]> git.eshelyaron.com Git - emacs.git/commitdiff
Replace @tmath macro with @math.
authorJay Belanger <jay.p.belanger@gmail.com>
Tue, 14 Dec 2004 04:53:56 +0000 (04:53 +0000)
committerJay Belanger <jay.p.belanger@gmail.com>
Tue, 14 Dec 2004 04:53:56 +0000 (04:53 +0000)
Fix TeX definition of @expr.
Replace @i by @mathi.

man/calc.texi

index 027ebc7c96018095ad34823de3da4c3fd56676c1..16447e4e95309e1f650a84c04118bb9bcb2ae2b3 100644 (file)
 @c @infoline foo
 @c    `foo' will appear only in non-TeX output
 
-@c In TeX output, @tmath{expr} will typeset expr in  math mode.
-@c In any output, @expr{expr} will typeset an expression;
+@c @expr{expr} will typeset an expression;
 @c $x$ in TeX, @samp{x} otherwise.
 
 @iftex
 @macro texline{stuff}
 \stuff\
 @end macro
-@macro tmath{stuff}
-@tex
-$\stuff\$
-@end tex
-@end macro
 @alias infoline=comment
-@c @alias expr=math
 @tex
-\gdef\expr#1{\tex 
-             \let\t\ttfont 
-             \turnoffactive 
-             $#1$
-             \endgroup}
+\gdef\exprsetup{\tex \let\t\ttfont \turnoffactive}
+\gdef\expr{\exprsetup$\exprfinish}
+\gdef\exprfinish#1{#1$\endgroup}
 @end tex
+@alias mathit=expr
 @macro cpi{}
 @math{@pi{}}
 @end macro
@@ -49,6 +41,7 @@ $\stuff\$
 \stuff\
 @end macro
 @alias expr=samp
+@alias mathit=i
 @macro cpi{}
 @expr{pi}
 @end macro
@@ -624,12 +617,12 @@ then the command to operate on the numbers.
 
 @noindent
 Type @kbd{2 @key{RET} 3 + Q} to compute 
-@texline @tmath{\sqrt{2+3} = 2.2360679775}.
+@texline @math{\sqrt{2+3} = 2.2360679775}.
 @infoline the square root of 2+3, which is 2.2360679775.
 
 @noindent
 Type @kbd{P 2 ^} to compute 
-@texline @tmath{\pi^2 = 9.86960440109}.
+@texline @math{\pi^2 = 9.86960440109}.
 @infoline the value of `pi' squared, 9.86960440109.
 
 @noindent
@@ -648,12 +641,12 @@ use the apostrophe key.
 
 @noindent
 Type @kbd{' sqrt(2+3) @key{RET}} to compute 
-@texline @tmath{\sqrt{2+3}}.
+@texline @math{\sqrt{2+3}}.
 @infoline the square root of 2+3.
 
 @noindent
 Type @kbd{' pi^2 @key{RET}} to enter 
-@texline @tmath{\pi^2}.
+@texline @math{\pi^2}.
 @infoline `pi' squared.  
 To evaluate this symbolic formula as a number, type @kbd{=}.
 
@@ -713,10 +706,10 @@ the lower-right @samp{8} and press @kbd{M-# r}.
 
 @noindent
 Type @kbd{v t} to transpose this 
-@texline @tmath{3\times2}
+@texline @math{3\times2}
 @infoline 3x2 
 matrix into a 
-@texline @tmath{2\times3}
+@texline @math{2\times3}
 @infoline 2x3
 matrix.  Type @w{@kbd{v u}} to unpack the rows into two separate
 vectors.  Now type @w{@kbd{V R + @key{TAB} V R +}} to compute the sums
@@ -867,9 +860,9 @@ you do.
 
 In this case, the trail shows that four numbers (17.3, 3, 2, and 4)
 were first entered into the Calculator, then the 2 and 4 were
-multiplied to get 8, then the 3 and 8 were subtracted to get @i{-5}.
+multiplied to get 8, then the 3 and 8 were subtracted to get @mathit{-5}.
 (The @samp{>} symbol shows that this was the most recent calculation.)
-The net result is the two numbers 17.3 and @i{-5} sitting on the stack.
+The net result is the two numbers 17.3 and @mathit{-5} sitting on the stack.
 
 Most Calculator commands deal explicitly with the stack only, but
 there is a set of commands that allow you to search back through
@@ -930,7 +923,7 @@ full complexity of the stack and trail.  To use it, type @kbd{M-# q}
 
 Quick Mode is very simple:  It prompts you to type any formula in
 standard algebraic notation (like @samp{4 - 2/3}) and then displays
-the result at the bottom of the Emacs screen (@i{3.33333333333}
+the result at the bottom of the Emacs screen (@mathit{3.33333333333}
 in this case).  You are then back in the same editing buffer you
 were in before, ready to continue editing or to type @kbd{M-# q}
 again to do another quick calculation.  The result of the calculation
@@ -1343,7 +1336,7 @@ With any prefix argument, reset everything but the stack.
 Calc was originally started as a two-week project to occupy a lull
 in the author's schedule.  Basically, a friend asked if I remembered
 the value of 
-@texline @tmath{2^{32}}.
+@texline @math{2^{32}}.
 @infoline @expr{2^32}.  
 I didn't offhand, but I said, ``that's easy, just call up an
 @code{xcalc}.''  @code{Xcalc} duly reported that the answer to our
@@ -1665,7 +1658,7 @@ multiplication.)  Figure it out by hand, then try it with Calc to see
 if you're right.  @xref{RPN Answer 1, 1}. (@bullet{})
 
 (@bullet{}) @strong{Exercise 2.}  Compute 
-@texline @tmath{(2\times4) + (7\times9.4) + {5\over4}}
+@texline @math{(2\times4) + (7\times9.4) + {5\over4}}
 @infoline @expr{2*4 + 7*9.5 + 5/4} 
 using the stack.  @xref{RPN Answer 2, 2}. (@bullet{})
 
@@ -2000,7 +1993,7 @@ $$ 2 + { 3 \times 4 \times 5 \over 6 \times 7^8 } - 9 $$
 @end tex
 
 @noindent
-The result of this expression will be the number @i{-6.99999826533}.
+The result of this expression will be the number @mathit{-6.99999826533}.
 
 Calc's order of evaluation is the same as for most computer languages,
 except that @samp{*} binds more strongly than @samp{/}, as the above
@@ -2009,7 +2002,7 @@ can often be omitted:  @samp{2 a} is the same as @samp{2*a}.
 
 Operators at the same level are evaluated from left to right, except
 that @samp{^} is evaluated from right to left.  Thus, @samp{2-3-4} is
-equivalent to @samp{(2-3)-4} or @i{-5}, whereas @samp{2^3^4} is equivalent
+equivalent to @samp{(2-3)-4} or @mathit{-5}, whereas @samp{2^3^4} is equivalent
 to @samp{2^(3^4)} (a very large integer; try it!).
 
 If you tire of typing the apostrophe all the time, there is an
@@ -2079,7 +2072,7 @@ accomplish this in Calc by performing your calculation as a series
 of algebraic entries, using the @kbd{$} sign to tie them together.
 In an algebraic formula, @kbd{$} represents the number on the top
 of the stack.  Here, we perform the calculation 
-@texline @tmath{\sqrt{2\times4+1}},
+@texline @math{\sqrt{2\times4+1}},
 @infoline @expr{sqrt(2*4+1)},
 which on a traditional calculator would be done by pressing
 @kbd{2 * 4 + 1 =} and then the square-root key.
@@ -2741,11 +2734,11 @@ angle is measured in degrees.  For example,
 @noindent
 The shift-@kbd{S} command computes the sine of an angle.  The sine
 of 45 degrees is 
-@texline @tmath{\sqrt{2}/2};
+@texline @math{\sqrt{2}/2};
 @infoline @expr{sqrt(2)/2}; 
 squaring this yields @expr{2/4 = 0.5}.  However, there has been a slight
 roundoff error because the representation of 
-@texline @tmath{\sqrt{2}/2}
+@texline @math{\sqrt{2}/2}
 @infoline @expr{sqrt(2)/2} 
 wasn't exact.  The @kbd{c 1} command is a handy way to clean up numbers
 in this case; it temporarily reduces the precision by one digit while it
@@ -2786,7 +2779,7 @@ either radians or degrees, depending on the current angular mode.
 
 @noindent
 Here we compute the Inverse Sine of 
-@texline @tmath{\sqrt{0.5}},
+@texline @math{\sqrt{0.5}},
 @infoline @expr{sqrt(0.5)}, 
 first in radians, then in degrees.
 
@@ -2974,9 +2967,9 @@ logarithm).  These can be modified by the @kbd{I} (inverse) and
 
 Let's compute the sine and cosine of an angle, and verify the
 identity 
-@texline @tmath{\sin^2x + \cos^2x = 1}.
+@texline @math{\sin^2x + \cos^2x = 1}.
 @infoline @expr{sin(x)^2 + cos(x)^2 = 1}.  
-We'll arbitrarily pick @i{-64} degrees as a good value for @expr{x}.
+We'll arbitrarily pick @mathit{-64} degrees as a good value for @expr{x}.
 With the angular mode set to degrees (type @w{@kbd{m d}}), do:
 
 @smallexample
@@ -2997,7 +2990,7 @@ Remember, @kbd{f h} is the @code{calc-hypot}, or square-root of sum
 of squares, command.
 
 Another identity is 
-@texline @tmath{\displaystyle\tan x = {\sin x \over \cos x}}.
+@texline @math{\displaystyle\tan x = {\sin x \over \cos x}}.
 @infoline @expr{tan(x) = sin(x) / cos(x)}.
 @smallexample
 @group
@@ -3012,7 +3005,7 @@ Another identity is
 
 A physical interpretation of this calculation is that if you move
 @expr{0.89879} units downward and @expr{0.43837} units to the right,
-your direction of motion is @i{-64} degrees from horizontal.  Suppose
+your direction of motion is @mathit{-64} degrees from horizontal.  Suppose
 we move in the opposite direction, up and to the left:
 
 @smallexample
@@ -3060,7 +3053,7 @@ the top two stack elements right after the @kbd{U U}, then a pair of
 
 A similar identity is supposed to hold for hyperbolic sines and cosines,
 except that it is the @emph{difference}
-@texline @tmath{\cosh^2x - \sinh^2x}
+@texline @math{\cosh^2x - \sinh^2x}
 @infoline @expr{cosh(x)^2 - sinh(x)^2} 
 that always equals one.  Let's try to verify this identity.
 
@@ -3167,7 +3160,7 @@ in this case).
 
 If you take the factorial of a non-integer, Calc uses a generalized
 factorial function defined in terms of Euler's Gamma function
-@texline @tmath{\Gamma(n)}
+@texline @math{\Gamma(n)}
 @infoline @expr{gamma(n)}
 (which is itself available as the @kbd{f g} command).
 
@@ -3184,13 +3177,13 @@ factorial function defined in terms of Euler's Gamma function
 
 @noindent
 Here we verify the identity 
-@texline @tmath{n! = \Gamma(n+1)}.
+@texline @math{n! = \Gamma(n+1)}.
 @infoline @expr{@var{n}!@: = gamma(@var{n}+1)}.
 
 The binomial coefficient @var{n}-choose-@var{m}
-@texline or @tmath{\displaystyle {n \choose m}}
+@texline or @math{\displaystyle {n \choose m}}
 is defined by
-@texline @tmath{\displaystyle {n! \over m! \, (n-m)!}}
+@texline @math{\displaystyle {n! \over m! \, (n-m)!}}
 @infoline @expr{n!@: / m!@: (n-m)!}
 for all reals @expr{n} and @expr{m}.  The intermediate results in this
 formula can become quite large even if the final result is small; the
@@ -3475,7 +3468,7 @@ vector.
 
 (@bullet{}) @strong{Exercise 1.}  Use @samp{*} to sum along the rows
 of the above 
-@texline @tmath{2\times3}
+@texline @math{2\times3}
 @infoline 2x3 
 matrix to get @expr{[6, 15]}.  Now use @samp{*} to sum along the columns
 to get @expr{[5, 7, 9]}. 
@@ -3626,10 +3619,10 @@ assume the vector was a row vector in order to make the dimensions
 come out right, and the answer would be incorrect.  If you
 don't feel safe letting Calc take either interpretation of your
 vectors, use explicit 
-@texline @tmath{N\times1}
+@texline @math{N\times1}
 @infoline Nx1
 or
-@texline @tmath{1\times N}
+@texline @math{1\times N}
 @infoline 1xN
 matrices instead.  In this case, you would enter the original column
 vector as @samp{[[6], [2], [3]]} or @samp{[6; 2; 3]}.
@@ -3678,7 +3671,7 @@ on the left by the transpose of @expr{A}:
 $A^T A \, X = A^T B$, where $A^T$ is the transpose \samp{trn(A)}.
 @end tex
 Now 
-@texline @tmath{A^T A}
+@texline @math{A^T A}
 @infoline @expr{trn(A)*A} 
 is a square matrix so a solution is possible.  It turns out that the
 @expr{X} vector you compute in this way will be a ``least-squares''
@@ -3774,7 +3767,7 @@ of each element.
 
 (@bullet{}) @strong{Exercise 1.}  Compute a vector of powers of two
 from 
-@texline @tmath{2^{-4}}
+@texline @math{2^{-4}}
 @infoline @expr{2^-4} 
 to @expr{2^4}.  @xref{List Answer 1, 1}. (@bullet{})
 
@@ -3978,7 +3971,7 @@ $$ m = {N \sum x y - \sum x \sum y  \over
 
 @noindent
 where 
-@texline @tmath{\sum x}
+@texline @math{\sum x}
 @infoline @expr{sum(x)} 
 represents the sum of all the values of @expr{x}.  While there is an
 actual @code{sum} function in Calc, it's easier to sum a vector using a
@@ -4083,7 +4076,7 @@ $$ b = {\sum y - m \sum x \over N} $$
 @end smallexample
 
 Let's ``plot'' this straight line approximation, 
-@texline @tmath{y \approx m x + b},
+@texline @math{y \approx m x + b},
 @infoline @expr{m x + b}, 
 and compare it with the original data.
 
@@ -4336,7 +4329,7 @@ command to enable multi-line display of vectors.)
 @cindex Maximizing a function over a list of values
 @c [fix-ref Numerical Solutions]
 (@bullet{}) @strong{Exercise 8.}  Compute a list of values of Bessel's
-@texline @tmath{J_1(x)}
+@texline @math{J_1(x)}
 @infoline @expr{J1} 
 function @samp{besJ(1,x)} for @expr{x} from 0 to 5 in steps of 0.25.
 Find the value of @expr{x} (from among the above set of values) for
@@ -4348,7 +4341,7 @@ of thing automatically; @pxref{Numerical Solutions}.)
 
