a variable and @var{args} is a vector, this
 is converted to a function call.  Once again, note that @code{apply}
 is also a regular Calc function.
 
@@ -26181,7 +26504,7 @@ is also a regular Calc function.
 @starindex
 @end ignore
 @tindex eval
-The formula @cite{x} is handled in the usual way, then the
+The formula @expr{x} is handled in the usual way, then the
 default simplifications are applied to it even if they have
 been turned off normally.  This allows you to treat any function
 similarly to the way @code{cons} and @code{apply} are always
@@ -26194,7 +26517,7 @@ whereas @samp{eval(cons(2+3, []))} will be converted to @samp{[5]}.
 @starindex
 @end ignore
 @tindex evalsimp
-The formula @cite{x} has meta-variables substituted in the usual
+The formula @expr{x} has meta-variables substituted in the usual
 way, then algebraically simplified as if by the @kbd{a s} command.
 
 @item evalextsimp(x)
@@ -26202,7 +26525,7 @@ way, then algebraically simplified as if by the @kbd{a s} command.
 @starindex
 @end ignore
 @tindex evalextsimp
-The formula @cite{x} has meta-variables substituted in the normal
+The formula @expr{x} has meta-variables substituted in the normal
 way, then ``extendedly'' simplified as if by the @kbd{a e} command.
 
 @item select(x)
@@ -26217,22 +26540,22 @@ There are also some special functions you can use in conditions.
 @starindex
 @end ignore
 @tindex let
-The expression @cite{x} is evaluated with meta-variables substituted.
+The expression @expr{x} is evaluated with meta-variables substituted.
 The @kbd{a s} command's simplifications are @emph{not} applied by
-default, but @cite{x} can include calls to @code{evalsimp} or
+default, but @expr{x} can include calls to @code{evalsimp} or
 @code{evalextsimp} as described above to invoke higher levels
 of simplification.  The
-result of @cite{x} is then bound to the meta-variable @cite{v}.  As
+result of @expr{x} is then bound to the meta-variable @expr{v}.  As
 usual, if this meta-variable has already been matched to something
 else the two values must be equal; if the meta-variable is new then
 it is bound to the result of the expression.  This variable can then
 appear in later conditions, and on the righthand side of the rule.
-In fact, @cite{v} may be any pattern in which case the result of
-evaluating @cite{x} is matched to that pattern, binding any
+In fact, @expr{v} may be any pattern in which case the result of
+evaluating @expr{x} is matched to that pattern, binding any
 meta-variables that appear in that pattern.  Note that @code{let}
 can only appear by itself as a condition, or as one term of an
 @samp{&&} which is a whole condition:  It cannot be inside
-an @samp{||} term or otherwise buried.@refill
+an @samp{||} term or otherwise buried.
 
 The alternate, equivalent form @samp{let(v, x)} is also recognized.
 Note that the use of @samp{:=} by @code{let}, while still being
@@ -26249,7 +26572,7 @@ to express this rule that didn't have to invert the matrix twice.
 Note that, because the meta-variable @samp{ia} is otherwise unbound
 in this rule, the @code{let} condition itself always ``succeeds''
 because no matter what @samp{1/a} evaluates to, it can successfully
-be bound to @code{ia}.@refill
+be bound to @code{ia}.
 
 Here's another example, for integrating cosines of linear
 terms:  @samp{myint(cos(y),x) := sin(y)/b :: let([a,b,x] := lin(y,x))}.
@@ -26260,7 +26583,7 @@ so this @code{let} both verifies that @code{y} is linear, and binds
 the coefficients @code{a} and @code{b} for use elsewhere in the rule.
 (It would have been possible to use @samp{sin(a x + b)/b} for the
 righthand side instead, but using @samp{sin(y)/b} avoids gratuitous
-rearrangement of the argument of the sine.)@refill
+rearrangement of the argument of the sine.)
 
 @ignore
 @starindex
@@ -26321,7 +26644,7 @@ be added to the rule set and will continue to operate even if
 @starindex
 @end ignore
 @tindex remember
-Remember the match as described above, but only if condition @cite{c}
+Remember the match as described above, but only if condition @expr{c}
 is true.  For example, @samp{remember(n % 4 = 0)} in the above factorial
 rule remembers only every fourth result.  Note that @samp{remember(1)}
 is equivalent to @samp{remember}, and @samp{remember(0)} has no effect.
@@ -26883,7 +27206,7 @@ or ran too long'' message.
 
 Another subtle difference between @code{EvalRules} and regular rewrites
 concerns rules that rewrite a formula into an identical formula.  For
-example, @samp{f(n) := f(floor(n))} ``fails to match'' when @cite{n} is
+example, @samp{f(n) := f(floor(n))} ``fails to match'' when @expr{n} is
 already an integer.  But in @code{EvalRules} this case is detected only
 if the righthand side literally becomes the original formula before any
 further simplification.  This means that @samp{f(n) := f(floor(n))} will
@@ -26927,14 +27250,14 @@ Finally, another limitation is that Calc sometimes calls its built-in
 functions directly rather than going through the default simplifications.
 When it does this, @code{EvalRules} will not be able to override those
 functions.  For example, when you take the absolute value of the complex
-number @cite{(2, 3)}, Calc computes @samp{sqrt(2*2 + 3*3)} by calling
+number @expr{(2, 3)}, Calc computes @samp{sqrt(2*2 + 3*3)} by calling
 the multiplication, addition, and square root functions directly rather
 than applying the default simplifications to this formula.  So an
 @code{EvalRules} rule that (perversely) rewrites @samp{sqrt(13) := 6}
 would not apply.  (However, if you put Calc into symbolic mode so that
 @samp{sqrt(13)} will be left in symbolic form by the built-in square
 root function, your rule will be able to apply.  But if the complex
-number were @cite{(3,4)}, so that @samp{sqrt(25)} must be calculated,
+number were @expr{(3,4)}, so that @samp{sqrt(25)} must be calculated,
 then symbolic mode will not help because @samp{sqrt(25)} can be
 evaluated exactly to 5.)
 
@@ -27028,7 +27351,7 @@ Returning to the example of substituting the pattern
 finding suitable cases.  Another solution would be to use the rule
 @samp{cos(x)^2 := 1 - sin(x)^2}, followed by algebraic simplification
 if necessary.  This rule will be the most effective way to do the job,
-but at the expense of making some changes that you might not desire.@refill
+but at the expense of making some changes that you might not desire.
 
 Another algebraic rewrite rule is @samp{exp(x+y) := exp(x) exp(y)}.
 To make this work with the @w{@kbd{j r}} command so that it can be
@@ -27036,10 +27359,10 @@ easily targeted to a particular exponential in a large formula,
 you might wish to write the rule as @samp{select(exp(x+y)) :=
 select(exp(x) exp(y))}.  The @samp{select} markers will be
 ignored by the regular @kbd{a r} command
-(@pxref{Selections with Rewrite Rules}).@refill
+(@pxref{Selections with Rewrite Rules}).
 
 A surprisingly useful rewrite rule is @samp{a/(b-c) := a*(b+c)/(b^2-c^2)}.
-This will simplify the formula whenever @cite{b} and/or @cite{c} can
+This will simplify the formula whenever @expr{b} and/or @expr{c} can
 be made simpler by squaring.  For example, applying this rule to
 @samp{2 / (sqrt(2) + 3)} yields @samp{6:7 - 2:7 sqrt(2)} (assuming
 Symbolic Mode has been enabled to keep the square root from being
@@ -27059,17 +27382,19 @@ the keyboard macro @kbd{' tri($) @key{RET}} to make a command that applies
 @code{tri} to the value on the top of the stack.  @xref{Programming}.
 
 @cindex Quaternions
-The following rule set, contributed by @c{Fran\c cois}
-@asis{Francois} Pinard, implements
-@dfn{quaternions}, a generalization of the concept of complex numbers.
-Quaternions have four components, and are here represented by function
-calls @samp{quat(@var{w}, [@var{x}, @var{y}, @var{z}])} with ``real
-part'' @var{w} and the three ``imaginary'' parts collected into a
-vector.  Various arithmetical operations on quaternions are supported.
-To use these rules, either add them to @code{EvalRules}, or create a
-command based on @kbd{a r} for simplifying quaternion formulas.
-A convenient way to enter quaternions would be a command defined by
-a keyboard macro containing: @kbd{' quat($$$$, [$$$, $$, $]) @key{RET}}.
+The following rule set, contributed by 
+@texline Fran\c cois
+@infoline Francois
+Pinard, implements @dfn{quaternions}, a generalization of the concept of
+complex numbers.  Quaternions have four components, and are here
+represented by function calls @samp{quat(@var{w}, [@var{x}, @var{y},
+@var{z}])} with ``real part'' @var{w} and the three ``imaginary'' parts
+collected into a vector.  Various arithmetical operations on quaternions
+are supported.  To use these rules, either add them to @code{EvalRules},
+or create a command based on @kbd{a r} for simplifying quaternion
+formulas.  A convenient way to enter quaternions would be a command
+defined by a keyboard macro containing: @kbd{' quat($$$$, [$$$, $$, $])
+@key{RET}}.
 
 @smallexample
 [ quat(w, x, y, z) := quat(w, [x, y, z]),
@@ -27094,8 +27419,8 @@ a keyboard macro containing: @kbd{' quat($$$$, [$$$, $$, $]) @key{RET}}.
 @end smallexample
 
 Quaternions, like matrices, have non-commutative multiplication.
-In other words, @cite{q1 * q2 = q2 * q1} is not necessarily true if
-@cite{q1} and @cite{q2} are @code{quat} forms.  The @samp{quat*quat}
+In other words, @expr{q1 * q2 = q2 * q1} is not necessarily true if
+@expr{q1} and @expr{q2} are @code{quat} forms.  The @samp{quat*quat}
 rule above uses @code{plain} to prevent Calc from rearranging the
 product.  It may also be wise to add the line @samp{[quat(), matrix]}
 to the @code{Decls} matrix, to ensure that Calc's other algebraic
@@ -27142,13 +27467,13 @@ or a variable whose name is a prefix character like @samp{k} (for ``kilo'')
 or @samp{u} (for ``micro'') followed by a name in the unit table.
 A substantial table of built-in units is provided with Calc;
 @pxref{Predefined Units}.  You can also define your own unit names;
-@pxref{User-Defined Units}.@refill
+@pxref{User-Defined Units}.
 