 @cindex Digits, vectors of
 (@bullet{}) @strong{Exercise 9.}  You are given an integer in the range
-@texline @tmath{0 \le N < 10^m}
+@texline @math{0 \le N < 10^m}
 @infoline @expr{0 <= N < 10^m} 
 for @expr{m=12} (i.e., an integer of less than
 twelve digits).  Convert this integer into a vector of @expr{m}
@@ -4364,14 +4357,14 @@ happened?  How would you do this test?  @xref{List Answer 10, 10}. (@bullet{})
 
 (@bullet{}) @strong{Exercise 11.}  The area of a circle of radius one
 is @cpi{}.  The area of the 
-@texline @tmath{2\times2}
+@texline @math{2\times2}
 @infoline 2x2
 square that encloses that circle is 4.  So if we throw @var{n} darts at
 random points in the square, about @cpiover{4} of them will land inside
 the circle.  This gives us an entertaining way to estimate the value of 
 @cpi{}.  The @w{@kbd{k r}}
 command picks a random number between zero and the value on the stack.
-We could get a random floating-point number between @i{-1} and 1 by typing
+We could get a random floating-point number between @mathit{-1} and 1 by typing
 @w{@kbd{2.0 k r 1 -}}.  Build a vector of 100 random @expr{(x,y)} points in
 this square, then use vector mapping and reduction to count how many
 points lie inside the unit circle.  Hint:  Use the @kbd{v b} command.
@@ -4383,12 +4376,12 @@ another way to calculate @cpi{}.  Say you have an infinite field
 of vertical lines with a spacing of one inch.  Toss a one-inch matchstick
 onto the field.  The probability that the matchstick will land crossing
 a line turns out to be 
-@texline @tmath{2/\pi}.
+@texline @math{2/\pi}.
 @infoline @expr{2/pi}.  
 Toss 100 matchsticks to estimate @cpi{}.  (If you want still more fun,
 the probability that the GCD (@w{@kbd{k g}}) of two large integers is
 one turns out to be 
-@texline @tmath{6/\pi^2}.
+@texline @math{6/\pi^2}.
 @infoline @expr{6/pi^2}.
 That provides yet another way to estimate @cpi{}.)
 @xref{List Answer 12, 12}. (@bullet{})
@@ -4418,7 +4411,7 @@ value and a number of steps @var{n} from the stack; it then applies the
 function you give to the starting value 0, 1, 2, up to @var{n} times
 and returns a vector of the results.  Use this command to create a
 ``random walk'' of 50 steps.  Start with the two-dimensional point
-@expr{(0,0)}; then take one step a random distance between @i{-1} and 1
+@expr{(0,0)}; then take one step a random distance between @mathit{-1} and 1
 in both @expr{x} and @expr{y}; then take another step, and so on.  Use the
 @kbd{g f} command to display this random walk.  Now modify your random
 walk to walk a unit distance, but in a random direction, at each step.
@@ -4497,7 +4490,7 @@ to allow for roundoff error!)  @xref{Types Answer 1, 1}. (@bullet{})
 @end smallexample
 
 @noindent
-The square root of @i{-9} is by default rendered in rectangular form
+The square root of @mathit{-9} is by default rendered in rectangular form
 (@w{@expr{0 + 3i}}), but we can convert it to polar form (3 with a
 phase angle of 90 degrees).  All the usual arithmetic and scientific
 operations are defined on both types of complex numbers.
@@ -4522,14 +4515,14 @@ algebraic entry.
 
 @noindent
 Since infinity is infinitely large, multiplying it by any finite
-number (like @i{-17}) has no effect, except that since @i{-17}
+number (like @mathit{-17}) has no effect, except that since @mathit{-17}
 is negative, it changes a plus infinity to a minus infinity.
-(``A huge positive number, multiplied by @i{-17}, yields a huge
+(``A huge positive number, multiplied by @mathit{-17}, yields a huge
 negative number.'')  Adding any finite number to infinity also
 leaves it unchanged.  Taking an absolute value gives us plus
 infinity again.  Finally, we add this plus infinity to the minus
 infinity we had earlier.  If you work it out, you might expect
-the answer to be @i{-72} for this.  But the 72 has been completely
+the answer to be @mathit{-72} for this.  But the 72 has been completely
 lost next to the infinities; by the time we compute @w{@samp{inf - inf}}
 the finite difference between them, if any, is undetectable.
 So we say the result is @dfn{indeterminate}, which Calc writes
@@ -4686,7 +4679,7 @@ a 60% chance that the result is correct within 0.59 degrees.
 
 @cindex Torus, volume of
 (@bullet{}) @strong{Exercise 7.}  The volume of a torus (a donut shape) is
-@texline @tmath{2 \pi^2 R r^2}
+@texline @math{2 \pi^2 R r^2}
 @infoline @w{@expr{2 pi^2 R r^2}} 
 where @expr{R} is the radius of the circle that
 defines the center of the tube and @expr{r} is the radius of the tube
@@ -4786,7 +4779,7 @@ that arises in the second one.
 @cindex Fermat, primality test of
 (@bullet{}) @strong{Exercise 10.}  A theorem of Pierre de Fermat
 says that 
-@texline @w{@tmath{x^{n-1} \bmod n = 1}}
+@texline @w{@math{x^{n-1} \bmod n = 1}}
 @infoline @expr{x^(n-1) mod n = 1}
 if @expr{n} is a prime number and @expr{x} is an integer less than
 @expr{n}.  If @expr{n} is @emph{not} a prime number, this will
@@ -4814,7 +4807,7 @@ This calculation tells me it is six hours and 22 minutes until midnight.
 
 (@bullet{}) @strong{Exercise 11.}  A rule of thumb is that one year
 is about 
-@texline @tmath{\pi \times 10^7}
+@texline @math{\pi \times 10^7}
 @infoline @w{@expr{pi * 10^7}} 
 seconds.  What time will it be that many seconds from right now?
 @xref{Types Answer 11, 11}. (@bullet{})
@@ -5121,7 +5114,7 @@ solution by pressing @kbd{H} (the Hyperbolic flag) before @kbd{a S}.
 
 @noindent
 Calc has invented the variable @samp{s1} to represent an unknown sign;
-it is supposed to be either @i{+1} or @i{-1}.  Here we have used
+it is supposed to be either @mathit{+1} or @mathit{-1}.  Here we have used
 the ``let'' command to evaluate the expression when the sign is negative.
 If we plugged this into our second derivative we would get the same,
 negative, answer, so @expr{x = -1.19023} is also a maximum.
@@ -5291,7 +5284,7 @@ One way to do it is again with vector mapping and reduction:
 
 (@bullet{}) @strong{Exercise 3.}  Find the integral from 1 to @expr{y}
 of 
-@texline @tmath{x \sin \pi x}
+@texline @math{x \sin \pi x}
 @infoline @w{@expr{x sin(pi x)}} 
 (where the sine is calculated in radians).  Find the values of the
 integral for integers @expr{y} from 1 to 5.  @xref{Algebra Answer 3,
@@ -5300,7 +5293,7 @@ integral for integers @expr{y} from 1 to 5.  @xref{Algebra Answer 3,
 Calc's integrator can do many simple integrals symbolically, but many
 others are beyond its capabilities.  Suppose we wish to find the area
 under the curve 
-@texline @tmath{\sin x \ln x}
+@texline @math{\sin x \ln x}
 @infoline @expr{sin(x) ln(x)} 
 over the same range of @expr{x}.  If you entered this formula and typed
 @kbd{a i x @key{RET}} (don't bother to try this), Calc would work for a
@@ -5442,7 +5435,7 @@ $$ h (f(a) + f(a+h) + f(a+2h) + f(a+3h) + \cdots
 @end tex
 
 Compute the integral from 1 to 2 of 
-@texline @tmath{\sin x \ln x}
+@texline @math{\sin x \ln x}
 @infoline @expr{sin(x) ln(x)} 
 using Simpson's rule with 10 slices.  
 @xref{Algebra Answer 4, 4}. (@bullet{})
@@ -5988,7 +5981,7 @@ in @samp{a + 1} for @samp{x} in the defining formula.
 @end ignore
 @tindex Si
 (@bullet{}) @strong{Exercise 1.}  The ``sine integral'' function
-@texline @tmath{{\rm Si}(x)}
+@texline @math{{\rm Si}(x)}
 @infoline @expr{Si(x)} 
 is defined as the integral of @samp{sin(t)/t} for
 @expr{t = 0} to @expr{x} in radians.  (It was invented because this
@@ -6066,7 +6059,7 @@ the following functions:
 @enumerate
 @item
 Compute 
-@texline @tmath{\displaystyle{\sin x \over x}},
+@texline @math{\displaystyle{\sin x \over x}},
 @infoline @expr{sin(x) / x}, 
 where @expr{x} is the number on the top of the stack.
 
@@ -6132,13 +6125,13 @@ key if you have one, makes a copy of the number in level 2.)
 @cindex Phi, golden ratio
 A fascinating property of the Fibonacci numbers is that the @expr{n}th
 Fibonacci number can be found directly by computing 
-@texline @tmath{\phi^n / \sqrt{5}}
+@texline @math{\phi^n / \sqrt{5}}
 @infoline @expr{phi^n / sqrt(5)}
 and then rounding to the nearest integer, where 
-@texline @tmath{\phi} (``phi''),
+@texline @math{\phi} (``phi''),
 @infoline @expr{phi}, 
 the ``golden ratio,'' is 
-@texline @tmath{(1 + \sqrt{5}) / 2}.
+@texline @math{(1 + \sqrt{5}) / 2}.
 @infoline @expr{(1 + sqrt(5)) / 2}. 
 (For convenience, this constant is available from the @code{phi}
 variable, or the @kbd{I H P} command.)
@@ -6155,17 +6148,17 @@ variable, or the @kbd{I H P} command.)
 @cindex Continued fractions
 (@bullet{}) @strong{Exercise 5.}  The @dfn{continued fraction}
 representation of 
-@texline @tmath{\phi}
+@texline @math{\phi}
 @infoline @expr{phi} 
 is 
-@texline @tmath{1 + 1/(1 + 1/(1 + 1/( \ldots )))}.
+@texline @math{1 + 1/(1 + 1/(1 + 1/( \ldots )))}.
 @infoline @expr{1 + 1/(1 + 1/(1 + 1/( ...@: )))}.
 We can compute an approximate value by carrying this however far
 and then replacing the innermost 
-@texline @tmath{1/( \ldots )}
+@texline @math{1/( \ldots )}
 @infoline @expr{1/( ...@: )} 
 by 1.  Approximate
-@texline @tmath{\phi}
+@texline @math{\phi}
 @infoline @expr{phi} 
 using a twenty-term continued fraction.
 @xref{Programming Answer 5, 5}. (@bullet{})
@@ -6265,7 +6258,7 @@ The @dfn{Bernoulli numbers} are a sequence with the interesting
 property that all of the odd Bernoulli numbers are zero, and the
 even ones, while difficult to compute, can be roughly approximated
 by the formula 
-@texline @tmath{\displaystyle{2 n! \over (2 \pi)^n}}.
+@texline @math{\displaystyle{2 n! \over (2 \pi)^n}}.
 @infoline @expr{2 n!@: / (2 pi)^n}.  
 Let's write a keyboard macro to compute (approximate) Bernoulli numbers.
 (Calc has a command, @kbd{k b}, to compute exact Bernoulli numbers, but
@@ -6439,14 +6432,14 @@ $$ x_{\rm new} = x - {f(x) \over f'(x)} $$
 @noindent
 where @expr{f'(x)} is the derivative of @expr{f}.  The @expr{x}
 values will quickly converge to a solution, i.e., eventually
-@texline @tmath{x_{\rm new}}
+@texline @math{x_{\rm new}}
 @infoline @expr{new_x} 
 and @expr{x} will be equal to within the limits
 of the current precision.  Write a program which takes a formula
 involving the variable @expr{x}, and an initial guess @expr{x_0},
 on the stack, and produces a value of @expr{x} for which the formula
 is zero.  Use it to find a solution of 
-@texline @tmath{\sin(\cos x) = 0.5}
+@texline @math{\sin(\cos x) = 0.5}
 @infoline @expr{sin(cos(x)) = 0.5}
 near @expr{x = 4.5}.  (Use angles measured in radians.)  Note that
 the built-in @w{@kbd{a R}} (@code{calc-find-root}) command uses Newton's
@@ -6456,10 +6449,10 @@ method when it is able.  @xref{Programming Answer 8, 8}. (@bullet{})
 @cindex Gamma constant, Euler's
 @cindex Euler's gamma constant
 (@bullet{}) @strong{Exercise 9.}  The @dfn{digamma} function 
-@texline @tmath{\psi(z) (``psi'')}
+@texline @math{\psi(z) (``psi'')}
 @infoline @expr{psi(z)}
 is defined as the derivative of 
-@texline @tmath{\ln \Gamma(z)}.
+@texline @math{\ln \Gamma(z)}.
 @infoline @expr{ln(gamma(z))}.  
 For large values of @expr{z}, it can be approximated by the infinite sum
 
@@ -6478,7 +6471,7 @@ $$
 
 @noindent
 where 
-@texline @tmath{\sum}
+@texline @math{\sum}
 @infoline @expr{sum} 
 represents the sum over @expr{n} from 1 to infinity
 (or to some limit high enough to give the desired accuracy), and
@@ -6486,27 +6479,27 @@ the @code{bern} function produces (exact) Bernoulli numbers.
 While this sum is not guaranteed to converge, in practice it is safe.
 An interesting mathematical constant is Euler's gamma, which is equal
 to about 0.5772.  One way to compute it is by the formula,
-@texline @tmath{\gamma = -\psi(1)}.
+@texline @math{\gamma = -\psi(1)}.
 @infoline @expr{gamma = -psi(1)}.  
 Unfortunately, 1 isn't a large enough argument
 for the above formula to work (5 is a much safer value for @expr{z}).
 Fortunately, we can compute 
-@texline @tmath{\psi(1)}
+@texline @math{\psi(1)}
 @infoline @expr{psi(1)} 
 from 
-@texline @tmath{\psi(5)}
+@texline @math{\psi(5)}
 @infoline @expr{psi(5)} 
 using the recurrence 
-@texline @tmath{\psi(z+1) = \psi(z) + {1 \over z}}.
+@texline @math{\psi(z+1) = \psi(z) + {1 \over z}}.
 @infoline @expr{psi(z+1) = psi(z) + 1/z}.  
 Your task:  Develop a program to compute 
-@texline @tmath{\psi(z)};
+@texline @math{\psi(z)};
 @infoline @expr{psi(z)}; 
 it should ``pump up'' @expr{z}
 if necessary to be greater than 5, then use the above summation
 formula.  Use looping commands to compute the sum.  Use your function
 to compute 
-@texline @tmath{\gamma}
+@texline @math{\gamma}
 @infoline @expr{gamma} 
 to twelve decimal places.  (Calc has a built-in command
 for Euler's constant, @kbd{I P}, which you can use to check your answer.)
@@ -6683,18 +6676,18 @@ This section includes answers to all the exercises in the Calc tutorial.
 @kbd{1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -}
 
 The result is 
-@texline @tmath{1 - (2 \times (3 + 4)) = -13}.
+@texline @math{1 - (2 \times (3 + 4)) = -13}.
 @infoline @expr{1 - (2 * (3 + 4)) = -13}.
 