 Note that if the value part of a units expression is exactly @samp{1},
 it will be removed by the Calculator's automatic algebra routines:  The
 formula @samp{1 mm} is ``simplified'' to @samp{mm}.  This is only a
 display anomaly, however; @samp{mm} will work just fine as a
-representation of one millimeter.@refill
+representation of one millimeter.
 
 You may find that Algebraic Mode (@pxref{Algebraic Entry}) makes working
 with units expressions easier.  Otherwise, you will have to remember
@@ -27169,7 +27494,7 @@ to be compatible with another's.  For example, @samp{5 m + 23 mm} will
 simplify to @samp{5.023 m}.  When different but compatible units are
 added, the righthand term's units are converted to match those of the
 lefthand term.  @xref{Simplification Modes}, for a way to have this done
-automatically at all times.@refill
+automatically at all times.
 
 Units simplification also handles quotients of two units with the same
 dimensionality, as in @w{@samp{2 in s/L cm}} to @samp{5.08 s/L}; fractional
@@ -27180,7 +27505,7 @@ powers of unit expressions, as in @samp{sqrt(9 mm^2)} to @samp{3 mm} and
 applied to units expressions, in which case
 the operation in question is applied only to the numeric part of the
 expression.  Finally, trigonometric functions of quantities with units
-of angle are evaluated, regardless of the current angular mode.@refill
+of angle are evaluated, regardless of the current angular mode.
 
 @kindex u c
 @pindex calc-convert-units
@@ -27261,7 +27586,7 @@ The @kbd{u t} (@code{calc-convert-temperature}) command converts
 absolute temperatures.  The value on the stack must be a simple units
 expression with units of temperature only.  This command would convert
 @samp{10 degC} to @samp{50 degF}, the equivalent temperature on the
-Fahrenheit scale.@refill
+Fahrenheit scale.
 
 @kindex u r
 @pindex calc-remove-units
@@ -27272,7 +27597,7 @@ formula at the top of the stack.  The @kbd{u x}
 (@code{calc-extract-units}) command extracts only the units portion of a
 formula.  These commands essentially replace every term of the formula
 that does or doesn't (respectively) look like a unit name by the
-constant 1, then resimplify the formula.@refill
+constant 1, then resimplify the formula.
 
 @kindex u a
 @pindex calc-autorange-units
@@ -27397,12 +27722,12 @@ also @code{tpt}, which stands for a printer's point as defined by the
 
 The unit @code{e} stands for the elementary (electron) unit of charge;
 because algebra command could mistake this for the special constant
-@cite{e}, Calc provides the alternate unit name @code{ech} which is
+@expr{e}, Calc provides the alternate unit name @code{ech} which is
 preferable to @code{e}.
 
 The name @code{g} stands for one gram of mass; there is also @code{gf},
 one gram of force.  (Likewise for @kbd{lb}, pounds, and @kbd{lbf}.)
-Meanwhile, one ``@cite{g}'' of acceleration is denoted @code{ga}.
+Meanwhile, one ``@expr{g}'' of acceleration is denoted @code{ga}.
 
 The unit @code{ton} is a U.S. ton of @samp{2000 lb}, and @code{t} is
 a metric ton of @samp{1000 kg}.
@@ -27634,12 +27959,15 @@ variable.  The other arithmetic stores are @kbd{s -}, @kbd{s *}, @kbd{s /},
 and @kbd{s ]} which decrease or increase a variable by one.
 
 All the arithmetic stores accept the Inverse prefix to reverse the
-order of the operands.  If @cite{v} represents the contents of the
-variable, and @cite{a} is the value drawn from the stack, then regular
-@w{@kbd{s -}} assigns @c{$v \coloneq v - a$}
-@cite{v := v - a}, but @kbd{I s -} assigns
-@c{$v \coloneq a - v$}
-@cite{v := a - v}.  While @kbd{I s *} might seem pointless, it is
+order of the operands.  If @expr{v} represents the contents of the
+variable, and @expr{a} is the value drawn from the stack, then regular
+@w{@kbd{s -}} assigns 
+@texline @tmath{v \coloneq v - a},
+@infoline @expr{v := v - a}, 
+but @kbd{I s -} assigns
+@texline @tmath{v \coloneq a - v}.
+@infoline @expr{v := a - v}.  
+While @kbd{I s *} might seem pointless, it is
 useful if matrix multiplication is involved.  Actually, all the
 arithmetic stores use formulas designed to behave usefully both
 forwards and backwards:
@@ -27666,7 +27994,7 @@ minus-two minus the variable.
 
 The first six arithmetic stores can also be typed @kbd{s t +}, @kbd{s t -},
 etc.  The commands @kbd{s s +}, @kbd{s s -}, and so on are analogous
-arithmetic stores that don't remove the value @cite{a} from the stack.
+arithmetic stores that don't remove the value @expr{a} from the stack.
 
 All arithmetic stores report the new value of the variable in the
 Trail for your information.  They signal an error if the variable
@@ -27692,8 +28020,8 @@ takes the hyperbolic arcsine of the variable contents.
 
 If the mapping function takes two or more arguments, the additional
 arguments are taken from the stack; the old value of the variable
-is provided as the first argument.  Thus @kbd{s m -} with @cite{a}
-on the stack computes @cite{v - a}, just like @kbd{s -}.  With the
+is provided as the first argument.  Thus @kbd{s m -} with @expr{a}
+on the stack computes @expr{v - a}, just like @kbd{s -}.  With the
 Inverse prefix, the variable's original value becomes the @emph{last}
 argument instead of the first.  Thus @kbd{I s m -} is also
 equivalent to @kbd{I s -}.
@@ -27716,7 +28044,7 @@ Until you store something in them, variables are ``void,'' that is, they
 contain no value at all.  If they appear in an algebraic formula they
 will be left alone even if you press @kbd{=} (@code{calc-evaluate}).
 The @kbd{s u} (@code{calc-unstore}) command returns a variable to the
-void state.@refill
+void state.
 
 The only variables with predefined values are the ``special constants''
 @code{pi}, @code{e}, @code{i}, @code{phi}, and @code{gamma}.  You are free
@@ -27728,8 +28056,7 @@ special variables @code{inf}, @code{uinf}, and @code{nan} (which are
 normally void).
 
 Note that @code{var-pi} doesn't actually have 3.14159265359 stored
-in it, but rather a special magic value that evaluates to @c{$\pi$}
-@cite{pi}
+in it, but rather a special magic value that evaluates to @cpi{}
 at the current precision.  Likewise @code{var-e}, @code{var-i}, and
 @code{var-phi} evaluate according to the current precision or polar mode.
 If you recall a value from @code{pi} and store it back, this magic
@@ -27913,7 +28240,7 @@ and @code{PlotRejects};
 @code{FitRules}, @code{DistribRules}, and other built-in rewrite
 rules; and @code{PlotData@var{n}} variables generated
 by the graphics commands.  (You can still save these variables by
-explicitly naming them in an @kbd{s p} command.)@refill
+explicitly naming them in an @kbd{s p} command.)
 
 @kindex s i
 @pindex calc-insert-variables
@@ -27936,9 +28263,9 @@ stores in a more human-readable format.)
 @cindex Variables, temporary assignment
 @cindex Temporary assignment to variables
 If you have an expression like @samp{a+b^2} on the stack and you wish to
-compute its value where @cite{b=3}, you can simply store 3 in @cite{b} and
+compute its value where @expr{b=3}, you can simply store 3 in @expr{b} and
 then press @kbd{=} to reevaluate the formula.  This has the side-effect
-of leaving the stored value of 3 in @cite{b} for future operations.
+of leaving the stored value of 3 in @expr{b} for future operations.
 
 The @kbd{s l} (@code{calc-let}) command evaluates a formula under a
 @emph{temporary} assignment of a variable.  It stores the value on the
@@ -27961,7 +28288,7 @@ and typing @kbd{s l b @key{RET}}.
 The @kbd{a b} (@code{calc-substitute}) command is another way to substitute
 a variable with a value in a formula.  It does an actual substitution
 rather than temporarily assigning the variable and evaluating.  For
-example, letting @cite{n=2} in @samp{f(n pi)} with @kbd{a b} will
+example, letting @expr{n=2} in @samp{f(n pi)} with @kbd{a b} will
 produce @samp{f(2 pi)}, whereas @kbd{s l} would give @samp{f(6.28)}
 since the evaluation step will also evaluate @code{pi}.
 
@@ -28145,8 +28472,8 @@ The ``x'' entry may instead be an interval form, in which case suitable
 the interval (whether the interval is open or closed is ignored).
 
 The ``x'' entry may also be a number, in which case Calc uses the
-sequence of ``x'' values @cite{x}, @cite{x+1}, @cite{x+2}, etc.
-(Generally the number 0 or 1 would be used for @cite{x} in this case.)
+sequence of ``x'' values @expr{x}, @expr{x+1}, @expr{x+2}, etc.
+(Generally the number 0 or 1 would be used for @expr{x} in this case.)
 
 The ``y'' entry may be any formula instead of a vector.  Calc effectively
 uses @kbd{N} (@code{calc-eval-num}) to evaluate variables in the formula;
@@ -28169,7 +28496,7 @@ are used as the ``x'' and ``y'' coordinates of the curve, respectively.
 In this case the ``x'' vector or interval you specified is not directly
 visible in the graph.  For example, if ``x'' is the interval @samp{[0..360]}
 and ``y'' is the formula @samp{xy(sin(t), cos(t))}, the resulting graph
-will be a circle.@refill
+will be a circle.
 
 Also, ``x'' and ``y'' may each be variable names, in which case Calc
 looks for suitable vectors, intervals, or formulas stored in those
@@ -28224,9 +28551,11 @@ In the first case, ``x'' and ``y'' are each vectors (not necessarily of
 the same length); either or both may instead be interval forms.  The
 ``z'' value must be a matrix with the same number of rows as elements
 in ``x'', and the same number of columns as elements in ``y''.  The
-result is a surface plot where @c{$z_{ij}$}
-@cite{z_ij} is the height of the point
-at coordinate @cite{(x_i, y_j)} on the surface.  The 3D graph will
+result is a surface plot where 
+@texline @tmath{z_{ij}}
+@infoline @expr{z_ij} 
+is the height of the point
+at coordinate @expr{(x_i, y_j)} on the surface.  The 3D graph will
 be displayed from a certain default viewpoint; you can change this
 viewpoint by adding a @samp{set view} to the @samp{*Gnuplot Commands*}
 buffer as described later.  See the GNUPLOT 3.0 documentation for a
@@ -28317,26 +28646,28 @@ itself, is what was added by @kbd{g a}.
 
 A numeric prefix argument on @kbd{g a} or @kbd{g f} changes the way
 stack entries are interpreted as curves.  With a positive prefix
-argument @cite{n}, the top @cite{n} stack entries are ``y'' values
-for @cite{n} different curves which share a common ``x'' value in
-the @cite{n+1}st stack entry.  (Thus @kbd{g a} with no prefix
+argument @expr{n}, the top @expr{n} stack entries are ``y'' values
+for @expr{n} different curves which share a common ``x'' value in
+the @expr{n+1}st stack entry.  (Thus @kbd{g a} with no prefix
 argument is equivalent to @kbd{C-u 1 g a}.)
 
 A prefix of zero or plain @kbd{C-u} means to take two stack entries,
 ``x'' and ``y'' as usual, but to interpret ``y'' as a vector of
 ``y'' values for several curves that share a common ``x''.
 
-A negative prefix argument tells Calc to read @cite{n} vectors from
-the stack; each vector @cite{[x, y]} describes an independent curve.
+A negative prefix argument tells Calc to read @expr{n} vectors from
+the stack; each vector @expr{[x, y]} describes an independent curve.
 This is the only form of @kbd{g a} that creates several curves at once
 that don't have common ``x'' values.  (Of course, the range of ``x''
 values covered by all the curves ought to be roughly the same if
 they are to look nice on the same graph.)
 
-For example, to plot @c{$\sin n x$}
-@cite{sin(n x)} for integers @cite{n}
+For example, to plot 
+@texline @tmath{\sin n x}
+@infoline @expr{sin(n x)} 
+for integers @expr{n}
 from 1 to 5, you could use @kbd{v x} to create a vector of integers
-(@cite{n}), then @kbd{V M '} or @kbd{V M $} to map @samp{sin(n x)}
+(@expr{n}), then @kbd{V M '} or @kbd{V M $} to map @samp{sin(n x)}
 across this vector.  The resulting vector of formulas is suitable
 for use as the ``y'' argument to a @kbd{C-u g a} or @kbd{C-u g f}
 command.
@@ -28346,11 +28677,11 @@ command.
 The @kbd{g A} (@code{calc-graph-add-3d}) command adds a 3D curve
 to the graph.  It is not legal to intermix 2D and 3D curves in a
 single graph.  This command takes three arguments, ``x'', ``y'',
-and ``z'', from the stack.  With a positive prefix @cite{n}, it
-takes @cite{n+2} arguments (common ``x'' and ``y'', plus @cite{n}
+and ``z'', from the stack.  With a positive prefix @expr{n}, it
+takes @expr{n+2} arguments (common ``x'' and ``y'', plus @expr{n}
 separate ``z''s).  With a zero prefix, it takes three stack entries
 but the ``z'' entry is a vector of curve values.  With a negative
-prefix @cite{-n}, it takes @cite{n} vectors of the form @cite{[x, y, z]}.
+prefix @expr{-n}, it takes @expr{n} vectors of the form @expr{[x, y, z]}.
 The @kbd{g A} command works by adding a @code{splot} (surface-plot)
 command to the @samp{*Gnuplot Commands*} buffer.
 
@@ -28469,13 +28800,13 @@ a blank line, displays the default number of points used for all
 graphs created by @kbd{g a} that don't specify the resolution explicitly.
 With a negative prefix argument, this command changes or displays
 the default value (initially 5) used for 3D graphs created by @kbd{g A}.
-Note that a 3D setting of 5 means that a total of @cite{5^2 = 25} points
+Note that a 3D setting of 5 means that a total of @expr{5^2 = 25} points
 will be computed for the surface.
 
 Data values in the graph of a function are normally computed to a
 precision of five digits, regardless of the current precision at the
 time. This is usually more than adequate, but there are cases where
-it will not be.  For example, plotting @cite{1 + x} with @cite{x} in the
+it will not be.  For example, plotting @expr{1 + x} with @expr{x} in the
 interval @samp{[0 ..@: 1e-6]} will round all the data points down
 to 1.0!  Putting the command @samp{set precision @var{n}} in the
 @samp{*Gnuplot Commands*} buffer will cause the data to be computed
@@ -28621,8 +28952,10 @@ terminals with no special graphics facilities.  It writes a crude
 picture of the graph composed of characters like @code{-} and @code{|}
 to a buffer called @samp{*Gnuplot Trail*}, which Calc then displays.
 The graph is made the same size as the Emacs screen, which on most
-dumb terminals will be @c{$80\times24$}
-@asis{80x24} characters.  The graph is displayed in
+dumb terminals will be 
+@texline @tmath{80\times24}
+@infoline 80x24
+characters.  The graph is displayed in
 an Emacs ``recursive edit''; type @kbd{q} or @kbd{M-# M-#} to exit
 the recursive edit and return to Calc.  Note that the @code{dumb}
 device is present only in GNUPLOT 3.0 and later versions.
@@ -28824,8 +29157,8 @@ encompass full lines.)  The text is copied into the kill ring exactly as
 it appears on the screen, including line numbers if they are enabled.
 
 A numeric prefix argument to @kbd{C-k} or @kbd{M-k} affects the number
-of lines killed.  A positive argument kills the current line and @cite{n-1}
-lines below it.  A negative argument kills the @cite{-n} lines above the
+of lines killed.  A positive argument kills the current line and @expr{n-1}
+lines below it.  A negative argument kills the @expr{-n} lines above the
 current line.  Again this mirrors the behavior of the standard Emacs
 @kbd{C-k} command.  Although a whole line is always deleted, @kbd{C-k}
 with no argument copies only the number itself into the kill ring, whereas
@@ -28868,9 +29201,9 @@ If the @kbd{M-# g} command works successfully, it does an automatic
 
 A numeric prefix argument grabs the specified number of lines around
 point, ignoring the mark.  A positive prefix grabs from point to the
-@cite{n}th following newline (so that @kbd{M-1 M-# g} grabs from point
+@expr{n}th following newline (so that @kbd{M-1 M-# g} grabs from point
 to the end of the current line); a negative prefix grabs from point
-back to the @cite{n+1}st preceding newline.  In these cases the text
+back to the @expr{n+1}st preceding newline.  In these cases the text
 that is grabbed is exactly the same as the text that @kbd{C-k} would
 delete given that prefix argument.
 
@@ -28926,12 +29259,13 @@ If you give a positive numeric prefix argument @var{n}, then each line
 will be split up into columns of width @var{n}; each column is parsed
 separately as a matrix element.  If a line contained
 @w{@samp{2 +/- 3 4 +/- 5}}, then grabbing with a prefix argument of 8
-would correctly split the line into two error forms.@refill
+would correctly split the line into two error forms.
 
 @xref{Matrix Functions}, to see how to pull the matrix apart into its
-constituent rows and columns.  (If it is a @c{$1\times1$}
-@asis{1x1} matrix, just hit @kbd{v u}
-(@code{calc-unpack}) twice.)
+constituent rows and columns.  (If it is a 
+@texline @tmath{1\times1}
+@infoline 1x1
+matrix, just hit @kbd{v u} (@code{calc-unpack}) twice.)
 
 @kindex M-# :
 @kindex M-# _
@@ -28984,7 +29318,7 @@ normally not included.)  The number is @emph{not} removed from the stack.
 
 With a prefix argument, @kbd{y} inserts several numbers, one per line.
 A positive argument inserts the specified number of values from the top
-of the stack.  A negative argument inserts the @cite{n}th value from the
+of the stack.  A negative argument inserts the @expr{n}th value from the
 top of the stack.  An argument of zero inserts the entire stack.  Note
 that @kbd{y} with an argument of 1 is slightly different from @kbd{y}
 with no argument; the former always copies full lines, whereas the
@@ -28999,7 +29333,7 @@ original data with the new data.  One might wish to alter the matrix
 display style (@pxref{Vector and Matrix Formats}) or change the current
 display language (@pxref{Language Modes}) before doing this.  Also, note
 that this command replaces a linear region of text (as grabbed by
-@kbd{M-# g}), not a rectangle (as grabbed by @kbd{M-# r}).@refill
+@kbd{M-# g}), not a rectangle (as grabbed by @kbd{M-# r}).
 
 If the editing buffer is in overwrite (as opposed to insert) mode,
 and the @kbd{C-u} prefix was not used, then the yanked number will
@@ -29187,7 +29521,7 @@ is the same as @key{CONJ}.
 @item INV *
 is the same as @key{y^x}.
 @item INV /
-is the same as @key{INV y^x} (the @cite{x}th root of @cite{y}).
+is the same as @key{INV y^x} (the @expr{x}th root of @expr{y}).
 @item HYP/INV 1
 are the same as @key{SIN} / @kbd{INV SIN}.
 @item HYP/INV 2
@@ -29253,7 +29587,7 @@ This menu provides various operations from the @kbd{f} and @kbd{k}
 prefix keys.
 
 @key{IMAG} multiplies the number on the stack by the imaginary
-number @cite{i = (0, 1)}.
+number @expr{i = (0, 1)}.
 
 @key{RE} extracts the real part a complex number.  @kbd{INV RE}
 extracts the imaginary part.
@@ -29266,8 +29600,9 @@ same limit as last time.
 
 @key{INV GCD} computes the LCM (least common multiple) function.
 
-@key{INV FACT} is the gamma function.  @c{$\Gamma(x) = (x-1)!$}
-@cite{gamma(x) = (x-1)!}.
+@key{INV FACT} is the gamma function.  
+@texline @tmath{\Gamma(x) = (x-1)!}.
+@infoline @expr{gamma(x) = (x-1)!}.
 
 @key{PERM} is the number-of-permutations function, which is on the
 @kbd{H k c} key in normal Calc.
@@ -29382,13 +29717,13 @@ the variables set to the various sets of numbers in those vectors.
 For example, you could simulate @key{MAP^} using @key{MAP$} with
 the formula @samp{x^y}.
 
-The @kbd{"x"} key pushes the variable name @cite{x} onto the
-stack.  To build the formula @cite{x^2 + 6}, you would use the
+The @kbd{"x"} key pushes the variable name @expr{x} onto the
+stack.  To build the formula @expr{x^2 + 6}, you would use the
 key sequence @kbd{"x" 2 y^x 6 +}.  This formula would then be
 suitable for use with the @key{MAP$} key described above.
 With @key{INV}, @key{HYP}, or @key{INV} and @key{HYP}, the
-@kbd{"x"} key pushes the variable names @cite{y}, @cite{z}, and
-@cite{t}, respectively.
+@kbd{"x"} key pushes the variable names @expr{y}, @expr{z}, and
+@expr{t}, respectively.
 