 @node RPN Answer 2, RPN Answer 3, RPN Answer 1, Answers to Exercises
 @subsection RPN Tutorial Exercise 2
 
 @noindent
-@texline @tmath{2\times4 + 7\times9.5 + {5\over4} = 75.75}
+@texline @math{2\times4 + 7\times9.5 + {5\over4} = 75.75}
 @infoline @expr{2*4 + 7*9.5 + 5/4 = 75.75}
 
 After computing the intermediate term 
-@texline @tmath{2\times4 = 8},
+@texline @math{2\times4 = 8},
 @infoline @expr{2*4 = 8}, 
 you can leave that result on the stack while you compute the second
 term.  With both of these results waiting on the stack you can then
@@ -7003,7 +6996,7 @@ give a floating-point result that is inaccurate even when rounded
 down to an integer.  Consider @expr{123456789 / 2} when the current
 precision is 6 digits.  The true answer is @expr{61728394.5}, but
 with a precision of 6 this will be rounded to 
-@texline @tmath{12345700.0/2.0 = 61728500.0}.
+@texline @math{12345700.0/2.0 = 61728500.0}.
 @infoline @expr{12345700.@: / 2.@: = 61728500.}.
 The result, when converted to an integer, will be off by 106.
 
@@ -7114,16 +7107,16 @@ Type @kbd{d N} to return to ``normal'' display mode afterwards.
 
 @noindent
 To solve 
-@texline @tmath{A^T A \, X = A^T B},
+@texline @math{A^T A \, X = A^T B},
 @infoline @expr{trn(A) * A * X = trn(A) * B}, 
 first we compute
-@texline @tmath{A' = A^T A}
+@texline @math{A' = A^T A}
 @infoline @expr{A2 = trn(A) * A} 
 and 
-@texline @tmath{B' = A^T B};
+@texline @math{B' = A^T B};
 @infoline @expr{B2 = trn(A) * B}; 
 now, we have a system 
-@texline @tmath{A' X = B'}
+@texline @math{A' X = B'}
 @infoline @expr{A2 * X = B2} 
 which we can solve using Calc's @samp{/} command.
 
@@ -7155,7 +7148,7 @@ $$
 
 The first step is to enter the coefficient matrix.  We'll store it in
 quick variable number 7 for later reference.  Next, we compute the
-@texline @tmath{B'}
+@texline @math{B'}
 @infoline @expr{B2} 
 vector.
 
@@ -7173,7 +7166,7 @@ vector.
 
 @noindent
 Now we compute the matrix 
-@texline @tmath{A'}
+@texline @math{A'}
 @infoline @expr{A2} 
 and divide.
 
@@ -7194,16 +7187,16 @@ and divide.
 round-off error.)
 
 Notice that the answers are similar to those for the 
-@texline @tmath{3\times3}
+@texline @math{3\times3}
 @infoline 3x3
 system solved in the text.  That's because the fourth equation that was 
 added to the system is almost identical to the first one multiplied
 by two.  (If it were identical, we would have gotten the exact same
 answer since the 
-@texline @tmath{4\times3}
+@texline @math{4\times3}
 @infoline 4x3
 system would be equivalent to the original 
-@texline @tmath{3\times3}
+@texline @math{3\times3}
 @infoline 3x3
 system.)
 
@@ -7280,7 +7273,7 @@ $$ m \times x + b \times 1 = y $$
 @end tex
 
 Thus we want a 
-@texline @tmath{19\times2}
+@texline @math{19\times2}
 @infoline 19x2
 matrix with our @expr{x} vector as one column and
 ones as the other column.  So, first we build the column of ones, then
@@ -7299,10 +7292,10 @@ we combine the two columns to form our @expr{A} matrix.
 
 @noindent
 Now we compute 
-@texline @tmath{A^T y}
+@texline @math{A^T y}
 @infoline @expr{trn(A) * y} 
 and 
-@texline @tmath{A^T A}
+@texline @math{A^T A}
 @infoline @expr{trn(A) * A} 
 and divide.
 
@@ -7330,7 +7323,7 @@ and divide.
 @end smallexample
 
 Since we were solving equations of the form 
-@texline @tmath{m \times x + b \times 1 = y},
+@texline @math{m \times x + b \times 1 = y},
 @infoline @expr{m*x + b*1 = y}, 
 these numbers should be @expr{m} and @expr{b}, respectively.  Sure
 enough, they agree exactly with the result computed using @kbd{V M} and
@@ -7393,7 +7386,7 @@ then raise the number to that power.)
 
 @noindent
 A number @expr{j} is a divisor of @expr{n} if 
-@texline @tmath{n \mathbin{\hbox{\code{\%}}} j = 0}.
+@texline @math{n \mathbin{\hbox{\code{\%}}} j = 0}.
 @infoline @samp{n % j = 0}.  
 The first step is to get a vector that identifies the divisors.
 
@@ -7464,7 +7457,7 @@ zero, so adding zeros on the left and right is safe.  From then on
 the job is pretty straightforward.
 
 Incidentally, Calc provides the 
-@texline @dfn{M@"obius} @tmath{\mu}
+@texline @dfn{M@"obius} @math{\mu}
 @infoline @dfn{Moebius mu} 
 function which is zero if and only if its argument is square-free.  It
 would be a much more convenient way to do the above test in practice.
@@ -7498,7 +7491,7 @@ The numbers down the lefthand edge of the list we desire are called
 the ``triangular numbers'' (now you know why!).  The @expr{n}th
 triangular number is the sum of the integers from 1 to @expr{n}, and
 can be computed directly by the formula 
-@texline @tmath{n (n+1) \over 2}.
+@texline @math{n (n+1) \over 2}.
 @infoline @expr{n * (n+1) / 2}.
 
 @smallexample
@@ -7594,7 +7587,7 @@ A way to isolate the maximum value is to compute the maximum using
 @noindent
 It's a good idea to verify, as in the last step above, that only
 one value is equal to the maximum.  (After all, a plot of 
-@texline @tmath{\sin x}
+@texline @math{\sin x}
 @infoline @expr{sin(x)}
 might have many points all equal to the maximum value, 1.)
 
@@ -7866,10 +7859,10 @@ This problem can be made a lot easier by taking advantage of some
 symmetries.  First of all, after some thought it's clear that the
 @expr{y} axis can be ignored altogether.  Just pick a random @expr{x}
 component for one end of the match, pick a random direction 
-@texline @tmath{\theta},
+@texline @math{\theta},
 @infoline @expr{theta},
 and see if @expr{x} and 
-@texline @tmath{x + \cos \theta}
+@texline @math{x + \cos \theta}
 @infoline @expr{x + cos(theta)} 
 (which is the @expr{x} coordinate of the other endpoint) cross a line.
 The lines are at integer coordinates, so this happens when the two
@@ -7886,10 +7879,10 @@ coordinates 0 and 1 for the lines on either side of the leftmost
 endpoint.  The rightmost endpoint will be between 0 and 1 if the
 match does not cross a line, or between 1 and 2 if it does.  So:
 Pick random @expr{x} and 
-@texline @tmath{\theta},
+@texline @math{\theta},
 @infoline @expr{theta}, 
 compute
-@texline @tmath{x + \cos \theta},
+@texline @math{x + \cos \theta},
 @infoline @expr{x + cos(theta)},
 and count how many of the results are greater than one.  Simple!
 
@@ -8214,7 +8207,7 @@ precision slightly and try again:
 @noindent
 Aha!  It's unlikely that an irrational number would equal a fraction
 this simple to within ten digits, so our original number was probably
-@texline @tmath{\sqrt{27 \pi / 53}}.
+@texline @math{\sqrt{27 \pi / 53}}.
 @infoline @expr{sqrt(27 pi / 53)}.
 
 Notice that we didn't need to re-round the number when we reduced the
@@ -8475,9 +8468,9 @@ as a possible value.
 The fourth calculation, @samp{1 / (-10 .. 10)}, has the same problem.
 Zero is buried inside the interval, but it's still a possible value.
 It's not hard to see that the actual result of @samp{1 / (-10 .. 10)}
-will be either greater than @i{0.1}, or less than @i{-0.1}.  Thus
+will be either greater than @mathit{0.1}, or less than @mathit{-0.1}.  Thus
 the interval goes from minus infinity to plus infinity, with a ``hole''
-in it from @i{-0.1} to @i{0.1}.  Calc doesn't have any way to
+in it from @mathit{-0.1} to @mathit{0.1}.  Calc doesn't have any way to
 represent this, so it just reports @samp{[-inf .. inf]} as the answer.
 It may be disappointing to hear ``the answer lies somewhere between
 minus infinity and plus infinity, inclusive,'' but that's the best
@@ -8497,9 +8490,9 @@ that interval arithmetic can do in this case.
 @end smallexample
 
 @noindent
-In the first case the result says, ``if a number is between @i{-3} and
+In the first case the result says, ``if a number is between @mathit{-3} and
 3, its square is between 0 and 9.''  The second case says, ``the product
-of two numbers each between @i{-3} and 3 is between @i{-9} and 9.''
+of two numbers each between @mathit{-3} and 3 is between @mathit{-9} and 9.''
 
 An interval form is not a number; it is a symbol that can stand for
 many different numbers.  Two identical-looking interval forms can stand
@@ -9255,7 +9248,7 @@ algebraic entry, whichever way you prefer:
 
 @noindent
 Computing 
-@texline @tmath{\displaystyle{\sin x \over x}}:
+@texline @math{\displaystyle{\sin x \over x}}:
 @infoline @expr{sin(x) / x}:
 
 Using the stack:  @kbd{C-x (  @key{RET} S @key{TAB} /  C-x )}.
@@ -9326,7 +9319,7 @@ C-x ( ' [0, 1; 1, 1] ^ ($-1) * [1, 1] @key{RET} v u @key{DEL} C-x )
 @noindent
 This program is quite efficient because Calc knows how to raise a
 matrix (or other value) to the power @expr{n} in only 
-@texline @tmath{\log_2 n}
+@texline @math{\log_2 n}
 @infoline @expr{log(n,2)}
 steps.  For example, this program can compute the 1000th Fibonacci
 number (a 209-digit integer!) in about 10 steps; even though the
@@ -9380,7 +9373,7 @@ harmonic number is 4.02.
 @noindent
 The first step is to compute the derivative @expr{f'(x)} and thus
 the formula 
-@texline @tmath{\displaystyle{x - {f(x) \over f'(x)}}}.
+@texline @math{\displaystyle{x - {f(x) \over f'(x)}}}.
 @infoline @expr{x - f(x)/f'(x)}.
 
 (Because this definition is long, it will be repeated in concise form
@@ -9497,10 +9490,10 @@ method (among others) to look for numerical solutions to any equation.
 The first step is to adjust @expr{z} to be greater than 5.  A simple
 ``for'' loop will do the job here.  If @expr{z} is less than 5, we
 reduce the problem using 
-@texline @tmath{\psi(z) = \psi(z+1) - 1/z}.
+@texline @math{\psi(z) = \psi(z+1) - 1/z}.
 @infoline @expr{psi(z) = psi(z+1) - 1/z}.  We go
 on to compute 
-@texline @tmath{\psi(z+1)},
+@texline @math{\psi(z+1)},
 @infoline @expr{psi(z+1)}, 
 and remember to add back a factor of @expr{-1/z} when we're done.  This
 step is repeated until @expr{z > 5}.
@@ -9541,7 +9534,7 @@ are exactly equal, not just equal to within the current precision.)
 @end smallexample
 
 Now we compute the initial part of the sum:  
-@texline @tmath{\ln z - {1 \over 2z}}
+@texline @math{\ln z - {1 \over 2z}}
 @infoline @expr{ln(z) - 1/2z}
 minus the adjustment factor.
 
@@ -9584,7 +9577,7 @@ up the value of @expr{2 n}.  (Calc does have a summation command,
 @end smallexample
 
 This is the value of 
-@texline @tmath{-\gamma},
+@texline @math{-\gamma},
 @infoline @expr{- gamma}, 
 with a slight bit of roundoff error.  To get a full 12 digits, let's use
 a higher precision:
@@ -9619,7 +9612,7 @@ C-x )
 @noindent
 Taking the derivative of a term of the form @expr{x^n} will produce
 a term like 
-@texline @tmath{n x^{n-1}}.
+@texline @math{n x^{n-1}}.
 @infoline @expr{n x^(n-1)}.  
 Taking the derivative of a constant
 produces zero.  From this it is easy to see that the @expr{n}th
@@ -10193,7 +10186,7 @@ The first three keystrokes ``push'' the numbers 1 and 2 onto the stack.  The
 @kbd{+} key always ``pops'' the top two numbers from the stack, adds them,
 and pushes the result (3) back onto the stack.  This number is ready for
 further calculations:  @kbd{5 -} pushes 5 onto the stack, then pops the
-3 and 5, subtracts them, and pushes the result (@i{-2}).
+3 and 5, subtracts them, and pushes the result (@mathit{-2}).
 
 Note that the ``top'' of the stack actually appears at the @emph{bottom}
 of the buffer.  A line containing a single @samp{.} character signifies
@@ -10256,7 +10249,7 @@ the two numbers on the top of the stack.  The @kbd{n} key changes the sign
 of the number on the top of the stack or the number currently being entered.
 The @kbd{_} key begins entry of a negative number or changes the sign of
 the number currently being entered.  The following sequences all enter the
-number @i{-5} onto the stack:  @kbd{0 @key{RET} 5 -}, @kbd{5 n @key{RET}},
+number @mathit{-5} onto the stack:  @kbd{0 @key{RET} 5 -}, @kbd{5 n @key{RET}},
 @kbd{5 @key{RET} n}, @kbd{_ 5 @key{RET}}, @kbd{5 _ @key{RET}}.
 
 Some other keys are active during numeric entry, such as @kbd{#} for
@@ -10277,7 +10270,7 @@ During numeric entry, the only editing key available is @key{DEL}.
 Calculations can also be entered in algebraic form.  This is accomplished
 by typing the apostrophe key, @kbd{'}, followed by the expression in
 standard format:  @kbd{@key{'} 2+3*4 @key{RET}} computes
-@texline @tmath{2+(3\times4) = 14}
+@texline @math{2+(3\times4) = 14}
 @infoline @expr{2+(3*4) = 14} 
 and pushes that on the stack.  If you wish you can
 ignore the RPN aspect of Calc altogether and simply enter algebraic
@@ -10687,7 +10680,7 @@ approximation.  This value will not need to be recomputed ever again
 unless you raise the precision still further.  Many operations such as
 logarithms and sines make use of similarly cached values such as
 @cpiover{4} and 
-@texline @tmath{\ln 2}.
+@texline @math{\ln 2}.
 @infoline @expr{ln(2)}.  
 The visible effect of caching is that
 high-precision computations may seem to do extra work the first time.
@@ -10846,10 +10839,10 @@ A floating-point number or @dfn{float} is a number stored in scientific
 notation.  The number of significant digits in the fractional part is
 governed by the current floating precision (@pxref{Precision}).  The
 range of acceptable values is from 
-@texline @tmath{10^{-3999999}}
+@texline @math{10^{-3999999}}
 @infoline @expr{10^-3999999} 
 (inclusive) to 
-@texline @tmath{10^{4000000}}
+@texline @math{10^{4000000}}
 @infoline @expr{10^4000000}
 (exclusive), plus the corresponding negative values and zero.
 
@@ -10921,16 +10914,16 @@ Rectangular complex numbers can also be displayed in @samp{@var{a}+@var{b}i}
 notation; @pxref{Complex Formats}.
 
 Polar complex numbers are displayed in the form 
-@texline `@t{(}@var{r}@t{;}@tmath{\theta}@t{)}'
+@texline `@t{(}@var{r}@t{;}@math{\theta}@t{)}'
 @infoline `@t{(}@var{r}@t{;}@var{theta}@t{)}'
 where @var{r} is the nonnegative magnitude and 
-@texline @tmath{\theta}
+@texline @math{\theta}
 @infoline @var{theta} 
 is the argument or phase angle.  The range of 
-@texline @tmath{\theta}
+@texline @math{\theta}
 @infoline @var{theta} 
 depends on the current angular mode (@pxref{Angular Modes}); it is
-generally between @i{-180} and @i{+180} degrees or the equivalent range
+generally between @mathit{-180} and @mathit{+180} degrees or the equivalent range
 in radians. 
 
 Complex numbers are entered in stages using incomplete objects.
@@ -10973,7 +10966,7 @@ larger, becomes arbitrarily close to zero.  So you can imagine
 that if @expr{x} got ``all the way to infinity,'' then @expr{1 / x}
 would go all the way to zero.  Similarly, when they say that
 @samp{exp(inf) = inf}, they mean that 
-@texline @tmath{e^x}
+@texline @math{e^x}
 @infoline @expr{exp(x)} 
 grows without bound as @expr{x} grows.  The symbol @samp{-inf} likewise
 stands for an infinitely negative real value; for example, we say that
@@ -11070,7 +11063,7 @@ of its elements.
 @tindex vec
 Algebraic functions for building vectors include @samp{vec(a, b, c)}
 to build @samp{[a, b, c]}, @samp{cvec(a, n, m)} to build an 
-@texline @tmath{n\times m}
+@texline @math{n\times m}
 @infoline @var{n}x@var{m}
 matrix of @samp{a}s, and @samp{index(n)} to build a vector of integers
 from 1 to @samp{n}.
@@ -11201,7 +11194,7 @@ The @var{mins} value is an integer or integer-valued float between 0 and 59.
 The @var{secs} value is a real number between 0 (inclusive) and 60
 (exclusive).  A positive HMS form is interpreted as @var{hours} +
 @var{mins}/60 + @var{secs}/3600.  A negative HMS form is interpreted
-as @i{- @var{hours}} @i{-} @var{mins}/60 @i{-} @var{secs}/3600.
+as @mathit{- @var{hours}} @mathit{-} @var{mins}/60 @mathit{-} @var{secs}/3600.
 Display format for HMS forms is quite flexible.  @xref{HMS Formats}.
 
 HMS forms can be added and subtracted.  When they are added to numbers,
@@ -11295,12 +11288,12 @@ between, say, @samp{<12:00am Mon Jan 1, 1900>} and
 
 Calc uses the Julian calendar for all dates before the year 1752,
 including dates BC when the Julian calendar technically had not
-yet been invented.  Thus the claim that day number @i{-10000} is
+yet been invented.  Thus the claim that day number @mathit{-10000} is
 called ``August 16, 28 BC'' should be taken with a grain of salt.
 
 Please note that there is no ``year 0''; the day before
 @samp{<Sat Jan 1, +1>} is @samp{<Fri Dec 31, -1>}.  These are
-days 0 and @i{-1} respectively in Calc's internal numbering scheme.
+days 0 and @mathit{-1} respectively in Calc's internal numbering scheme.
 
 @cindex Julian day counting
 Another day counting system in common use is, confusingly, also
@@ -11308,7 +11301,7 @@ called ``Julian.''  It was invented in 1583 by Joseph Justus
 Scaliger, who named it in honor of his father Julius Caesar
 Scaliger.  For obscure reasons he chose to start his day
 numbering on Jan 1, 4713 BC at noon, which in Calc's scheme
-is @i{-1721423.5} (recall that Calc starts at midnight instead
+is @mathit{-1721423.5} (recall that Calc starts at midnight instead
 of noon).  Thus to convert a Calc date code obtained by
 unpacking a date form into a Julian day number, simply add
 1721423.5.  The Julian code for @samp{6:00am Jan 9, 1991}
@@ -11341,7 +11334,7 @@ an integer multiple of) some value @var{M}.  Arithmetic modulo @var{M}
 often arises in number theory.  Modulo forms are written
 `@var{a} @t{mod} @var{M}',
 where @var{a} and @var{M} are real numbers or HMS forms, and
-@texline @tmath{0 \le a < M}.
+@texline @math{0 \le a < M}.
 @infoline @expr{0 <= a < @var{M}}.
 In many applications @expr{a} and @expr{M} will be
 integers but this is not required.
@@ -11373,7 +11366,7 @@ division is left in symbolic form.  Other operations, such as square
 roots, are not yet supported for modulo forms.  (Note that, although
 @w{`@t{(}@var{a} @t{mod} @var{M}@t{)^.5}'} will compute a ``modulo square root''
 in the sense of reducing 
-@texline @tmath{\sqrt a}
+@texline @math{\sqrt a}
 @infoline @expr{sqrt(a)} 
 modulo @expr{M}, this is not a useful definition from the
 number-theoretical point of view.)
@@ -11423,12 +11416,12 @@ The algebraic function @samp{makemod(a, m)} builds the modulo form
 @cindex Standard deviations
 An @dfn{error form} is a number with an associated standard
 deviation, as in @samp{2.3 +/- 0.12}.  The notation
-@texline `@var{x} @t{+/-} @tmath{\sigma}' 
+@texline `@var{x} @t{+/-} @math{\sigma}' 
 @infoline `@var{x} @t{+/-} sigma' 
 stands for an uncertain value which follows
 a normal or Gaussian distribution of mean @expr{x} and standard
 deviation or ``error'' 
-@texline @tmath{\sigma}.
+@texline @math{\sigma}.
 @infoline @expr{sigma}.
 Both the mean and the error can be either numbers or
 formulas.  Generally these are real numbers but the mean may also be
@@ -11439,7 +11432,7 @@ regular number by the Calculator.
 All arithmetic and transcendental functions accept error forms as input.
 Operations on the mean-value part work just like operations on regular
 numbers.  The error part for any function @expr{f(x)} (such as 
-@texline @tmath{\sin x}
+@texline @math{\sin x}
 @infoline @expr{sin(x)})
 is defined by the error of @expr{x} times the derivative of @expr{f}
 evaluated at the mean value of @expr{x}.  For a two-argument function
@@ -11470,34 +11463,34 @@ Consult a good text on error analysis for a discussion of the proper use
 of standard deviations.  Actual errors often are neither Gaussian-distributed
 nor uncorrelated, and the above formulas are valid only when errors
 are small.  As an example, the error arising from
-@texline `@t{sin(}@var{x} @t{+/-} @tmath{\sigma}@t{)}' 
+@texline `@t{sin(}@var{x} @t{+/-} @math{\sigma}@t{)}' 
 @infoline `@t{sin(}@var{x} @t{+/-} @var{sigma}@t{)}' 
 is 
-@texline `@tmath{\sigma} @t{abs(cos(}@var{x}@t{))}'.  
+@texline `@math{\sigma} @t{abs(cos(}@var{x}@t{))}'.  
 @infoline `@var{sigma} @t{abs(cos(}@var{x}@t{))}'.  
 When @expr{x} is close to zero,
-@texline @tmath{\cos x}
+@texline @math{\cos x}
 @infoline @expr{cos(x)} 
 is close to one so the error in the sine is close to 
-@texline @tmath{\sigma};
+@texline @math{\sigma};
 @infoline @expr{sigma};
 this makes sense, since 
-@texline @tmath{\sin x}
+@texline @math{\sin x}
 @infoline @expr{sin(x)} 
 is approximately @expr{x} near zero, so a given error in @expr{x} will
 produce about the same error in the sine.  Likewise, near 90 degrees
-@texline @tmath{\cos x}
+@texline @math{\cos x}
 @infoline @expr{cos(x)} 
 is nearly zero and so the computed error is
 small:  The sine curve is nearly flat in that region, so an error in @expr{x}
 has relatively little effect on the value of 
-@texline @tmath{\sin x}.
+@texline @math{\sin x}.
 @infoline @expr{sin(x)}.  
 However, consider @samp{sin(90 +/- 1000)}.  The cosine of 90 is zero, so
 Calc will report zero error!  We get an obviously wrong result because
 we have violated the small-error approximation underlying the error
 analysis.  If the error in @expr{x} had been small, the error in
-@texline @tmath{\sin x}
+@texline @math{\sin x}
 @infoline @expr{sin(x)} 
 would indeed have been negligible.
 
@@ -11606,11 +11599,11 @@ contain zero inside them Calc is forced to give the result,
 While it may seem that intervals and error forms are similar, they are
 based on entirely different concepts of inexact quantities.  An error
 form 
-@texline `@var{x} @t{+/-} @tmath{\sigma}' 
+@texline `@var{x} @t{+/-} @math{\sigma}' 
 @infoline `@var{x} @t{+/-} @var{sigma}' 
 means a variable is random, and its value could
 be anything but is ``probably'' within one 
-@texline @tmath{\sigma} 
+@texline @math{\sigma} 
 @infoline @var{sigma} 
 of the mean value @expr{x}. An interval 
 `@t{[}@var{a} @t{..@:} @var{b}@t{]}' means a
@@ -11844,7 +11837,7 @@ the C-style ``if'' operator @samp{a?b:c} [@code{if}];
 
 Note that, unlike in usual computer notation, multiplication binds more
 strongly than division:  @samp{a*b/c*d} is equivalent to 
-@texline @tmath{a b \over c d}.
+@texline @math{a b \over c d}.
 @infoline @expr{(a*b)/(c*d)}.
 
 @cindex Multiplication, implicit
@@ -12042,11 +12035,11 @@ intervening stack elements toward the top.  @kbd{M-@key{TAB}} moves the
 element at level @var{n} up to the top.  (Compare with @key{LFD},
 which copies instead of moving the element in level @var{n}.)
 
-With a negative argument @i{-@var{n}}, @key{TAB} rotates the stack
+With a negative argument @mathit{-@var{n}}, @key{TAB} rotates the stack
 to move the object in level @var{n} to the deepest place in the
-stack, and the object in level @i{@var{n}+1} to the top.  @kbd{M-@key{TAB}}
-rotates the deepest stack element to be in level @i{n}, also
-putting the top stack element in level @i{@var{n}+1}.
+stack, and the object in level @mathit{@var{n}+1} to the top.  @kbd{M-@key{TAB}}
+rotates the deepest stack element to be in level @mathit{n}, also
+putting the top stack element in level @mathit{@var{n}+1}.
 
 @xref{Selecting Subformulas}, for a way to apply these commands to
 any portion of a vector or formula on the stack.
@@ -12341,8 +12334,8 @@ inside it, @kbd{m F} will not automatically load the new file.  This
 is because you are presumably switching to your @file{~/.emacs} file,
 which may contain other things you don't want to reread.  You can give
 a numeric prefix argument of 1 to @kbd{m F} to force it to read the
-file no matter what its name.  Conversely, an argument of @i{-1} tells
-@kbd{m F} @emph{not} to read the new file.  An argument of 2 or @i{-2}
+file no matter what its name.  Conversely, an argument of @mathit{-1} tells
+@kbd{m F} @emph{not} to read the new file.  An argument of 2 or @mathit{-2}
 tells @kbd{m F} not to reset the modes to their defaults beforehand,
 which is useful if you intend your new file to have a variant of the
 modes present in the file you were using before.
@@ -12447,7 +12440,7 @@ Hyperbolic Flag, which transforms @code{calc-sin} into @code{calc-sinh}.
 If both of these flags are set at once, the effect will be
 @code{calc-arcsinh}.  (The Hyperbolic flag is also used by some
 non-trigonometric commands; for example @kbd{H L} computes a base-10,
-instead of base-@i{e}, logarithm.)
+instead of base-@mathit{e}, logarithm.)
 