 @node Keypad Modes Menu, , Keypad Vectors Menu, Keypad Mode
 @section Modes Menu
@@ -29553,7 +29888,7 @@ We define $F_n = F_(n-1)+F_(n-2)$ for all $n>2$.
 @end example
 
 @noindent
-The formula @cite{n>2} will be pushed onto the Calc stack, and
+The formula @expr{n>2} will be pushed onto the Calc stack, and
 the top of stack will be copied back into the editing buffer.
 This means that spaces will appear around the @samp{>} symbol
 to match Calc's usual display style:
@@ -29681,8 +30016,7 @@ in the file as well as the rounded-down number.
 
 Embedded buffers remember active formulas for as long as they
 exist in Emacs memory.  Suppose you have an embedded formula
-which is @c{$\pi$}
-@cite{pi} to the normal 12 decimal places, and then
+which is @cpi{} to the normal 12 decimal places, and then
 type @w{@kbd{C-u 5 d n}} to display only five decimal places.
 If you then type @kbd{d n}, all 12 places reappear because the
 full number is still there on the Calc stack.  More surprisingly,
@@ -29820,9 +30154,9 @@ foo := 5
 @end example
 
 @noindent
-records @cite{5} as the stored value of @code{foo} for the
+records @expr{5} as the stored value of @code{foo} for the
 purposes of Embedded mode operations in the current buffer.  It
-does @emph{not} actually store @cite{5} as the ``global'' value
+does @emph{not} actually store @expr{5} as the ``global'' value
 of @code{foo}, however.  Regular Calc operations, and Embedded
 formulas in other buffers, will not see this assignment.
 
@@ -29891,7 +30225,7 @@ to edit the number using regular Emacs editing rather than Embedded
 mode.  Then, we have to find a way to get Embedded mode to notice
 the change.  The @kbd{M-# u} or @kbd{M-# =}
 (@code{calc-embedded-update-formula}) command is a convenient way
-to do this.@refill
+to do this.
 
 @example
 foo := 6
@@ -30458,7 +30792,7 @@ performing their usual functions.  Press @kbd{C-x )} to end recording.
 Press shift-@kbd{X} (or the standard Emacs key sequence @kbd{C-x e}) to
 execute your keyboard macro by replaying the recorded keystrokes.
 @xref{Keyboard Macros, , , emacs, the Emacs Manual}, for further
-information.@refill
+information.
 
 When you use @kbd{X} to invoke a keyboard macro, the entire macro is
 treated as a single command by the undo and trail features.  The stack
@@ -30504,7 +30838,7 @@ sequence.  The default command name (if you answer the second prompt with
 just the @key{RET} key as in this example) will be something like
 @samp{calc-User-n}.  The keyboard macro will now be available as both
 @kbd{z n} and @kbd{M-x calc-User-n}.  You can backspace and enter a more
-descriptive command name if you wish.@refill
+descriptive command name if you wish.
 
 Macros defined by @kbd{Z K} act like single commands; they are executed
 in the same way as by the @kbd{X} key.  If you wish to define the macro
@@ -30522,7 +30856,7 @@ command to edit the macro.  This command may be found in the
 the macro definition into full Emacs command names, like @code{calc-pop}
 and @code{calc-add}.  Type @kbd{M-# M-#} to finish editing and update
 the definition stored on the key, or, to cancel the edit, type
-@kbd{M-# x}.@refill
+@kbd{M-# x}.
 
 If you give a negative numeric prefix argument to @kbd{Z E}, the keyboard
 macro is edited in spelled-out keystroke form.  For example, the editing
@@ -30536,13 +30870,13 @@ copied verbatim into the keyboard macro.  Basically, the notation is the
 same as is used in all of this manual's examples, except that the manual
 takes some liberties with spaces:  When we say @kbd{' [1 2 3] @key{RET}}, we take
 it for granted that it is clear we really mean @kbd{' [1 @key{SPC} 2 @key{SPC} 3] @key{RET}},
-which is what @code{read-kbd-macro} wants to see.@refill
+which is what @code{read-kbd-macro} wants to see.
 
 If @file{macedit} is not available, @kbd{Z E} edits the keyboard macro
 in ``raw'' form; the editing buffer simply contains characters like
 @samp{1^M2+} (here @samp{^M} represents the carriage-return character).
 Editing in this mode, you will have to use @kbd{C-q} to enter new
-control characters into the buffer.@refill
+control characters into the buffer.
 
 @kindex M-# m
 @pindex read-kbd-macro
@@ -30646,7 +30980,7 @@ body is skipped altogether.  For example, @kbd{1 @key{TAB} Z < 2 * Z >}
 computes two to a nonnegative integer power.  First, we push 1 on the
 stack and then swap the integer argument back to the top.  The @kbd{Z <}
 pops that argument leaving the 1 back on top of the stack.  Then, we
-repeat a multiply-by-two step however many times.@refill
+repeat a multiply-by-two step however many times.
 
 Once again, the keyboard macro is executed as it is being entered.
 In this case it is especially important to set up reasonable initial
@@ -30666,7 +31000,7 @@ if that object is true (a non-zero number), control jumps out of the
 innermost enclosing @kbd{Z <} @dots{} @kbd{Z >} loop and continues
 after the @kbd{Z >}.  If the object is false, the @kbd{Z /} has no
 effect.  Thus @kbd{@var{cond} Z /} is similar to @samp{if (@var{cond}) break;}
-in the C language.@refill
+in the C language.
 
 @kindex Z (
 @kindex Z )
@@ -30680,7 +31014,7 @@ command pops initial and final values from the stack.  It then creates
 a temporary internal counter and initializes it with the value @var{init}.
 The @kbd{Z (} command then repeatedly pushes the counter value onto the
 stack and executes @var{body} and @var{step}, adding @var{step} to the
-counter each time until the loop finishes.@refill
+counter each time until the loop finishes.
 
 @cindex Summations (by keyboard macros)
 By default, the loop finishes when the counter becomes greater than (or
@@ -30880,7 +31214,7 @@ name as the command name but with @samp{calcFunc-} in place of
 new function in an algebraic formula.  Suppose we enter @kbd{yow @key{RET}}.
 Then the new function can be invoked by pushing two numbers on the
 stack and typing @kbd{z m} or @kbd{x spam}, or by entering the algebraic
-formula @samp{yow(x,y)}.@refill
+formula @samp{yow(x,y)}.
 
 The fourth prompt is for the function's argument list.  This is used to
 associate values on the stack with the variables that appear in the formula.
@@ -30891,9 +31225,9 @@ two numbers from the stack, substitute these numbers for @samp{a} and
 @samp{b} (respectively) in the formula, then simplify the formula and
 push the result on the stack.  In other words, @kbd{10 @key{RET} 100 z m}
 would replace the 10 and 100 on the stack with the number 210, which is
-@cite{a + 2 b} with @cite{a=10} and @cite{b=100}.  Likewise, the formula
-@samp{yow(10, 100)} will be evaluated by substituting @cite{a=10} and
-@cite{b=100} in the definition.
+@expr{a + 2 b} with @expr{a=10} and @expr{b=100}.  Likewise, the formula
+@samp{yow(10, 100)} will be evaluated by substituting @expr{a=10} and
+@expr{b=100} in the definition.
 
 You can rearrange the order of the names before pressing @key{RET} to
 control which stack positions go to which variables in the formula.  If
@@ -30911,12 +31245,12 @@ using the argument list @samp{(a b)}.
 The final prompt is a y-or-n question concerning what to do if symbolic
 arguments are given to your function.  If you answer @kbd{y}, then
 executing @kbd{z m} (using the original argument list @samp{(a b)}) with
-arguments @cite{10} and @cite{x} will leave the function in symbolic
+arguments @expr{10} and @expr{x} will leave the function in symbolic
 form, i.e., @samp{yow(10,x)}.  On the other hand, if you answer @kbd{n},
 then the formula will always be expanded, even for non-constant
 arguments: @samp{10 + 2 x}.  If you never plan to feed algebraic
 formulas to your new function, it doesn't matter how you answer this
-question.@refill
+question.
 
 If you answered @kbd{y} to this question you can still cause a function
 call to be expanded by typing @kbd{a "} (@code{calc-expand-formula}).
@@ -30931,7 +31265,7 @@ key, and this command pushes the formula that was used to define that
 key onto the stack.  Actually, it pushes a nameless function that
 specifies both the argument list and the defining formula.  You will get
 an error message if the key is undefined, or if the key was not defined
-by a @kbd{Z F} command.@refill
+by a @kbd{Z F} command.
 
 The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has
 been defined by a formula uses a variant of the @code{calc-edit} command
@@ -30951,7 +31285,7 @@ You may find it useful to turn off the default simplifications with
 used as a function definition.  For example, the formula @samp{deriv(a^2,v)}
 which might be used to define a new function @samp{dsqr(a,v)} will be
 ``simplified'' to 0 immediately upon entry since @code{deriv} considers
-@cite{a} to be constant with respect to @cite{v}.  Turning off
+@expr{a} to be constant with respect to @expr{v}.  Turning off
 default simplifications cures this problem:  The definition will be stored
 in symbolic form without ever activating the @code{deriv} function.  Press
 @kbd{m D} to turn the default simplifications back on afterwards.
@@ -31049,7 +31383,7 @@ The following standard Lisp functions are treated by @code{defmath}:
 @code{expt}, @code{=}, @code{<}, @code{>}, @code{<=}, @code{>=},
 @code{/=}, @code{1+}, @code{1-}, @code{logand}, @code{logior}, @code{logxor},
 @code{logandc2}, @code{lognot}.  Also, @code{~=} is an abbreviation for
-@code{math-nearly-equal}, which is useful in implementing Taylor series.@refill
+@code{math-nearly-equal}, which is useful in implementing Taylor series.
 
 For other functions @var{func}, if a function by the name
 @samp{calcFunc-@var{func}} exists it is used, otherwise if a function by the
@@ -31057,13 +31391,13 @@ name @samp{math-@var{func}} exists it is used, otherwise if @var{func} itself
 is defined as a function it is used, otherwise @samp{calcFunc-@var{func}} is
 used on the assumption that this is a to-be-defined math function.  Also, if
 the function name is quoted as in @samp{('integerp a)} the function name is
-always used exactly as written (but not quoted).@refill
+always used exactly as written (but not quoted).
 
 Variable names have @samp{var-} prepended to them unless they appear in
 the function's argument list or in an enclosing @code{let}, @code{let*},
 @code{for}, or @code{foreach} form,
 or their names already contain a @samp{-} character.  Thus a reference to
-@samp{foo} is the same as a reference to @samp{var-foo}.@refill
+@samp{foo} is the same as a reference to @samp{var-foo}.
 
 A few other Lisp extensions are available in @code{defmath} definitions:
 
@@ -31081,18 +31415,18 @@ Lisp @code{setf} function.  (The name @code{setf} is recognized as
 a synonym of @code{setq}.)  Specifically, the first argument of
 @code{setq} can be an @code{nth}, @code{elt}, @code{car}, or @code{cdr} form,
 in which case the effect is to store into the specified
-element of a list.  Thus, @samp{(setq (elt m i j) x)} stores @cite{x}
+element of a list.  Thus, @samp{(setq (elt m i j) x)} stores @expr{x}
 into one element of a matrix.
 
 @item
 A @code{for} looping construct is available.  For example,
 @samp{(for ((i 0 10)) body)} executes @code{body} once for each
-binding of @cite{i} from zero to 10.  This is like a @code{let}
-form in that @cite{i} is temporarily bound to the loop count
+binding of @expr{i} from zero to 10.  This is like a @code{let}
+form in that @expr{i} is temporarily bound to the loop count
 without disturbing its value outside the @code{for} construct.
 Nested loops, as in @samp{(for ((i 0 10) (j 0 (1- i) 2)) body)},
-are also available.  For each value of @cite{i} from zero to 10,
-@cite{j} counts from 0 to @cite{i-1} in steps of two.  Note that
+are also available.  For each value of @expr{i} from zero to 10,
+@expr{j} counts from 0 to @expr{i-1} in steps of two.  Note that
 @code{for} has the same general outline as @code{let*}, except
 that each element of the header is a list of three or four
 things, not just two.
@@ -31100,8 +31434,8 @@ things, not just two.
 @item
 The @code{foreach} construct loops over elements of a list.
 For example, @samp{(foreach ((x (cdr v))) body)} executes
-@code{body} with @cite{x} bound to each element of Calc vector
-@cite{v} in turn.  The purpose of @code{cdr} here is to skip over
+@code{body} with @expr{x} bound to each element of Calc vector
+@expr{v} in turn.  The purpose of @code{cdr} here is to skip over
 the initial @code{vec} symbol in the vector.
 
 @item
@@ -31112,7 +31446,7 @@ loop.  (Lisp loops otherwise always return @code{nil}.)
 
 @item
 The @code{return} function prematurely returns from the enclosing
-function.  For example, @samp{(return (+ x y))} returns @cite{x+y}
+function.  For example, @samp{(return (+ x y))} returns @expr{x+y}
 as the value of a function.  You can use @code{return} anywhere
 inside the body of the function.
 @end itemize
@@ -31464,7 +31798,7 @@ Emacs-style code string as well which comes just before @var{num} and
 
 In this example, the command @code{calc-foo} will evaluate the expression
 @samp{foo(a,b)} if executed with no argument, or @samp{foo(a,b,n)} if
-executed with a numeric prefix argument of @cite{n}.
+executed with a numeric prefix argument of @expr{n}.
 
 The other code string allowed is @samp{"m"} (unrelated to the usual @samp{"m"}
 code as used with @code{defun}).  It uses the numeric prefix argument as the
@@ -31501,7 +31835,7 @@ The following qualifiers are recognized:
 The argument must not be an incomplete vector, interval, or complex number.
 (This is rarely needed since the Calculator itself will never call your
 function with an incomplete argument.  But there is nothing stopping your
-own Lisp code from calling your function with an incomplete argument.)@refill
+own Lisp code from calling your function with an incomplete argument.)
 
 @item integer
 @findex integer
@@ -31665,8 +31999,9 @@ same thing with a single division by 512.
 @end ignore
 @tindex mysin
 A somewhat limited sine function could be defined as follows, using the
-well-known Taylor series expansion for @c{$\sin x$}
-@samp{sin(x)}:
+well-known Taylor series expansion for 
+@texline @tmath{\sin x}:
+@infoline @samp{sin(x)}:
 
 @smallexample
 (defmath mysin ((float (anglep x)))
@@ -31688,8 +32023,7 @@ well-known Taylor series expansion for @c{$\sin x$}
 @end smallexample
 
 The actual @code{sin} function in Calc works by first reducing the problem
-to a sine or cosine of a nonnegative number less than @c{$\pi \over 4$}
-@cite{pi/4}.  This
+to a sine or cosine of a nonnegative number less than @cpiover{4}.  This
 ensures that the Taylor series will converge quickly.  Also, the calculation
 is carried out with two extra digits of precision to guard against cumulative
 round-off in @samp{sum}.  Finally, complex arguments are allowed and handled
@@ -31724,10 +32058,9 @@ numbers, @code{mysin-series} is the routine to compute the sine Taylor
 series as before, and @code{mycos-raw} is a function analogous to
 @code{mysin-raw} for cosines.
 
-The strategy is to ensure that @cite{x} is nonnegative before calling
+The strategy is to ensure that @expr{x} is nonnegative before calling
 @code{mysin-raw}.  This function then recursively reduces its argument
-to a suitable range, namely, plus-or-minus @c{$\pi \over 4$}
-@cite{pi/4}.  Note that each
+to a suitable range, namely, plus-or-minus @cpiover{4}.  Note that each
 test, and particularly the first comparison against 7, is designed so
 that small roundoff errors cannot produce an infinite loop.  (Suppose
 we compared with @samp{(two-pi)} instead; if due to roundoff problems
@@ -31877,8 +32210,8 @@ consider what happens with @samp{(calc-eval "sqrt(2)" 'num)}
 when the user has left Calc in symbolic mode or no-simplify mode.
 
 As another example, @samp{(equal (calc-eval '("$<$$") nil a b) "1")}
-checks if the number in string @cite{a} is less than the one in
-string @cite{b}.  Without using a list, the integer 1 might
+checks if the number in string @expr{a} is less than the one in
+string @expr{b}.  Without using a list, the integer 1 might
 come out in a variety of formats which would be hard to test for
 conveniently: @code{"1"}, @code{"8#1"}, @code{"00001"}.  (But
 see ``Predicates'' mode, below.)
@@ -32218,13 +32551,13 @@ the float is @samp{@var{mant} * 10^@var{exp}}.  For example, the number
 are that the number 0.0 is always stored as @samp{(float 0 0)}, and,
 except for the 0.0 case, the rightmost base-10 digit of @var{mant} is
 always nonzero.  (If the rightmost digit is zero, the number is
-rearranged by dividing @var{mant} by ten and incrementing @var{exp}.)@refill
+rearranged by dividing @var{mant} by ten and incrementing @var{exp}.)
 
 Rectangular complex numbers are stored in the form @samp{(cplx @var{re}
 @var{im})}, where @var{re} and @var{im} are each real numbers, either
 integers, fractions, or floats.  The value is @samp{@var{re} + @var{im}i}.
 The @var{im} part is nonzero; complex numbers with zero imaginary
-components are converted to real numbers automatically.@refill
+components are converted to real numbers automatically.
 
 Polar complex numbers are stored in the form @samp{(polar @var{r}
 @var{theta})}, where @var{r} is a positive real value and @var{theta}
@@ -32233,13 +32566,13 @@ usually normalized to lie in the interval @samp{(-180 ..@: 180)} degrees,
 or @samp{(-pi ..@: pi)} radians, according to the current angular mode.
 If the angle is 0 the value is converted to a real number automatically.
 (If the angle is 180 degrees, the value is usually also converted to a
-negative real number.)@refill
+negative real number.)
 
 Hours-minutes-seconds forms are stored as @samp{(hms @var{h} @var{m}
 @var{s})}, where @var{h} is an integer or an integer-valued float (i.e.,
 a float with @samp{@var{exp} >= 0}), @var{m} is an integer or integer-valued
 float in the range @w{@samp{[0 ..@: 60)}}, and @var{s} is any real number
-in the range @samp{[0 ..@: 60)}.@refill
+in the range @samp{[0 ..@: 60)}.
 
 Date forms are stored as @samp{(date @var{n})}, where @var{n} is
 a real number that counts days since midnight on the morning of
@@ -32293,7 +32626,7 @@ which is evaluated when the constant's value is requested.  Variables
 which represent units are not stored in any special way; they are units
 only because their names appear in the units table.  If the value
 cell contains a string, it is parsed to get the variable's value when
-the variable is used.@refill
+the variable is used.
 
 A Lisp list with any other symbol as the first element is a function call.
 The symbols @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^},
@@ -32313,7 +32646,7 @@ object which represents their value, or a list of such objects if they
 wish to return multiple values.  (The latter case is allowed only for
 functions which are the outer-level call in an expression whose value is
 about to be pushed on the stack; this feature is considered obsolete
-and is not used by any built-in Calc functions.)@refill
+and is not used by any built-in Calc functions.)
 
 @node Interactive Lisp Functions, Stack Lisp Functions, Data Type Formats, Internals
 @subsubsection Interactive Functions
@@ -32349,7 +32682,7 @@ contains the variable's value) was stored and its previous value was
 previously void); or @samp{(eval @var{undo} @var{redo} @var{args} @dots{})},
 which means that to undo requires calling the function @samp{(@var{undo}
 @var{args} @dots{})} and, if the undo is later redone, calling
-@samp{(@var{redo} @var{args} @dots{})}.@refill
+@samp{(@var{redo} @var{args} @dots{})}.
 @end defun
 
 @defun calc-record-why msg args
@@ -32364,7 +32697,7 @@ some sort.  If @var{msg} is a symbol, it is the name of a Calc predicate
 (such as @code{integerp} or @code{numvecp}) which the arguments did not
 satisfy; it is expanded to a suitable string such as ``Expected an
 integer.''  The @code{reject-arg} function calls @code{calc-record-why}
-automatically; @pxref{Predicates}.@refill
+automatically; @pxref{Predicates}.
 @end defun
 
 @defun calc-is-inverse
@@ -32391,7 +32724,7 @@ elements will be inserted into the stack so that the last element will
 end up at level @var{n}, the next-to-last at level @var{n}+1, etc.
 The elements of @var{vals} are assumed to be valid Calc objects, and
 are not evaluated, rounded, or renormalized in any way.  If @var{vals}
-is an empty list, nothing happens.@refill
+is an empty list, nothing happens.
 