 Command names like @code{calc-arcsin} are provided for completeness, and
 may be executed with @kbd{x} or @kbd{M-x}.  Their effect is simply to
@@ -12591,7 +12584,7 @@ i.e., @kbd{C-u 0 m i}, turns on a ``positive infinite mode'' in
 which zero is treated as positive instead of being directionless.
 Thus, @samp{1 / 0 = inf} and @samp{-1 / 0 = -inf} in this mode.
 Note that zero never actually has a sign in Calc; there are no
-separate representations for @i{+0} and @i{-0}.  Positive
+separate representations for @mathit{+0} and @mathit{-0}.  Positive
 infinite mode merely changes the interpretation given to the
 single symbol, @samp{0}.  One consequence of this is that, while
 you might expect @samp{1 / -0 = -inf}, actually @samp{1 / -0}
@@ -12982,7 +12975,7 @@ Numbers.  (Real or complex.)
 Calc uses this information to determine when certain simplifications
 of formulas are safe.  For example, @samp{(x^y)^z} cannot be
 simplified to @samp{x^(y z)} in general; for example,
-@samp{((-3)^2)^1:2} is 3, but @samp{(-3)^(2*1:2) = (-3)^1} is @i{-3}.
+@samp{((-3)^2)^1:2} is 3, but @samp{(-3)^(2*1:2) = (-3)^1} is @mathit{-3}.
 However, this simplification @emph{is} safe if @code{z} is known
 to be an integer, or if @code{x} is known to be a nonnegative
 real number.  If you have given declarations that allow Calc to
@@ -13095,7 +13088,7 @@ The value is a constant with respect to other variables.
 @end table
 
 Calc does not check the declarations for a variable when you store
-a value in it.  However, storing @i{-3.5} in a variable that has
+a value in it.  However, storing @mathit{-3.5} in a variable that has
 been declared @code{pos}, @code{int}, or @code{matrix} may have
 unexpected effects; Calc may evaluate @samp{sqrt(x^2)} to @expr{3.5}
 if it substitutes the value first, or to @expr{-3.5} if @code{x}
@@ -13330,7 +13323,7 @@ command causes integers to be padded out with leading zeros according to the
 current binary word size.  (@xref{Binary Functions}, for a discussion of
 word size.)  If the absolute value of the word size is @expr{w}, all integers
 are displayed with at least enough digits to represent 
-@texline @tmath{2^w-1}
+@texline @math{2^w-1}
 @infoline @expr{(2^w)-1} 
 in the current radix.  (Larger integers will still be displayed in their
 entirety.) 
@@ -14231,10 +14224,10 @@ special names (like @code{\sin}) will use curly braces instead of
 parentheses for very simple arguments.  During input, curly braces and
 parentheses work equally well for grouping, but when the document is
 formatted the curly braces will be invisible.  Thus the printed result is
-@texline @tmath{\sin{2 x}}
+@texline @math{\sin{2 x}}
 @infoline @expr{sin 2x} 
 but 
-@texline @tmath{\sin(2 + x)}.
+@texline @math{\sin(2 + x)}.
 @infoline @expr{sin(2 + x)}.
 
 Function and variable names not treated specially by @TeX{} are simply
@@ -15728,19 +15721,19 @@ Polar mode.  Value is 0 (rectangular) or 1 (polar); default is 0.
 Command is @kbd{m p}.
 
 @item
-Matrix/scalar mode.  Default value is @i{-1}.  Value is 0 for scalar
-mode, @i{-2} for matrix mode, or @var{N} for 
-@texline @tmath{N\times N}
+Matrix/scalar mode.  Default value is @mathit{-1}.  Value is 0 for scalar
+mode, @mathit{-2} for matrix mode, or @var{N} for 
+@texline @math{N\times N}
 @infoline @var{N}x@var{N} 
 matrix mode.  Command is @kbd{m v}.
 
 @item
-Simplification mode.  Default is 1.  Value is @i{-1} for off (@kbd{m O}),
+Simplification mode.  Default is 1.  Value is @mathit{-1} for off (@kbd{m O}),
 0 for @kbd{m N}, 2 for @kbd{m B}, 3 for @kbd{m A}, 4 for @kbd{m E},
 or 5 for @w{@kbd{m U}}.  The @kbd{m D} command accepts these prefixes.
 
 @item
-Infinite mode.  Default is @i{-1} (off).  Value is 1 if the mode is on,
+Infinite mode.  Default is @mathit{-1} (off).  Value is 1 if the mode is on,
 or 0 if the mode is on with positive zeros.  Command is @kbd{m i}.
 @end enumerate
 
@@ -16081,7 +16074,7 @@ infinite in different directions the result is @code{nan}.
 @tindex -
 The @kbd{-} (@code{calc-minus}) command subtracts two values.  The top
 number on the stack is subtracted from the one behind it, so that the
-computation @kbd{5 @key{RET} 2 -} produces 3, not @i{-3}.  All options
+computation @kbd{5 @key{RET} 2 -} produces 3, not @mathit{-3}.  All options
 available for @kbd{+} are available for @kbd{-} as well.
 
 @kindex *
@@ -16225,7 +16218,7 @@ absolute value squared of a number, vector or matrix, or error form.
 @pindex calc-sign
 @tindex sign
 The @kbd{f s} (@code{calc-sign}) [@code{sign}] command returns 1 if its
-argument is positive, @i{-1} if its argument is negative, or 0 if its
+argument is positive, @mathit{-1} if its argument is negative, or 0 if its
 argument is zero.  In algebraic form, you can also write @samp{sign(a,x)}
 which evaluates to @samp{x * sign(a)}, i.e., either @samp{x}, @samp{-x}, or
 zero depending on the sign of @samp{a}.
@@ -16288,7 +16281,7 @@ The @kbd{f M} (@code{calc-mant-part}) [@code{mant}] function extracts
 the ``mantissa'' part @expr{m} of its floating-point argument; @kbd{f X}
 (@code{calc-xpon-part}) [@code{xpon}] extracts the ``exponent'' part
 @expr{e}.  The original number is equal to 
-@texline @tmath{m \times 10^e},
+@texline @math{m \times 10^e},
 @infoline @expr{m * 10^e},
 where @expr{m} is in the interval @samp{[1.0 ..@: 10.0)} except that
 @expr{m=e=0} if the original number is zero.  For integers
@@ -16321,7 +16314,7 @@ For example, incrementing @samp{12.3456} when the current precision
 is 6 digits yields @samp{12.3457}.  If the current precision had been
 8 digits, the result would have been @samp{12.345601}.  Incrementing
 @samp{0.0} produces 
-@texline @tmath{10^{-p}},
+@texline @math{10^{-p}},
 @infoline @expr{10^-p}, 
 where @expr{p} is the current
 precision.  These operations are defined only on integers and floats.
@@ -16362,7 +16355,7 @@ expressed as an integer-valued floating-point number.
 The @kbd{F} (@code{calc-floor}) [@code{floor} or @code{ffloor}] command
 truncates a real number to the next lower integer, i.e., toward minus
 infinity.  Thus @kbd{3.6 F} produces 3, but @kbd{_3.6 F} produces
-@i{-4}.
+@mathit{-4}.
 
 @kindex I F
 @pindex calc-ceiling
@@ -16374,7 +16367,7 @@ infinity.  Thus @kbd{3.6 F} produces 3, but @kbd{_3.6 F} produces
 @kindex H I F
 The @kbd{I F} (@code{calc-ceiling}) [@code{ceil} or @code{fceil}]
 command truncates toward positive infinity.  Thus @kbd{3.6 I F} produces
-4, and @kbd{_3.6 I F} produces @i{-3}.
+4, and @kbd{_3.6 I F} produces @mathit{-3}.
 
 @kindex R
 @pindex calc-round
@@ -16388,7 +16381,7 @@ The @kbd{R} (@code{calc-round}) [@code{round} or @code{fround}] command
 rounds to the nearest integer.  When the fractional part is .5 exactly,
 this command rounds away from zero.  (All other rounding in the
 Calculator uses this convention as well.)  Thus @kbd{3.5 R} produces 4
-but @kbd{3.4 R} produces 3; @kbd{_3.5 R} produces @i{-4}.
+but @kbd{3.4 R} produces 3; @kbd{_3.5 R} produces @mathit{-4}.
 
 @kindex I R
 @pindex calc-trunc
@@ -16401,7 +16394,7 @@ but @kbd{3.4 R} produces 3; @kbd{_3.5 R} produces @i{-4}.
 The @kbd{I R} (@code{calc-trunc}) [@code{trunc} or @code{ftrunc}]
 command truncates toward zero.  In other words, it ``chops off''
 everything after the decimal point.  Thus @kbd{3.6 I R} produces 3 and
-@kbd{_3.6 I R} produces @i{-3}.
+@kbd{_3.6 I R} produces @mathit{-3}.
 
 These functions may not be applied meaningfully to error forms, but they
 do work for intervals.  As a convenience, applying @code{floor} to a
@@ -16479,10 +16472,10 @@ this command replaces each element by its complex conjugate.
 The @kbd{G} (@code{calc-argument}) [@code{arg}] command computes the
 ``argument'' or polar angle of a complex number.  For a number in polar
 notation, this is simply the second component of the pair
-@texline `@t{(}@var{r}@t{;}@tmath{\theta}@t{)}'.
+@texline `@t{(}@var{r}@t{;}@math{\theta}@t{)}'.
 @infoline `@t{(}@var{r}@t{;}@var{theta}@t{)}'.
 The result is expressed according to the current angular mode and will
-be in the range @i{-180} degrees (exclusive) to @i{+180} degrees
+be in the range @mathit{-180} degrees (exclusive) to @mathit{+180} degrees
 (inclusive), or the equivalent range in radians.
 
 @pindex calc-imaginary
@@ -16513,8 +16506,8 @@ or matrix argument, these functions operate element-wise.
 @pindex calc-pack
 The @kbd{v p} (@code{calc-pack}) command can pack the top two numbers on
 the stack into a composite object such as a complex number.  With
-a prefix argument of @i{-1}, it produces a rectangular complex number;
-with an argument of @i{-2}, it produces a polar complex number.
+a prefix argument of @mathit{-1}, it produces a rectangular complex number;
+with an argument of @mathit{-2}, it produces a polar complex number.
 (Also, @pxref{Building Vectors}.)
 
 @ignore
@@ -16638,7 +16631,7 @@ already a polar complex number, it uses @code{rect} instead.  The
 The @kbd{c c} (@code{calc-clean}) [@code{pclean}] command ``cleans'' the
 number on the top of the stack.  Floating point numbers are re-rounded
 according to the current precision.  Polar numbers whose angular
-components have strayed from the @i{-180} to @i{+180} degree range
+components have strayed from the @mathit{-180} to @mathit{+180} degree range
 are normalized.  (Note that results will be undesirable if the current
 angular mode is different from the one under which the number was
 produced!)  Integers and fractions are generally unaffected by this
@@ -16894,8 +16887,8 @@ of the input date form are lost.  With a numeric prefix argument
 @var{n} in the range from 1 to 366, @kbd{t Y} computes the
 @var{n}th day of the year (366 is treated as 365 in non-leap
 years).  A prefix argument of 0 computes the last day of the
-year (December 31).  A negative prefix argument from @i{-1} to
-@i{-12} computes the first day of the @var{n}th month of the year.
+year (December 31).  A negative prefix argument from @mathit{-1} to
+@mathit{-12} computes the first day of the @var{n}th month of the year.
 
 @kindex t W
 @pindex calc-new-week
@@ -17264,7 +17257,7 @@ The Lisp variable @code{math-daylight-savings-hook} holds the
 name of a function that is used to compute the daylight savings
 adjustment for a given date.  The default is
 @code{math-std-daylight-savings}, which computes an adjustment
-(either 0 or @i{-1}) using the North American rules given above.
+(either 0 or @mathit{-1}) using the North American rules given above.
 
 The daylight savings hook function is called with four arguments:
 The date, as a floating-point number in standard Calc format;
@@ -17312,7 +17305,7 @@ daylight savings hook:
 @noindent
 The @code{bump} parameter is equal to zero when Calc is converting
 from a date form in a generalized time zone into a GMT date value.
-It is @i{-1} when Calc is converting in the other direction.  The
+It is @mathit{-1} when Calc is converting in the other direction.  The
 adjustments shown above ensure that the conversion behaves correctly
 and reasonably around the 2 a.m.@: transition in each direction.
 
@@ -17939,10 +17932,10 @@ particular, negative arguments are converted to positive integers modulo
 
 If the word size is negative, binary operations produce 2's complement
 integers from 
-@texline @tmath{-2^{-w-1}}
+@texline @math{-2^{-w-1}}
 @infoline @expr{-(2^(-w-1))} 
 to 
-@texline @tmath{2^{-w-1}-1}
+@texline @math{2^{-w-1}-1}
 @infoline @expr{2^(-w-1)-1} 
 inclusive.  Either mode accepts inputs in any range; the sign of
 @expr{w} affects only the results produced.
@@ -17958,7 +17951,7 @@ addition do not use the current word size, since integer addition
 generally is not ``binary.''  (However, @pxref{Simplification Modes},
 @code{calc-bin-simplify-mode}.)  For example, with a word size of 8
 bits @kbd{b c} converts a number to the range 0 to 255; with a word
-size of @i{-8} @kbd{b c} converts to the range @i{-128} to 127.
+size of @mathit{-8} @kbd{b c} converts to the range @mathit{-128} to 127.
 
 @kindex b w
 @pindex calc-word-size
@@ -17974,7 +17967,7 @@ When the binary operations are written in symbolic form, they take an
 optional second (or third) word-size parameter.  When a formula like
 @samp{and(a,b)} is finally evaluated, the word size current at that time
 will be used, but when @samp{and(a,b,-8)} is evaluated, a word size of
-@i{-8} will always be used.  A symbolic binary function will be left
+@mathit{-8} will always be used.  A symbolic binary function will be left
 in symbolic form unless the all of its argument(s) are integers or
 integer-valued floats.
 
@@ -18126,11 +18119,11 @@ One miscellaneous command is shift-@kbd{P} (@code{calc-pi}), which pushes
 the value of @cpi{} (at the current precision) onto the stack.  With the
 Hyperbolic flag, it pushes the value @expr{e}, the base of natural logarithms.
 With the Inverse flag, it pushes Euler's constant 
-@texline @tmath{\gamma}
+@texline @math{\gamma}
 @infoline @expr{gamma} 
 (about 0.5772).  With both Inverse and Hyperbolic, it
 pushes the ``golden ratio'' 
-@texline @tmath{\phi}
+@texline @math{\phi}
 @infoline @expr{phi} 
 (about 1.618).  (At present, Euler's constant is not available
 to unlimited precision; Calc knows only the first 100 digits.)
@@ -18210,7 +18203,7 @@ The @kbd{H L} (@code{calc-log10}) [@code{log10}] command computes the common
 it raises ten to a given power.)  Note that the common logarithm of a
 complex number is computed by taking the natural logarithm and dividing
 by 
-@texline @tmath{\ln10}.
+@texline @math{\ln10}.
 @infoline @expr{ln(10)}.
 