 The stack elements are pushed without any sub-formula selections.
 You can give an optional third argument to this function, which must
@@ -32410,7 +32743,7 @@ one-element list) is returned.  If @var{m} is greater than 1, the
 element will be next-to-last, etc.  If @var{n} or @var{m} are out of
 range, the command is aborted with a suitable error message.  If @var{n}
 is zero, the function returns an empty list.  The stack elements are not
-evaluated, rounded, or renormalized.@refill
+evaluated, rounded, or renormalized.
 
 If any stack elements contain selections, and selections have not
 been disabled by the @kbd{j e} (@code{calc-enable-selections}) command,
@@ -32506,7 +32839,7 @@ This function implements a unary operator that allows a numeric prefix
 argument to apply the operator over many stack entries.  If the prefix
 argument @var{arg} is @code{nil}, this uses @code{calc-enter-result}
 as outlined above.  Otherwise, it maps the function over several stack
-elements; @pxref{Prefix Arguments}.  For example,@refill
+elements; @pxref{Prefix Arguments}.  For example,
 
 @smallexample
 (defun calc-zeta (arg)
@@ -32527,7 +32860,7 @@ specified, nothing happens.  When the argument is two or more,
 the binary function @var{func} is reduced across the top @var{arg}
 stack elements; when the argument is negative, the function is
 mapped between the next-to-top @i{-@var{arg}} stack elements and the
-top element.@refill
+top element.
 @end defun
 
 @defun calc-stack-size
@@ -32541,7 +32874,7 @@ Move the point to the @var{n}th stack entry.  If @var{n} is zero, this
 will be the @samp{.} line.  If @var{n} is from 1 to the current stack size,
 this will be the beginning of the first line of that stack entry's display.
 If line numbers are enabled, this will move to the first character of the
-line number, not the stack entry itself.@refill
+line number, not the stack entry itself.
 @end defun
 
 @defun calc-substack-height n
@@ -32551,7 +32884,7 @@ will be one (assuming no stack truncation).  If all stack entries are
 one line long (i.e., no matrices are displayed), the return value will
 be equal @var{n}+1 as long as @var{n} is in range.  (Note that in Big
 mode, the return value includes the blank lines that separate stack
-entries.)@refill
+entries.)
 @end defun
 
 @defun calc-refresh
@@ -32560,7 +32893,7 @@ This must be called after changing any parameter, such as the current
 display radix, which might change the appearance of existing stack
 entries.  (During a keyboard macro invoked by the @kbd{X} key, refreshing
 is suppressed, but a flag is set so that the entire stack will be refreshed
-rather than just the top few elements when the macro finishes.)@refill
+rather than just the top few elements when the macro finishes.)
 @end defun
 
 @node Predicates, Computational Lisp Functions, Stack Lisp Functions, Internals
@@ -32739,7 +33072,7 @@ undefined or cannot be determined.  Generally speaking, this works
 by checking whether @samp{@var{x} - @var{y}} is @code{negp}.  In
 @code{defmath}, the expression @samp{(< x y)} will automatically be
 converted to @samp{(lessp x y)}; expressions involving @code{>}, @code{<=},
-and @code{>=} are similarly converted in terms of @code{lessp}.@refill
+and @code{>=} are similarly converted in terms of @code{lessp}.
 @end defun
 
 @defun beforep x y
@@ -32771,7 +33104,7 @@ converted to @samp{(math-equal x y)}.
 Returns true if @var{x} and @var{n} are numerically equal, where @var{n}
 is a fixnum which is not a multiple of 10.  This will automatically be
 used by @code{defmath} in place of the more general @code{math-equal}
-whenever possible.@refill
+whenever possible.
 @end defun
 
 @defun nearly-equal x y
@@ -32808,7 +33141,7 @@ or a provably non-zero formula.
 Abort the current function evaluation due to unacceptable argument values.
 This calls @samp{(calc-record-why @var{pred} @var{val})}, then signals a
 Lisp error which @code{normalize} will trap.  The net effect is that the
-function call which led here will be left in symbolic form.@refill
+function call which led here will be left in symbolic form.
 @end defun
 
 @defun inexact-value
@@ -32819,7 +33152,7 @@ Note that if your function calls @samp{(sin 5)} in Symbolic Mode, the
 @code{sin} function will call @code{inexact-value}, which will cause your
 function to be left unsimplified.  You may instead wish to call
 @samp{(normalize (list 'calcFunc-sin 5))}, which in Symbolic Mode will
-return the formula @samp{sin(5)} to your function.@refill
+return the formula @samp{sin(5)} to your function.
 @end defun
 
 @defun overflow
@@ -32840,13 +33173,13 @@ the main body of this manual may be called from Lisp; for example, if
 the documentation refers to the @code{calc-sqrt} [@code{sqrt}] command,
 this means @code{calc-sqrt} is an interactive stack-based square-root
 command and @code{sqrt} (which @code{defmath} expands to @code{calcFunc-sqrt})
-is the actual Lisp function for taking square roots.@refill
+is the actual Lisp function for taking square roots.
 
 The functions @code{math-add}, @code{math-sub}, @code{math-mul},
 @code{math-div}, @code{math-mod}, and @code{math-neg} are not included
 in this list, since @code{defmath} allows you to write native Lisp
 @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, and unary @code{-},
-respectively, instead.@refill
+respectively, instead.
 
 @defun normalize val
 (Full form: @code{math-normalize}.)
@@ -32857,12 +33190,12 @@ if @var{val} is a bignum it will be normalized by clipping off trailing
 small.  All the various data types are similarly converted to their standard
 forms.  Variables are left alone, but function calls are actually evaluated
 in formulas.  For example, normalizing @samp{(+ 2 (calcFunc-abs -4))} will
-return 6.@refill
+return 6.
 
 If a function call fails, because the function is void or has the wrong
 number of parameters, or because it returns @code{nil} or calls
 @code{reject-arg} or @code{inexact-result}, @code{normalize} returns
-the formula still in symbolic form.@refill
+the formula still in symbolic form.
 
 If the current Simplification Mode is ``none'' or ``numeric arguments
 only,'' @code{normalize} will act appropriately.  However, the more
@@ -32871,13 +33204,13 @@ not handled by @code{normalize}.  They are handled by @code{calc-normalize},
 which calls @code{normalize} and possibly some other routines, such
 as @code{simplify} or @code{simplify-units}.  Programs generally will
 never call @code{calc-normalize} except when popping or pushing values
-on the stack.@refill
+on the stack.
 @end defun
 
 @defun evaluate-expr expr
 Replace all variables in @var{expr} that have values with their values,
 then use @code{normalize} to simplify the result.  This is what happens
-when you press the @kbd{=} key interactively.@refill
+when you press the @kbd{=} key interactively.
 @end defun
 
 @defmac with-extra-prec n body
@@ -32948,7 +33281,7 @@ or formula, this calls @code{reject-arg}.
 Compare the numbers @var{x} and @var{y}, and return @i{-1} if
 @samp{(lessp @var{x} @var{y})}, 1 if @samp{(lessp @var{y} @var{x})},
 0 if @samp{(math-equal @var{x} @var{y})}, or 2 if the order is
-undefined or cannot be determined.@refill
+undefined or cannot be determined.
 @end defun
 
 @defun numdigs n
@@ -33000,13 +33333,13 @@ For a more well-defined result, use @samp{(% @var{x} @var{y})}.
 @defun idivmod x y
 Divide integer @var{x} by integer @var{y}; return a cons cell whose
 @code{car} is @samp{(quotient @var{x} @var{y})} and whose @code{cdr}
-is @samp{(imod @var{x} @var{y})}.@refill
+is @samp{(imod @var{x} @var{y})}.
 @end defun
 
 @defun pow x y
 Compute @var{x} to the power @var{y}.  In @code{defmath} code, this can
 also be written @samp{(^ @var{x} @var{y})} or
-@w{@samp{(expt @var{x} @var{y})}}.@refill
+@w{@samp{(expt @var{x} @var{y})}}.
 @end defun
 
 @defun abs-approx x
@@ -33030,7 +33363,7 @@ Other related constant-generating functions are @code{two-pi},
 @code{pi-over-2}, @code{pi-over-4}, @code{pi-over-180}, @code{sqrt-two-pi},
 @code{e}, @code{sqrt-e}, @code{ln-2}, and @code{ln-10}.  Each function
 returns a floating-point value in the current precision, and each uses
-caching so that all calls after the first are essentially free.@refill
+caching so that all calls after the first are essentially free.
 @end defun
 
 @defmac math-defcache @var{func} @var{initial} @var{form}
@@ -33045,7 +33378,7 @@ with the current precision increased by four, and the result minus its
 two least significant digits is stored in the cache.  For example,
 calling @samp{(pi)} with a precision of 30 computes @samp{pi} to 34
 digits, rounds it down to 32 digits for future use, then rounds it
-again to 30 digits for use in the present request.@refill
+again to 30 digits for use in the present request.
 @end defmac
 
 @findex half-circle
@@ -33072,7 +33405,7 @@ return @code{nil}.
 
 @defun div-mod a b m
 Divide @var{a} by @var{b}, modulo @var{m}.  This returns @code{nil} if
-there is no solution, or if any of the arguments are not integers.@refill
+there is no solution, or if any of the arguments are not integers.
 @end defun
 
 @defun pow-mod a b m
@@ -33147,7 +33480,7 @@ iterations, is @var{p} percent sure that the number is prime.  The
 @var{iters} parameter is the number of Fermat iterations to use, in the
 case that this is necessary.  If @code{prime-test} returns ``maybe,''
 you can call it again with the same @var{n} to get a greater certainty;
-@code{prime-test} remembers where it left off.@refill
+@code{prime-test} remembers where it left off.
 @end defun
 
 @defun to-simple-fraction f
@@ -33198,7 +33531,7 @@ the result is the list @samp{(@var{r} @var{c})}.  Higher-order tensors
 produce lists of more than two dimensions.  Note that the object
 @samp{[[1, 2, 3], [4, 5]]} is a vector of vectors not all the same size,
 and is treated by this and other Calc routines as a plain vector of two
-elements.@refill
+elements.
 @end defun
 
 @defun dimension-error
@@ -33246,7 +33579,7 @@ for each pair of elements @var{ai} and @var{bi}.  If either @var{a} or
 For example, @samp{(map-vec-2 'math-add v 1)} returns the vector @var{v}
 with each element increased by one.  Note that using @samp{'+} would not
 work here, since @code{defmath} does not expand function names everywhere,
-just where they are in the function position of a Lisp expression.@refill
+just where they are in the function position of a Lisp expression.
 @end defun
 
 @defun reduce-vec f v
@@ -33296,7 +33629,7 @@ If @var{m} is a matrix, return a copy of @var{m}.  This maps
 element of the result matrix will be @code{eq} to the corresponding
 element of @var{m}, but none of the @code{cons} cells that make up
 the structure of the matrix will be @code{eq}.  If @var{m} is a plain
-vector, this is the same as @code{copy-sequence}.@refill
+vector, this is the same as @code{copy-sequence}.
 @end defun
 
 @defun swap-rows m r1 r2
@@ -33305,7 +33638,7 @@ other words, unlike most of the other functions described here, this
 function changes @var{m} itself rather than building up a new result
 matrix.  The return value is @var{m}, i.e., @samp{(eq (swap-rows m 1 2) m)}
 is true, with the side effect of exchanging the first two rows of
-@var{m}.@refill
+@var{m}.
 @end defun
 
 @node Symbolic Lisp Functions, Formatting Lisp Functions, Vector Lisp Functions, Internals
@@ -33443,7 +33776,7 @@ to @samp{x}, which is only valid when @var{x} is positive.)  This is
 implemented by temporarily binding the variable @code{math-living-dangerously}
 to @code{t} (using a @code{let} form) and calling @code{simplify}.
 Dangerous simplification rules are written to check this variable
-before taking any action.@refill
+before taking any action.
 @end defun
 
 @defun simplify-units expr
@@ -33465,7 +33798,7 @@ the functions @var{funcs}.  If the function body returns @code{nil}, or
 if it returns a result @code{equal} to the original @code{expr}, it is
 ignored and Calc goes on to try the next simplification rule that applies.
 If the function body returns something different, that new formula is
-substituted for @var{expr} in the original formula.@refill
+substituted for @var{expr} in the original formula.
 