 @kindex B
@@ -18220,7 +18213,7 @@ by
 @tindex alog
 The @kbd{B} (@code{calc-log}) [@code{log}] command computes a logarithm
 to any base.  For example, @kbd{1024 @key{RET} 2 B} produces 10, since
-@texline @tmath{2^{10} = 1024}.
+@texline @math{2^{10} = 1024}.
 @infoline @expr{2^10 = 1024}.  
 In certain cases like @samp{log(3,9)}, the result
 will be either @expr{1:2} or @expr{0.5} depending on the current Fraction
@@ -18242,11 +18235,11 @@ integer arithmetic is used; otherwise, this is equivalent to
 @pindex calc-expm1
 @tindex expm1
 The @kbd{f E} (@code{calc-expm1}) [@code{expm1}] command computes
-@texline @tmath{e^x - 1},
+@texline @math{e^x - 1},
 @infoline @expr{exp(x)-1}, 
 but using an algorithm that produces a more accurate
 answer when the result is close to zero, i.e., when 
-@texline @tmath{e^x}
+@texline @math{e^x}
 @infoline @expr{exp(x)} 
 is close to one.
 
@@ -18254,7 +18247,7 @@ is close to one.
 @pindex calc-lnp1
 @tindex lnp1
 The @kbd{f L} (@code{calc-lnp1}) [@code{lnp1}] command computes
-@texline @tmath{\ln(x+1)},
+@texline @math{\ln(x+1)},
 @infoline @expr{ln(x+1)}, 
 producing a more accurate answer when @expr{x} is close to zero.
 
@@ -18388,10 +18381,10 @@ variants of these functions.
 @tindex arctan2
 The @kbd{f T} (@code{calc-arctan2}) [@code{arctan2}] command takes two
 numbers from the stack and computes the arc tangent of their ratio.  The
-result is in the full range from @i{-180} (exclusive) to @i{+180}
+result is in the full range from @mathit{-180} (exclusive) to @mathit{+180}
 (inclusive) degrees, or the analogous range in radians.  A similar
 result would be obtained with @kbd{/} followed by @kbd{I T}, but the
-value would only be in the range from @i{-90} to @i{+90} degrees
+value would only be in the range from @mathit{-90} to @mathit{+90} degrees
 since the division loses information about the signs of the two
 components, and an error might result from an explicit division by zero
 which @code{arctan2} would avoid.  By (arbitrary) definition,
@@ -18440,7 +18433,7 @@ gamma function.  For positive integer arguments, this is related to the
 factorial function:  @samp{gamma(n+1) = fact(n)}.  For general complex
 arguments the gamma function can be defined by the following definite
 integral:  
-@texline @tmath{\Gamma(a) = \int_0^\infty t^{a-1} e^t dt}.
+@texline @math{\Gamma(a) = \int_0^\infty t^{a-1} e^t dt}.
 @infoline @expr{gamma(a) = integ(t^(a-1) exp(t), t, 0, inf)}.  
 (The actual implementation uses far more efficient computational methods.)
 
@@ -18474,7 +18467,7 @@ integral:
 The @kbd{f G} (@code{calc-inc-gamma}) [@code{gammaP}] command computes
 the incomplete gamma function, denoted @samp{P(a,x)}.  This is defined by
 the integral, 
-@texline @tmath{P(a,x) = \left( \int_0^x t^{a-1} e^t dt \right) / \Gamma(a)}.
+@texline @math{P(a,x) = \left( \int_0^x t^{a-1} e^t dt \right) / \Gamma(a)}.
 @infoline @expr{gammaP(a,x) = integ(t^(a-1) exp(t), t, 0, x) / gamma(a)}.
 This implies that @samp{gammaP(a,inf) = 1} for any @expr{a} (see the
 definition of the normal gamma function).
@@ -18507,10 +18500,10 @@ You can obtain these using the \kbd{H f G} [\code{gammag}] and
 @tindex beta
 The @kbd{f b} (@code{calc-beta}) [@code{beta}] command computes the
 Euler beta function, which is defined in terms of the gamma function as
-@texline @tmath{B(a,b) = \Gamma(a) \Gamma(b) / \Gamma(a+b)},
+@texline @math{B(a,b) = \Gamma(a) \Gamma(b) / \Gamma(a+b)},
 @infoline @expr{beta(a,b) = gamma(a) gamma(b) / gamma(a+b)}, 
 or by
-@texline @tmath{B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt}.
+@texline @math{B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt}.
 @infoline @expr{beta(a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, 1)}.
 
 @kindex f B
@@ -18520,7 +18513,7 @@ or by
 @tindex betaB
 The @kbd{f B} (@code{calc-inc-beta}) [@code{betaI}] command computes
 the incomplete beta function @expr{I(x,a,b)}.  It is defined by
-@texline @tmath{I(x,a,b) = \left( \int_0^x t^{a-1} (1-t)^{b-1} dt \right) / B(a,b)}.
+@texline @math{I(x,a,b) = \left( \int_0^x t^{a-1} (1-t)^{b-1} dt \right) / B(a,b)}.
 @infoline @expr{betaI(x,a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, x) / beta(a,b)}.
 Once again, the @kbd{H} (hyperbolic) prefix gives the corresponding
 un-normalized version [@code{betaB}].
@@ -18532,11 +18525,11 @@ un-normalized version [@code{betaB}].
 @tindex erfc
 The @kbd{f e} (@code{calc-erf}) [@code{erf}] command computes the
 error function 
-@texline @tmath{\hbox{erf}(x) = {2 \over \sqrt{\pi}} \int_0^x e^{-t^2} dt}.
+@texline @math{\hbox{erf}(x) = {2 \over \sqrt{\pi}} \int_0^x e^{-t^2} dt}.
 @infoline @expr{erf(x) = 2 integ(exp(-(t^2)), t, 0, x) / sqrt(pi)}.
 The complementary error function @kbd{I f e} (@code{calc-erfc}) [@code{erfc}]
 is the corresponding integral from @samp{x} to infinity; the sum
-@texline @tmath{\hbox{erf}(x) + \hbox{erfc}(x) = 1}.
+@texline @math{\hbox{erf}(x) + \hbox{erfc}(x) = 1}.
 @infoline @expr{erf(x) + erfc(x) = 1}.
 
 @kindex f j
@@ -18612,17 +18605,17 @@ occurrence of @code{eps} may stand for a different small value.
 
 For @samp{z1^z2}:  This is defined by @samp{exp(ln(z1)*z2)}.
 One interesting consequence of this is that @samp{(-8)^1:3} does
-not evaluate to @i{-2} as you might expect, but to the complex
+not evaluate to @mathit{-2} as you might expect, but to the complex
 number @expr{(1., 1.732)}.  Both of these are valid cube roots
-of @i{-8} (as is @expr{(1., -1.732)}); Calc chooses a perhaps
+of @mathit{-8} (as is @expr{(1., -1.732)}); Calc chooses a perhaps
 less-obvious root for the sake of mathematical consistency.
 
 For @samp{arcsin(z)}:  This is defined by @samp{-i*ln(i*z + sqrt(1-z^2))}.
-The branch cuts are on the real axis, less than @i{-1} and greater than 1.
+The branch cuts are on the real axis, less than @mathit{-1} and greater than 1.
 
 For @samp{arccos(z)}:  This is defined by @samp{-i*ln(z + i*sqrt(1-z^2))},
 or equivalently by @samp{pi/2 - arcsin(z)}.  The branch cuts are on
-the real axis, less than @i{-1} and greater than 1.
+the real axis, less than @mathit{-1} and greater than 1.
 
 For @samp{arctan(z)}:  This is defined by
 @samp{(ln(1+i*z) - ln(1-i*z)) / (2*i)}.  The branch cuts are on the
@@ -18637,7 +18630,7 @@ For @samp{arccosh(z)}:  This is defined by
 real axis less than 1.
 
 For @samp{arctanh(z)}:  This is defined by @samp{(ln(1+z) - ln(1-z)) / 2}.
-The branch cuts are on the real axis, less than @i{-1} and greater than 1.
+The branch cuts are on the real axis, less than @mathit{-1} and greater than 1.
 
 The following tables for @code{arcsin}, @code{arccos}, and
 @code{arctan} assume the current angular mode is radians.  The
@@ -18710,7 +18703,7 @@ random numbers of various sorts.
 
 Given a positive numeric prefix argument @expr{M}, it produces a random
 integer @expr{N} in the range 
-@texline @tmath{0 \le N < M}.
+@texline @math{0 \le N < M}.
 @infoline @expr{0 <= N < M}.  
 Each of the @expr{M} values appears with equal probability.
 
@@ -18720,15 +18713,15 @@ the result is a random integer less than @expr{M}.  However, note that
 while numeric prefix arguments are limited to six digits or so, an @expr{M}
 taken from the stack can be arbitrarily large.  If @expr{M} is negative,
 the result is a random integer in the range 
-@texline @tmath{M < N \le 0}.
+@texline @math{M < N \le 0}.
 @infoline @expr{M < N <= 0}.
 
 If the value on the stack is a floating-point number @expr{M}, the result
 is a random floating-point number @expr{N} in the range 
-@texline @tmath{0 \le N < M}
+@texline @math{0 \le N < M}
 @infoline @expr{0 <= N < M}
 or 
-@texline @tmath{M < N \le 0},
+@texline @math{M < N \le 0},
 @infoline @expr{M < N <= 0}, 
 according to the sign of @expr{M}.
 
@@ -18738,14 +18731,14 @@ of one.  The algorithm used generates random numbers in pairs; thus,
 every other call to this function will be especially fast.
 
 If @expr{M} is an error form 
-@texline @tmath{m} @code{+/-} @tmath{\sigma}
+@texline @math{m} @code{+/-} @math{\sigma}
 @infoline @samp{m +/- s} 
 where @var{m} and 
-@texline @tmath{\sigma}
+@texline @math{\sigma}
 @infoline @var{s} 
 are both real numbers, the result uses a Gaussian distribution with mean
 @var{m} and standard deviation 
-@texline @tmath{\sigma}.
+@texline @math{\sigma}.
 @var{s}.
 
 If @expr{M} is an interval form, the lower and upper bounds specify the
@@ -18858,7 +18851,7 @@ generators that are typically used to implement @code{random}.
 If @code{RandSeed} contains an integer, Calc uses this integer to
 seed an ``additive congruential'' method (Knuth's algorithm 3.2.2A,
 computing 
-@texline @tmath{X_{n-55} - X_{n-24}}.
+@texline @math{X_{n-55} - X_{n-24}}.
 @infoline @expr{X_n-55 - X_n-24}).  
 This method expands the seed
 value into a large table which is maintained internally; the variable
@@ -18894,20 +18887,20 @@ value.
 
 To create a random floating-point number with precision @var{p}, Calc
 simply creates a random @var{p}-digit integer and multiplies by
-@texline @tmath{10^{-p}}.
+@texline @math{10^{-p}}.
 @infoline @expr{10^-p}.  
 The resulting random numbers should be very clean, but note
 that relatively small numbers will have few significant random digits.
 In other words, with a precision of 12, you will occasionally get
 numbers on the order of 
-@texline @tmath{10^{-9}}
+@texline @math{10^{-9}}
 @infoline @expr{10^-9} 
 or 
-@texline @tmath{10^{-10}},
+@texline @math{10^{-10}},
 @infoline @expr{10^-10}, 
 but those numbers will only have two or three random digits since they
 correspond to small integers times 
-@texline @tmath{10^{-12}}.
+@texline @math{10^{-12}}.
 @infoline @expr{10^-12}.
 
 To create a random integer in the interval @samp{[0 .. @var{m})}, Calc
@@ -18958,7 +18951,7 @@ numbers.
 The @kbd{k E} (@code{calc-extended-gcd}) [@code{egcd}] command computes
 the GCD of two integers @expr{x} and @expr{y} and returns a vector
 @expr{[g, a, b]} where 
-@texline @tmath{g = \gcd(x,y) = a x + b y}.
+@texline @math{g = \gcd(x,y) = a x + b y}.
 @infoline @expr{g = gcd(x,y) = a x + b y}.
 
 @kindex !
@@ -19002,7 +18995,7 @@ on the top of the stack and @expr{N} is second-to-top.  If both arguments
 are integers, the result is an exact integer.  Otherwise, the result is a
 floating-point approximation.  The binomial coefficient is defined for all
 real numbers by
-@texline @tmath{N! \over M! (N-M)!\,}.
+@texline @math{N! \over M! (N-M)!\,}.
 @infoline @expr{N! / M! (N-M)!}.
 
 @kindex H k c
@@ -19045,11 +19038,11 @@ functions.
 @tindex stir2
 The @kbd{k s} (@code{calc-stirling-number}) [@code{stir1}] command
 computes a Stirling number of the first 
-@texline kind@tie{}@tmath{n \brack m},
+@texline kind@tie{}@math{n \brack m},
 @infoline kind,
 given two integers @expr{n} and @expr{m} on the stack.  The @kbd{H k s}
 [@code{stir2}] command computes a Stirling number of the second 
-@texline kind@tie{}@tmath{n \brace m}.
+@texline kind@tie{}@math{n \brace m}.
 @infoline kind.
 These are the number of @expr{m}-cycle permutations of @expr{n} objects,
 and the number of ways to partition @expr{n} objects into @expr{m}
@@ -19093,8 +19086,8 @@ result is a vector of the prime factors in increasing order.  For larger
 inputs, prime factors above 5000 may not be found, in which case the
 last number in the vector will be an unfactored integer greater than 25
 million (with a warning message).  For negative integers, the first
-element of the list will be @i{-1}.  For inputs @i{-1}, @i{0}, and
-@i{1}, the result is a list of the same number.
+element of the list will be @mathit{-1}.  For inputs @mathit{-1}, @mathit{0}, and
+@mathit{1}, the result is a list of the same number.
 
 @kindex k n
 @pindex calc-next-prime
@@ -19128,7 +19121,7 @@ analogously finds the next prime less than a given number.
 @tindex totient
 The @kbd{k t} (@code{calc-totient}) [@code{totient}] command computes the
 Euler ``totient'' 
-@texline function@tie{}@tmath{\phi(n)},
+@texline function@tie{}@math{\phi(n)},
 @infoline function,
 the number of integers less than @expr{n} which
 are relatively prime to @expr{n}.
@@ -19137,7 +19130,7 @@ are relatively prime to @expr{n}.
 @pindex calc-moebius
 @tindex moebius
 The @kbd{k m} (@code{calc-moebius}) [@code{moebius}] command computes the
-@texline M@"obius @tmath{\mu}
+@texline M@"obius @math{\mu}
 @infoline Moebius ``mu''
 function.  If the input number is a product of @expr{k}
 distinct factors, this is @expr{(-1)^k}.  If the input number has any
@@ -19201,7 +19194,7 @@ recover the original arguments but substitute a new value for @expr{x}.)
 @end ignore
 @tindex ltpc
 The @samp{utpc(x,v)} function uses the chi-square distribution with
-@texline @tmath{\nu}
+@texline @math{\nu}
 @infoline @expr{v} 
 degrees of freedom.  It is the probability that a model is
 correct if its chi-square statistic is @expr{x}.
@@ -19219,10 +19212,10 @@ correct if its chi-square statistic is @expr{x}.
 @tindex ltpf
 The @samp{utpf(F,v1,v2)} function uses the F distribution, used in
 various statistical tests.  The parameters 
-@texline @tmath{\nu_1}
+@texline @math{\nu_1}
 @infoline @expr{v1} 
 and 
-@texline @tmath{\nu_2}
+@texline @math{\nu_2}
 @infoline @expr{v2}
 are the degrees of freedom in the numerator and denominator,
 respectively, used in computing the statistic @expr{F}.
@@ -19240,7 +19233,7 @@ respectively, used in computing the statistic @expr{F}.
 @tindex ltpn
 The @samp{utpn(x,m,s)} function uses a normal (Gaussian) distribution
 with mean @expr{m} and standard deviation 
-@texline @tmath{\sigma}.
+@texline @math{\sigma}.
 @infoline @expr{s}.  
 It is the probability that such a normal-distributed random variable
 would exceed @expr{x}.
@@ -19273,18 +19266,18 @@ Poisson random events will occur.
 @tindex ltpt
 The @samp{utpt(t,v)} function uses the Student's ``t'' distribution
 with 
-@texline @tmath{\nu}
+@texline @math{\nu}
 @infoline @expr{v} 
 degrees of freedom.  It is the probability that a
 t-distributed random variable will be greater than @expr{t}.
 (Note:  This computes the distribution function 
-@texline @tmath{A(t|\nu)}
+@texline @math{A(t|\nu)}
 @infoline @expr{A(t|v)}
 where 
-@texline @tmath{A(0|\nu) = 1}
+@texline @math{A(0|\nu) = 1}
 @infoline @expr{A(0|v) = 1} 
 and 
-@texline @tmath{A(\infty|\nu) \to 0}.
+@texline @math{A(\infty|\nu) \to 0}.
 @infoline @expr{A(inf|v) -> 0}.  
 The @code{UTPT} operation on the HP-48 uses a different definition which
 returns half of Calc's value:  @samp{UTPT(t,v) = .5*utpt(t,v)}.)
@@ -19404,8 +19397,8 @@ integer, is the exponent.  The result is the mantissa
 times ten to the power of the exponent.
 
 @item -12
-This is treated the same as @i{-11} by the @kbd{v p} command.
-When unpacking, @i{-12} specifies that a floating-point mantissa
+This is treated the same as @mathit{-11} by the @kbd{v p} command.
+When unpacking, @mathit{-12} specifies that a floating-point mantissa
 is desired.
 
 @item -13
@@ -19444,7 +19437,7 @@ returned in the form @samp{[@w{[a, b, c]}, [d, e, f]]}.
 If any elements of the vector are negative, other kinds of
 packing are done at that level as described above.  For
 example, @samp{[2, 3, -4]} takes 12 objects and creates a
-@texline @tmath{2\times3}
+@texline @math{2\times3}
 @infoline 2x3
 matrix of error forms: @samp{[[a +/- b, c +/- d ... ]]}.
 Also, @samp{[-4, -10]} will convert four integers into an
@@ -19482,18 +19475,18 @@ the result of @kbd{C-u -4 v u} will be the two vectors
 @samp{[a, c^2, d]} and @w{@samp{[b, 0, 7]}}.
 
 Note that the prefix argument can have an effect even when the input is
-not a vector.  For example, if the input is the number @i{-5}, then
-@kbd{c-u -1 v u} yields @i{-5} and 0 (the components of @i{-5}
+not a vector.  For example, if the input is the number @mathit{-5}, then
+@kbd{c-u -1 v u} yields @mathit{-5} and 0 (the components of @mathit{-5}
 when viewed as a rectangular complex number); @kbd{C-u -2 v u} yields 5
-and 180 (assuming degrees mode); and @kbd{C-u -10 v u} yields @i{-5}
-and 1 (the numerator and denominator of @i{-5}, viewed as a rational
+and 180 (assuming degrees mode); and @kbd{C-u -10 v u} yields @mathit{-5}
+and 1 (the numerator and denominator of @mathit{-5}, viewed as a rational
 number).  Plain @kbd{v u} with this input would complain that the input
 is not a composite object.
 
-Unpacking mode @i{-11} converts a float into an integer mantissa and
+Unpacking mode @mathit{-11} converts a float into an integer mantissa and
 an integer exponent, where the mantissa is not divisible by 10
 (except that 0.0 is represented by a mantissa and exponent of 0).
-Unpacking mode @i{-12} converts a float into a floating-point mantissa
+Unpacking mode @mathit{-12} converts a float into a floating-point mantissa
 and integer exponent, where the mantissa (for non-zero numbers)
 is guaranteed to lie in the range [1 .. 10).  In both cases,
 the mantissa is shifted left or right (and the exponent adjusted
@@ -19593,7 +19586,7 @@ the stack is a scalar, it is used for each element on the diagonal, and
 the prefix argument is required.
 
 To build a constant square matrix, e.g., a 
-@texline @tmath{3\times3}
+@texline @math{3\times3}
 @infoline 3x3
 matrix filled with ones, use @kbd{0 M-3 v d 1 +}, i.e., build a zero
 matrix first and then add a constant value to that matrix.  (Another
@@ -19626,7 +19619,7 @@ The @kbd{v x} (@code{calc-index}) [@code{index}] function builds a vector
 of consecutive integers from 1 to @var{n}, where @var{n} is the numeric
 prefix argument.  If you do not provide a prefix argument, you will be
 prompted to enter a suitable number.  If @var{n} is negative, the result
-is a vector of negative integers from @var{n} to @i{-1}.
+is a vector of negative integers from @var{n} to @mathit{-1}.
 
 With a prefix argument of just @kbd{C-u}, the @kbd{v x} command takes
 three values from the stack: @var{n}, @var{start}, and @var{incr} (with
@@ -19819,7 +19812,7 @@ With the Hyperbolic flag, @kbd{H v l} [@code{mdims}] computes a vector
 of the dimensions of a vector, matrix, or higher-order object.  For
 example, @samp{mdims([[a,b,c],[d,e,f]])} returns @samp{[2, 3]} since
 its argument is a 
-@texline @tmath{2\times3}
+@texline @math{2\times3}
 @infoline 2x3
 matrix.
 
@@ -19851,13 +19844,13 @@ in the vector, the last row will be short and the result will not be
 suitable for use as a matrix.  For example, with the matrix
 @samp{[[1, 2], @w{[3, 4]}]} on the stack, @kbd{v a 4} produces
 @samp{[[1, 2, 3, 4]]} (a 
-@texline @tmath{1\times4}
+@texline @math{1\times4}
 @infoline 1x4
 matrix), @kbd{v a 1} produces @samp{[[1], [2], [3], [4]]} (a 
-@texline @tmath{4\times1}
+@texline @math{4\times1}
 @infoline 4x1
 matrix), @kbd{v a 2} produces @samp{[[1, 2], [3, 4]]} (the original 
-@texline @tmath{2\times2}
+@texline @math{2\times2}
 @infoline 2x2
 matrix), @w{@kbd{v a 3}} produces @samp{[[1, 2, 3], [4]]} (not a
 matrix), and @kbd{v a 0} produces the flattened list 
@@ -20177,10 +20170,10 @@ sets are disjoint, i.e., if they share no common elements, the result
 will be the empty vector @samp{[]}.  Note that the characters @kbd{V}
 and @kbd{^} were chosen to be close to the conventional mathematical
 notation for set 
-@texline union@tie{}(@tmath{A \cup B})
+@texline union@tie{}(@math{A \cup B})
 @infoline union
 and 
-@texline intersection@tie{}(@tmath{A \cap B}).
+@texline intersection@tie{}(@math{A \cap B}).
 @infoline intersection.
 
 @kindex V -
@@ -20289,7 +20282,7 @@ not include any negative numbers.  The input is interpreted as a
 set of integers in the sense of @kbd{V F} (@code{vfloor}).  Beware
 that a simple input like @samp{[100]} can result in a huge integer
 representation 
-@texline (@tmath{2^{100}}, a 31-digit integer, in this case).
+@texline (@math{2^{100}}, a 31-digit integer, in this case).
 @infoline (@expr{2^100}, a 31-digit integer, in this case).
 
 @node Statistical Operations, Reducing and Mapping, Set Operations, Matrix Functions
@@ -20401,10 +20394,10 @@ plus or minus infinity.
 The @kbd{u M} (@code{calc-vector-mean}) [@code{vmean}] command
 computes the average (arithmetic mean) of the data values.
 If the inputs are error forms 
-@texline @tmath{x \pm \sigma},
+@texline @math{x \pm \sigma},
 @infoline @samp{x +/- s}, 
 this is the weighted mean of the @expr{x} values with weights 
-@texline @tmath{1 /\sigma^2}.
+@texline @math{1 /\sigma^2}.
 @infoline @expr{1 / s^2}.
 @tex
 \turnoffactive
@@ -20416,7 +20409,7 @@ values divided by the count of the values.
 
 Note that a plain number can be considered an error form with
 error 
-@texline @tmath{\sigma = 0}.
+@texline @math{\sigma = 0}.
 @infoline @expr{s = 0}.  
 If the input to @kbd{u M} is a mixture of
 plain numbers and error forms, the result is the mean of the
@@ -20525,7 +20518,7 @@ for a vector of numbers simply by using the @kbd{A} command.
 @cindex Sample statistics
 The @kbd{u S} (@code{calc-vector-sdev}) [@code{vsdev}] command
 computes the standard 
-@texline deviation@tie{}@tmath{\sigma}
+@texline deviation@tie{}@math{\sigma}
 @infoline deviation
 of the data values.  If the values are error forms, the errors are used
 as weights just as for @kbd{u M}.  This is the @emph{sample} standard
@@ -20541,7 +20534,7 @@ This function also applies to distributions.  The standard deviation
 of a single error form is simply the error part.  The standard deviation
 of a continuous interval happens to equal the difference between the
 limits, divided by 
-@texline @tmath{\sqrt{12}}.
+@texline @math{\sqrt{12}}.
 @infoline @expr{sqrt(12)}.  
 The standard deviation of an integer interval is the same as the
 standard deviation of a vector of those integers.
@@ -20579,7 +20572,7 @@ The @kbd{H u S} (@code{calc-vector-variance}) [@code{vvar}] and
 @kbd{H I u S} (@code{calc-vector-pop-variance}) [@code{vpvar}]
 commands compute the variance of the data values.  The variance
 is the 
-@texline square@tie{}@tmath{\sigma^2}
+@texline square@tie{}@math{\sigma^2}
 @infoline square
 of the standard deviation, i.e., the sum of the
 squares of the deviations of the data values from the mean.
@@ -20603,7 +20596,7 @@ vectors of equal size.  The vectors are each flattened in the same
 way as by the single-variable statistical functions.  Given a numeric
 prefix argument of 1, these functions instead take one object from
 the stack, which must be an 
-@texline @tmath{N\times2}
+@texline @math{N\times2}
 @infoline Nx2
 matrix of data values.  Once again, variable names can be used in place
 of actual vectors and matrices.
@@ -20861,7 +20854,7 @@ If any argument to @kbd{V M} is a matrix, the operator is normally mapped
 across all elements of the matrix.  For example, given the matrix
 @expr{[[1, -2, 3], [-4, 5, -6]]}, @kbd{V M A} takes six absolute values to
 produce another 
-@texline @tmath{3\times2}
+@texline @math{3\times2}
 @infoline 3x2
 matrix, @expr{[[1, 2, 3], [4, 5, 6]]}.
 
@@ -22014,7 +22007,7 @@ as if in algebraic simplification mode.  This is equivalent to typing
 @kbd{a s}; @pxref{Simplifying Formulas}.  If you give a numeric prefix
 of 3 or more, it uses extended simplification mode (@kbd{a e}).
 
-If you give a negative prefix argument @i{-1}, @i{-2}, or @i{-3},
+If you give a negative prefix argument @mathit{-1}, @mathit{-2}, or @mathit{-3},
 it simplifies in the corresponding mode but only works on the top-level
 function call of the formula.  For example, @samp{(2 + 3) * (2 + 3)} will
 simplify to @samp{(2 + 3)^2}, without simplifying the sub-formulas
@@ -22286,7 +22279,7 @@ simplifications.)
 
 The distributive law is used to simplify sums in some cases:
 @expr{a x + b x} to @expr{(a + b) x}, where @expr{a} represents
-a number or an implicit 1 or @i{-1} (as in @expr{x} or @expr{-x})
+a number or an implicit 1 or @mathit{-1} (as in @expr{x} or @expr{-x})
 and similarly for @expr{b}.  Use the @kbd{a c}, @w{@kbd{a f}}, or
 @kbd{j M} commands to merge sums with non-numeric coefficients
 using the distributive law.
@@ -22330,7 +22323,7 @@ rewritten to @expr{a (c - b)}.
 
 The distributive law of products and powers is used for adjacent
 terms of the product: @expr{x^a x^b} goes to 
-@texline @tmath{x^{a+b}}
+@texline @math{x^{a+b}}
 @infoline @expr{x^(a+b)}
 where @expr{a} is a number, or an implicit 1 (as in @expr{x}),
 or the implicit one-half of @expr{@t{sqrt}(x)}, and similarly for
@@ -22341,7 +22334,7 @@ If the sum of the powers is zero, the product is simplified to
 
 The product of a negative power times anything but another negative
 power is changed to use division:  
-@texline @tmath{x^{-2} y}
+@texline @math{x^{-2} y}
 @infoline @expr{x^(-2) y} 
 goes to @expr{y / x^2} unless matrix mode is
 in effect and neither @expr{x} nor @expr{y} are scalar (in which
@@ -22365,11 +22358,11 @@ infinite quantity, as directed by the current infinite mode.
 @xref{Infinite Mode}.
 
 The expression 
-@texline @tmath{a / b^{-c}}
+@texline @math{a / b^{-c}}
 @infoline @expr{a / b^(-c)} 
 is changed to @expr{a b^c}, where @expr{-c} is any negative-looking
 power.  Also, @expr{1 / b^c} is changed to 
-@texline @tmath{b^{-c}}
+@texline @math{b^{-c}}
 @infoline @expr{b^(-c)} 
 for any power @expr{c}.
 