 At each point in the formula, rules are tried in the order of the
 original calls to @code{math-defsimplify}; the search stops after the
@@ -33498,7 +33831,7 @@ convenient.  Here is a typical example of a simplification rule:
 This is really a pair of rules written with one @code{math-defsimplify}
 for convenience; the first replaces @samp{arcsinh(-x)} with
 @samp{-arcsinh(x)}, and the second, which is safe only for real @samp{x},
-replaces @samp{arcsinh(sinh(x))} with @samp{x}.@refill
+replaces @samp{arcsinh(sinh(x))} with @samp{x}.
 @end defmac
 
 @defun common-constant-factor expr
@@ -33533,7 +33866,7 @@ Compute a ``rational GCD'' of @var{a} and @var{b}, which must both be
 rational numbers.  This is the fraction composed of the GCD of the
 numerators of @var{a} and @var{b}, over the GCD of the denominators.
 It is used by @code{common-constant-factor}.  Note that the standard
-@code{gcd} function uses the LCM to combine the denominators.@refill
+@code{gcd} function uses the LCM to combine the denominators.
 @end defun
 
 @defun map-tree func expr many
@@ -33548,7 +33881,7 @@ is returned by @code{map-tree}.  Note that, unlike simplification rules,
 @var{func} functions may @emph{not} make destructive changes to
 @var{expr}.  If a third argument @var{many} is provided, it is an
 integer which says how many times @var{func} may be applied; the
-default, as described above, is infinitely many times.@refill
+default, as described above, is infinitely many times.
 @end defun
 
 @defun compile-rewrites rules
@@ -33665,14 +33998,14 @@ relying on the general integration-by-substitution facility to handle
 cosines of more complicated arguments.  An integration rule should return
 @code{nil} if it can't do the integral; if several rules are defined for
 the same function, they are tried in order until one returns a non-@code{nil}
-result.@refill
+result.
 @end defmac
 
 @defmac math-defintegral-2 funcs body
 Define a rule for integrating a function or functions of two arguments.
 This is exactly analogous to @code{math-defintegral}, except that @var{body}
 is written as the body of a function with two arguments, @var{u} and
-@var{v}.@refill
+@var{v}.
 @end defmac
 
 @defun solve-for lhs rhs var full
@@ -33685,7 +34018,7 @@ different from the user-level @code{solve} and @code{finv} functions,
 which return a rearranged equation or a functional inverse, respectively.
 If @var{full} is non-@code{nil}, a full solution including dummy signs
 and dummy integers will be produced.  User-defined inverses are provided
-as properties in a manner similar to derivatives:@refill
+as properties in a manner similar to derivatives:
 
 @smallexample
 (put 'calcFunc-ln 'math-inverse
@@ -33721,12 +34054,12 @@ This function might seem at first to be identical to
 @code{expr-contains} uses @code{equal} to test for matches, whereas
 @code{calc-find-sub-formula} uses @code{eq}.  In the formula
 @samp{f(a, a)}, the two @samp{a}s will be @code{equal} but not
-@code{eq} to each other.@refill
+@code{eq} to each other.
 @end defun
 
 @defun expr-contains-count expr var
 Returns the number of occurrences of @var{var} as a subexpression
-of @var{expr}, or @code{nil} if there are no occurrences.@refill
+of @var{expr}, or @code{nil} if there are no occurrences.
 @end defun
 
 @defun expr-depends expr var
@@ -33744,7 +34077,7 @@ contains only constants and functions with constant arguments.
 Returns a copy of @var{expr}, with all occurrences of @var{old} replaced
 by @var{new}.  This treats @code{lambda} forms specially with respect
 to the dummy argument variables, so that the effect is always to return
-@var{expr} evaluated at @var{old} = @var{new}.@refill
+@var{expr} evaluated at @var{old} = @var{new}.
 @end defun
 
 @defun multi-subst expr old new
@@ -33763,7 +34096,7 @@ number of objects and function calls that appear in @var{expr}.  For
 @defun expr-height expr
 Returns the ``height'' of @var{expr}, which is the deepest level to
 which function calls are nested.  (Note that @samp{@var{a} + @var{b}}
-counts as a function call.)  For primitive objects, this returns zero.@refill
+counts as a function call.)  For primitive objects, this returns zero.
 @end defun
 
 @defun polynomial-p expr var
@@ -33775,7 +34108,7 @@ for @samp{(x^2 + 3)^3 + 4} this would return 6.  This function returns
 (@code{calc-expand}), would consist of a sum of terms in which @var{var}
 appears only raised to nonnegative integer powers.  Note that if
 @var{var} does not occur in @var{expr}, then @var{expr} is considered
-a polynomial of degree 0.@refill
+a polynomial of degree 0.
 @end defun
 
 @defun is-polynomial expr var degree loose
@@ -33797,7 +34130,7 @@ is used in which coefficients are no longer required not to depend on
 themselves.  For example, @samp{sin(x) x^2 + cos(x)} is a loose
 polynomial with coefficients @samp{((calcFunc-cos x) 0 (calcFunc-sin
 x))}.  The result will never be @code{nil} in loose mode, since any
-expression can be interpreted as a ``constant'' loose polynomial.@refill
+expression can be interpreted as a ``constant'' loose polynomial.
 @end defun
 
 @defun polynomial-base expr pred
@@ -33810,7 +34143,7 @@ the original @var{expr}) is a suitable polynomial in @var{subexpr}.
 The default predicate uses @samp{(polynomial-p mpb-top-expr @var{subexpr})};
 you can use @var{pred} to specify additional conditions.  Or, you could
 have @var{pred} build up a list of every suitable @var{subexpr} that
-is found.@refill
+is found.
 @end defun
 
 @defun poly-simplify poly
@@ -33822,7 +34155,7 @@ clipping off trailing zeros.
 Mix two polynomial lists @var{a} and @var{b} (in the form returned by
 @code{is-polynomial}) in a linear combination with coefficient expressions
 @var{ac} and @var{bc}.  The result is a (not necessarily simplified)
-polynomial list representing @samp{@var{ac} @var{a} + @var{bc} @var{b}}.@refill
+polynomial list representing @samp{@var{ac} @var{a} + @var{bc} @var{b}}.
 @end defun
 
 @defun poly-mul a b
@@ -33835,7 +34168,7 @@ Construct a Calc formula which represents the polynomial coefficient
 list @var{poly} applied to variable @var{var}.  The @kbd{a c}
 (@code{calc-collect}) command uses @code{is-polynomial} to turn an
 expression into a coefficient list, then @code{build-polynomial-expr}
-to turn the list back into an expression in regular form.@refill
+to turn the list back into an expression in regular form.
 @end defun
 
 @defun check-unit-name var
@@ -33852,7 +34185,7 @@ is not a variable or is not a unit name, return @code{nil}.
 Return true if @var{expr} contains any variables which can be
 interpreted as units.  If @var{sub-exprs} is @code{t}, the entire
 expression is searched.  If @var{sub-exprs} is @code{nil}, this
-checks whether @var{expr} is directly a units expression.@refill
+checks whether @var{expr} is directly a units expression.
 @end defun
 
 @defun single-units-in-expr-p expr
@@ -33867,7 +34200,7 @@ Convert units expression @var{expr} to base units.  If @var{which}
 is @code{nil}, use Calc's native base units.  Otherwise, @var{which}
 can specify a units system, which is a list of two-element lists,
 where the first element is a Calc base symbol name and the second
-is an expression to substitute for it.@refill
+is an expression to substitute for it.
 @end defun
 
 @defun remove-units expr
@@ -33903,7 +34236,7 @@ Read an algebraic expression from string @var{str}.  If @var{str} does
 not have the form of a valid expression, return a list of the form
 @samp{(error @var{pos} @var{msg})} where @var{pos} is an integer index
 into @var{str} of the general location of the error, and @var{msg} is
-a string describing the problem.@refill
+a string describing the problem.
 @end defun
 
 @defun read-exprs str
@@ -33922,14 +34255,14 @@ given, it is a string which the minibuffer will initially contain.
 If @var{prompt} is given, it is the prompt string to use; the default
 is ``Algebraic:''.  If @var{no-norm} is @code{t}, the formulas will
 be returned exactly as parsed; otherwise, they will be passed through
-@code{calc-normalize} first.@refill
+@code{calc-normalize} first.
 
 To support the use of @kbd{$} characters in the algebraic entry, use
 @code{let} to bind @code{calc-dollar-values} to a list of the values
 to be substituted for @kbd{$}, @kbd{$$}, and so on, and bind
 @code{calc-dollar-used} to 0.  Upon return, @code{calc-dollar-used}
 will have been changed to the highest number of consecutive @kbd{$}s
-that actually appeared in the input.@refill
+that actually appeared in the input.
 @end defun
 
 @defun format-number a
@@ -33945,7 +34278,7 @@ mostly to guarantee the string is of a form that can be re-parsed by
 complex number format, and point character, are ignored to ensure the
 result will be re-readable.  The @var{prec} parameter is normally 0; if
 you pass a large integer like 1000 instead, the expression will be
-surrounded by parentheses unless it is a plain number or variable name.@refill
+surrounded by parentheses unless it is a plain number or variable name.
 @end defun
 
 @defun format-nice-expr a width
@@ -33964,7 +34297,7 @@ grouping.  Multi-line objects like matrices produce strings that
 contain newline characters to separate the lines.  The @var{w}
 parameter, if given, is the target window size for which to format
 the expressions.  If @var{w} is omitted, the width of the Calculator
-window is used.@refill
+window is used.
 @end defun
 
 @defun compose-expr a prec
@@ -34012,7 +34345,7 @@ the baseline.  For a one-line composition, this will be zero.
 @defun comp-first-char c
 If composition @var{c} is a ``flat'' composition, return the first
 (leftmost) character of the composition as an integer.  Otherwise,
-return @code{nil}.@refill
+return @code{nil}.
 @end defun
 
 @defun comp-last-char c
@@ -34192,7 +34525,7 @@ you should add a command to set the Lisp variable @code{calc-gnuplot-name}
 to the appropriate file name.  You may also need to change the variables
 @code{calc-gnuplot-plot-command} and @code{calc-gnuplot-print-command} in
 order to get correct displays and hardcopies, respectively, of your
-plots.@refill
+plots.
 
 @ifinfo
 @example
@@ -34207,7 +34540,7 @@ copy if you really need it.  To print the manual, you will need the
 @TeX{} typesetting program (this is a free program by Donald Knuth
 at Stanford University) as well as the @file{texindex} program and
 @file{texinfo.tex} file, both of which can be obtained from the FSF
-as part of the @code{texinfo} package.@refill
+as part of the @code{texinfo} package.
 
 To print the Calc manual in one huge 470 page tome, you will need the
 source code to this manual, @file{calc.texi}, available as part of the
@@ -34253,7 +34586,7 @@ is @code{"~/.emacs"}.  If @code{calc-settings-file} does not contain
 @code{".emacs"} as a substring, and if the variable
 @code{calc-loaded-settings-file} is @code{nil}, then Calc will
 automatically load your settings file (if it exists) the first time
-Calc is invoked.@refill
+Calc is invoked.
 
 @ifinfo
 @example
@@ -35194,21 +35527,21 @@ NOTES
 @enumerate
 @c 1
 @item
-Positive prefix arguments apply to @cite{n} stack entries.
-Negative prefix arguments apply to the @cite{-n}th stack entry.
+Positive prefix arguments apply to @expr{n} stack entries.
+Negative prefix arguments apply to the @expr{-n}th stack entry.
 A prefix of zero applies to the entire stack.  (For @key{LFD} and
 @kbd{M-@key{DEL}}, the meaning of the sign is reversed.)
 
 @c 2
 @item
-Positive prefix arguments apply to @cite{n} stack entries.
+Positive prefix arguments apply to @expr{n} stack entries.
 Negative prefix arguments apply to the top stack entry
-and the next @cite{-n} stack entries.
+and the next @expr{-n} stack entries.
 
 @c 3
 @item
-Positive prefix arguments rotate top @cite{n} stack entries by one.
-Negative prefix arguments rotate the entire stack by @cite{-n}.
+Positive prefix arguments rotate top @expr{n} stack entries by one.
+Negative prefix arguments rotate the entire stack by @expr{-n}.
 A prefix of zero reverses the entire stack.
 
 @c 4
@@ -35217,8 +35550,8 @@ Prefix argument specifies a repeat count or distance.
 
 @c 5
 @item
-Positive prefix arguments specify a precision @cite{p}.
-Negative prefix arguments reduce the current precision by @cite{-p}.
+Positive prefix arguments specify a precision @expr{p}.
+Negative prefix arguments reduce the current precision by @expr{-p}.
 
 @c 6
 @item
@@ -35236,17 +35569,17 @@ A negative prefix operates only on the top level of the input formula.
 
 @c 9
 @item
-Positive prefix arguments specify a word size of @cite{w} bits, unsigned.
-Negative prefix arguments specify a word size of @cite{w} bits, signed.
+Positive prefix arguments specify a word size of @expr{w} bits, unsigned.
+Negative prefix arguments specify a word size of @expr{w} bits, signed.
 
 @c 10
 @item
-Prefix arguments specify the shift amount @cite{n}.  The @cite{w} argument
+Prefix arguments specify the shift amount @expr{n}.  The @expr{w} argument
 cannot be specified in the keyboard version of this command.
 
 @c 11
 @item
-From the keyboard, @cite{d} is omitted and defaults to zero.
+From the keyboard, @expr{d} is omitted and defaults to zero.
 
 @c 12
 @item
@@ -35259,16 +35592,16 @@ Some prefix argument values provide special variations of the mode.
 
 @c 14
 @item
-A prefix argument, if any, is used for @cite{m} instead of taking
-@cite{m} from the stack.  @cite{M} may take any of these values:
+A prefix argument, if any, is used for @expr{m} instead of taking
+@expr{m} from the stack.  @expr{M} may take any of these values:
 @iftex
 {@advance@tableindent10pt
 @end iftex
 @table @asis
 @item Integer
-Random integer in the interval @cite{[0 .. m)}.
+Random integer in the interval @expr{[0 .. m)}.
 @item Float
-Random floating-point number in the interval @cite{[0 .. m)}.
+Random floating-point number in the interval @expr{[0 .. m)}.
 @item 0.0
 Gaussian with mean 1 and standard deviation 0.
 @item Error form
@@ -35308,20 +35641,21 @@ input data set.  Each entry may be a single value or a vector of values.
 
 @c 20
 @item
-With a prefix argument of 1, take a single @c{$@var{n}\times2$}
-@i{@var{N}x2} matrix from the
-stack instead of two separate data vectors.
+With a prefix argument of 1, take a single 
+@texline @tmath{@var{n}\times2}
+@infoline @i{@var{N}x2} 
+matrix from the stack instead of two separate data vectors.
 
 @c 21
 @item
-The row or column number @cite{n} may be given as a numeric prefix
-argument instead.  A plain @kbd{C-u} prefix says to take @cite{n}
-from the top of the stack.  If @cite{n} is a vector or interval,
+The row or column number @expr{n} may be given as a numeric prefix
+argument instead.  A plain @kbd{C-u} prefix says to take @expr{n}
+from the top of the stack.  If @expr{n} is a vector or interval,
 a subvector/submatrix of the input is created.
 
 @c 22
 @item
-The @cite{op} prompt can be answered with the key sequence for the
+The @expr{op} prompt can be answered with the key sequence for the
 desired function, or with @kbd{x} or @kbd{z} followed by a function name,
 or with @kbd{$} to take a formula from the top of the stack, or with
 @kbd{'} and a typed formula.  In the last two cases, the formula may
@@ -35336,7 +35670,7 @@ stack by @kbd{V M} depends on the number of arguments of the function.
 One of the mapping direction keys @kbd{_} (horizontal, i.e., map
 by rows or reduce across), @kbd{:} (vertical, i.e., map by columns or
 reduce down), or @kbd{=} (map or reduce by rows) may be used before
-entering @cite{op}; these modify the function name by adding the letter
+entering @expr{op}; these modify the function name by adding the letter
 @code{r} for ``rows,'' @code{c} for ``columns,'' @code{a} for ``across,''
 or @code{d} for ``down.''
 
@@ -35374,7 +35708,7 @@ may be an integer or a vector of integers.
 @item -11
 (@var{2})  Float with integer mantissa.
 @item -12
-(@var{2})  Float with mantissa in @cite{[1 .. 10)}.
+(@var{2})  Float with mantissa in @expr{[1 .. 10)}.
 @item -13
 (@var{1})  Date form (using date numbers).
 @item -14
@@ -35388,13 +35722,13 @@ may be an integer or a vector of integers.
 
 @c 25
 @item
-A prefix argument specifies the size @cite{n} of the matrix.  With no
-prefix argument, @cite{n} is omitted and the size is inferred from
+A prefix argument specifies the size @expr{n} of the matrix.  With no
+prefix argument, @expr{n} is omitted and the size is inferred from
 the input vector.
 
 @c 26
 @item
-The prefix argument specifies the starting position @cite{n} (default 1).
+The prefix argument specifies the starting position @expr{n} (default 1).
 
 @c 27
 @item
@@ -35460,16 +35794,16 @@ later prompts by popping additional stack entries.
 
 @c 39
 @item
-Answer for @cite{v} may also be of the form @cite{v = v_0} or
-@cite{v - v_0}.
+Answer for @expr{v} may also be of the form @expr{v = v_0} or
+@expr{v - v_0}.
 
 @c 40
 @item
-With a positive prefix argument, stack contains many @cite{y}'s and one
-common @cite{x}.  With a zero prefix, stack contains a vector of
-@cite{y}s and a common @cite{x}.  With a negative prefix, stack
-contains many @cite{[x,y]} vectors.  (For 3D plots, substitute
-@cite{z} for @cite{y} and @cite{x,y} for @cite{x}.)
+With a positive prefix argument, stack contains many @expr{y}'s and one
+common @expr{x}.  With a zero prefix, stack contains a vector of
+@expr{y}s and a common @expr{x}.  With a negative prefix, stack
+contains many @expr{[x,y]} vectors.  (For 3D plots, substitute
+@expr{z} for @expr{y} and @expr{x,y} for @expr{x}.)
 
 @c 41
 @item
@@ -35504,19 +35838,20 @@ in stack level three, and causes the formula to replace the top three
 stack levels.  The notation @kbd{$3} refers to stack level three without
 causing that value to be removed from the stack.  Use @key{LFD} in place
 of @key{RET} to prevent evaluation; use @kbd{M-=} in place of @key{RET}
-to evaluate variables.@refill
+to evaluate variables.
 
 @c 47
 @item
 The variable is replaced by the formula shown on the right.  The
 Inverse flag reverses the order of the operands, e.g., @kbd{I s - x}
-assigns @c{$x \coloneq a-x$}
-@cite{x := a-x}.
+assigns 
+@texline @tmath{x \coloneq a-x}.
+@infoline @expr{x := a-x}.
 
 @c 48
 @item
 Press @kbd{?} repeatedly to see how to choose a model.  Answer the
-variables prompt with @cite{iv} or @cite{iv;pv} to specify
+variables prompt with @expr{iv} or @expr{iv;pv} to specify
 independent and parameter variables.  A positive prefix argument
 takes @i{@var{n}+1} vectors from the stack; a zero prefix takes a matrix
 and a vector from the stack.