@@ -22410,22 +22403,22 @@ Powers of products or quotients @expr{(a b)^c}, @expr{(a/b)^c}
 are distributed to @expr{a^c b^c}, @expr{a^c / b^c} only if @expr{c}
 is an integer, or if either @expr{a} or @expr{b} are nonnegative
 real numbers.  Powers of powers @expr{(a^b)^c} are simplified to
-@texline @tmath{a^{b c}}
+@texline @math{a^{b c}}
 @infoline @expr{a^(b c)} 
 only when @expr{c} is an integer and @expr{b c} also
 evaluates to an integer.  Without these restrictions these simplifications
 would not be safe because of problems with principal values.
 (In other words, 
-@texline @tmath{((-3)^{1/2})^2}
+@texline @math{((-3)^{1/2})^2}
 @infoline @expr{((-3)^1:2)^2} 
 is safe to simplify, but
-@texline @tmath{((-3)^2)^{1/2}}
+@texline @math{((-3)^2)^{1/2}}
 @infoline @expr{((-3)^2)^1:2} 
 is not.)  @xref{Declarations}, for ways to inform Calc that your
 variables satisfy these requirements.
 
 As a special case of this rule, @expr{@t{sqrt}(x)^n} is simplified to
-@texline @tmath{x^{n/2}}
+@texline @math{x^{n/2}}
 @infoline @expr{x^(n/2)} 
 only for even integers @expr{n}.
 
@@ -22438,15 +22431,15 @@ even integer, or to @expr{-(a^b)} if @expr{b} is an odd integer,
 for any negative-looking expression @expr{-a}.
 
 Square roots @expr{@t{sqrt}(x)} generally act like one-half powers
-@texline @tmath{x^{1:2}}
+@texline @math{x^{1:2}}
 @infoline @expr{x^1:2} 
 for the purposes of the above-listed simplifications.
 
 Also, note that 
-@texline @tmath{1 / x^{1:2}}
+@texline @math{1 / x^{1:2}}
 @infoline @expr{1 / x^1:2} 
 is changed to 
-@texline @tmath{x^{-1:2}},
+@texline @math{x^{-1:2}},
 @infoline @expr{x^(-1:2)},
 but @expr{1 / @t{sqrt}(x)} is left alone.
 
@@ -22589,7 +22582,7 @@ Thus @expr{(x + y) (y + x)} will be simplified to @expr{(x + y)^2}.
 A subtle point is that @expr{(x - y) (y - x)} will @emph{not}
 be simplified to @expr{-(x - y)^2}; Calc does not notice that
 one term can be written as a constant times the other, even if
-that constant is @i{-1}.
+that constant is @mathit{-1}.
 
 A fraction times any expression, @expr{(a:b) x}, is changed to
 a quotient involving integers:  @expr{a x / b}.  This is not
@@ -22632,7 +22625,7 @@ Square roots of integer or rational arguments are simplified in
 several ways.  (Note that these will be left unevaluated only in
 Symbolic mode.)  First, square integer or rational factors are
 pulled out so that @expr{@t{sqrt}(8)} is rewritten as
-@texline @tmath{$2\,\t{sqrt}(2)$}.
+@texline @math{2\,\t{sqrt}(2)}.
 @infoline @expr{2 sqrt(2)}.  
 Conceptually speaking this implies factoring the argument into primes
 and moving pairs of primes out of the square root, but for reasons of
@@ -22694,23 +22687,23 @@ functions are known, except for negative arguments of @code{arcsin},
 @code{arctan}, @code{arcsinh}, and @code{arctanh}.  Note that
 @expr{@t{arcsin}(@t{sin}(x))} can @emph{not} safely change to
 @expr{x}, since this only correct within an integer multiple of 
-@texline @tmath{2 \pi}
+@texline @math{2 \pi}
 @infoline @expr{2 pi} 
 radians or 360 degrees.  However, @expr{@t{arcsinh}(@t{sinh}(x))} is
 simplified to @expr{x} if @expr{x} is known to be real.
 
 Several simplifications that apply to logarithms and exponentials
 are that @expr{@t{exp}(@t{ln}(x))}, 
-@texline @t{e}@tmath{^{\ln(x)}},
+@texline @t{e}@math{^{\ln(x)}},
 @infoline @expr{e^@t{ln}(x)}, 
 and
-@texline @tmath{10^{{\rm log10}(x)}}
+@texline @math{10^{{\rm log10}(x)}}
 @infoline @expr{10^@t{log10}(x)} 
 all reduce to @expr{x}.  Also, @expr{@t{ln}(@t{exp}(x))}, etc., can
 reduce to @expr{x} if @expr{x} is provably real.  The form
 @expr{@t{exp}(x)^y} is simplified to @expr{@t{exp}(x y)}.  If @expr{x}
 is a suitable multiple of 
-@texline @tmath{\pi i} 
+@texline @math{\pi i} 
 @infoline @expr{pi i}
 (as described above for the trigonometric functions), then
 @expr{@t{exp}(x)} or @expr{e^x} will be expanded.  Finally,
@@ -22795,18 +22788,18 @@ are folded down to the 360-degree range that the inverse trigonometric
 functions always produce.
 
 Powers of powers @expr{(x^a)^b} are simplified to 
-@texline @tmath{x^{a b}}
+@texline @math{x^{a b}}
 @infoline @expr{x^(a b)}
 for all @expr{a} and @expr{b}.  These results will be valid only
 in a restricted range of @expr{x}; for example, in 
-@texline @tmath{(x^2)^{1:2}}
+@texline @math{(x^2)^{1:2}}
 @infoline @expr{(x^2)^1:2}
 the powers cancel to get @expr{x}, which is valid for positive values
 of @expr{x} but not for negative or complex values.
 
 Similarly, @expr{@t{sqrt}(x^a)} and @expr{@t{sqrt}(x)^a} are both
 simplified (possibly unsafely) to 
-@texline @tmath{x^{a/2}}.
+@texline @math{x^{a/2}}.
 @infoline @expr{x^(a/2)}.
 
 Forms like @expr{@t{sqrt}(1 - sin(x)^2)} are simplified to, e.g.,
@@ -22882,7 +22875,7 @@ number for an answer, then the quotient simplifies to that number.
 For powers and square roots, the ``unsafe'' simplifications
 @expr{(a b)^c} to @expr{a^c b^c}, @expr{(a/b)^c} to @expr{a^c / b^c},
 and @expr{(a^b)^c} to 
-@texline @tmath{a^{b c}}
+@texline @math{a^{b c}}
 @infoline @expr{a^(b c)} 
 are done if the powers are real numbers.  (These are safe in the context
 of units because all numbers involved can reasonably be assumed to be
@@ -22897,10 +22890,10 @@ is simplified by noting that @expr{1.5 = 3:2}, that @samp{acre}
 is defined in terms of @samp{m^2}, and that the 2 in the power of
 @code{m} is a multiple of 2 in @expr{3:2}.  Thus, @code{acre^1.5} is
 replaced by approximately 
-@texline @tmath{(4046 m^2)^{1.5}}
+@texline @math{(4046 m^2)^{1.5}}
 @infoline @expr{(4046 m^2)^1.5}, 
 which is then changed to 
-@texline @tmath{4046^{1.5} \, (m^2)^{1.5}},
+@texline @math{4046^{1.5} \, (m^2)^{1.5}},
 @infoline @expr{4046^1.5 (m^2)^1.5}, 
 then to @expr{257440 m^3}.
 
@@ -23190,7 +23183,7 @@ answer!
 If you use the @code{deriv} function directly in an algebraic formula,
 you can write @samp{deriv(f,x,x0)} which represents the derivative
 of @expr{f} with respect to @expr{x}, evaluated at the point 
-@texline @tmath{x=x_0}.
+@texline @math{x=x_0}.
 @infoline @expr{x=x0}.
 
 If the formula being differentiated contains functions which Calc does
@@ -23230,7 +23223,7 @@ all integrable functions, but it is able to integrate several large
 classes of formulas.  In particular, any polynomial or rational function
 (a polynomial divided by a polynomial) is acceptable.  (Rational functions
 don't have to be in explicit quotient form, however; 
-@texline @tmath{x/(1+x^{-2})}
+@texline @math{x/(1+x^{-2})}
 @infoline @expr{x/(1+x^-2)}
 is not strictly a quotient of polynomials, but it is equivalent to
 @expr{x^3/(x^2+1)}, which is.)  Also, square roots of terms involving
@@ -23256,7 +23249,7 @@ integral $\int_a^b f(x) \, dx$.
 Please note that the current implementation of Calc's integrator sometimes
 produces results that are significantly more complex than they need to
 be.  For example, the integral Calc finds for 
-@texline @tmath{1/(x+\sqrt{x^2+1})}
+@texline @math{1/(x+\sqrt{x^2+1})}
 @infoline @expr{1/(x+sqrt(x^2+1))}
 is several times more complicated than the answer Mathematica
 returns for the same input, although the two forms are numerically
@@ -23264,11 +23257,11 @@ equivalent.  Also, any indefinite integral should be considered to have
 an arbitrary constant of integration added to it, although Calc does not
 write an explicit constant of integration in its result.  For example,
 Calc's solution for 
-@texline @tmath{1/(1+\tan x)}
+@texline @math{1/(1+\tan x)}
 @infoline @expr{1/(1+tan(x))} 
 differs from the solution given in the @emph{CRC Math Tables} by a
 constant factor of  
-@texline @tmath{\pi i / 2}
+@texline @math{\pi i / 2}
 @infoline @expr{pi i / 2},
 due to a different choice of constant of integration.
 
@@ -23328,7 +23321,7 @@ in your @code{IntegRules}.
 As a more serious example, the expression @samp{exp(x)/x} cannot be
 integrated in terms of the standard functions, so the ``exponential
 integral'' function 
-@texline @tmath{{\rm Ei}(x)}
+@texline @math{{\rm Ei}(x)}
 @infoline @expr{Ei(x)} 
 was invented to describe it.
 We can get Calc to do this integral in terms of a made-up @code{Ei}
@@ -23501,16 +23494,16 @@ form @expr{X = 0}.
 This command also works for inequalities, as in @expr{y < 3x + 6}.
 Some inequalities cannot be solved where the analogous equation could
 be; for example, solving 
-@texline @tmath{a < b \, c}
+@texline @math{a < b \, c}
 @infoline @expr{a < b c} 
 for @expr{b} is impossible
 without knowing the sign of @expr{c}.  In this case, @kbd{a S} will
 produce the result 
-@texline @tmath{b \mathbin{\hbox{\code{!=}}} a/c}
+@texline @math{b \mathbin{\hbox{\code{!=}}} a/c}
 @infoline @expr{b != a/c} 
 (using the not-equal-to operator) to signify that the direction of the
 inequality is now unknown.  The inequality 
-@texline @tmath{a \le b \, c}
+@texline @math{a \le b \, c}
 @infoline @expr{a <= b c} 
 is not even partially solved.  @xref{Declarations}, for a way to tell
 Calc that the signs of the variables in a formula are in fact known.
@@ -23537,7 +23530,7 @@ Some equations have more than one solution.  The Hyperbolic flag
 general family of solutions.  It will invent variables @code{n1},
 @code{n2}, @dots{}, which represent independent arbitrary integers, and
 @code{s1}, @code{s2}, @dots{}, which represent independent arbitrary
-signs (either @i{+1} or @i{-1}).  If you don't use the Hyperbolic
+signs (either @mathit{+1} or @mathit{-1}).  If you don't use the Hyperbolic
 flag, Calc will use zero in place of all arbitrary integers, and plus
 one in place of all arbitrary signs.  Note that variables like @code{n1}
 and @code{s1} are not given any special interpretation in Calc except by
@@ -23970,11 +23963,11 @@ with the minimum value itself.
 
 Note that this command looks for a @emph{local} minimum.  Many functions
 have more than one minimum; some, like 
-@texline @tmath{x \sin x},
+@texline @math{x \sin x},
 @infoline @expr{x sin(x)}, 
 have infinitely many.  In fact, there is no easy way to define the
 ``global'' minimum of 
-@texline @tmath{x \sin x}
+@texline @math{x \sin x}
 @infoline @expr{x sin(x)} 
 but Calc can still locate any particular local minimum
 for you.  Calc basically goes downhill from the initial guess until it
@@ -24097,7 +24090,7 @@ the @dfn{parameters} of the model.
 The @kbd{a F} command takes the data set to be fitted from the stack.
 By default, it expects the data in the form of a matrix.  For example,
 for a linear or polynomial fit, this would be a 
-@texline @tmath{2\times N}
+@texline @math{2\times N}
 @infoline 2xN
 matrix where the first row is a list of @expr{x} values and the second
 row has the corresponding @expr{y} values.  For the multilinear fit
@@ -24105,10 +24098,10 @@ shown above, the matrix would have four rows (@expr{x_1}, @expr{x_2},
 @expr{x_3}, and @expr{y}, respectively).
 
 If you happen to have an 
-@texline @tmath{N\times2}
+@texline @math{N\times2}
 @infoline Nx2
 matrix instead of a 
-@texline @tmath{2\times N}
+@texline @math{2\times N}
 @infoline 2xN
 matrix, just press @kbd{v t} first to transpose the matrix.
 
@@ -24206,11 +24199,11 @@ which is clearly zero if @expr{a + b x} exactly fits all data points,
 and increases as various @expr{a + b x_i} values fail to match the
 corresponding @expr{y_i} values.  There are several reasons why the
 summand is squared, one of them being to ensure that 
-@texline @tmath{\chi^2 \ge 0}.
+@texline @math{\chi^2 \ge 0}.
 @infoline @expr{chi^2 >= 0}.
 Least-squares fitting simply chooses the values of @expr{a} and @expr{b}
 for which the error 
-@texline @tmath{\chi^2}
+@texline @math{\chi^2}
 @infoline @expr{chi^2} 
 is as small as possible.
 
@@ -24266,7 +24259,7 @@ line slightly to improve the fit.
 
 An important result from the theory of polynomial fitting is that it
 is always possible to fit @var{n} data points exactly using a polynomial
-of degree @i{@var{n}-1}, sometimes called an @dfn{interpolating polynomial}.
+of degree @mathit{@var{n}-1}, sometimes called an @dfn{interpolating polynomial}.
 Using the modified (14) data matrix, a model number of 4 gives
 a polynomial that exactly matches all five data points:
 
@@ -24371,10 +24364,10 @@ contain error forms.  The data values must either all include errors
 or all be plain numbers.  Error forms can go anywhere but generally
 go on the numbers in the last row of the data matrix.  If the last
 row contains error forms
-@texline `@var{y_i}@w{ @t{+/-} }@tmath{\sigma_i}', 
+@texline `@var{y_i}@w{ @t{+/-} }@math{\sigma_i}', 
 @infoline `@var{y_i}@w{ @t{+/-} }@var{sigma_i}', 
 then the 
-@texline @tmath{\chi^2}
+@texline @math{\chi^2}
 @infoline @expr{chi^2}
 statistic is now,
 
@@ -24397,7 +24390,7 @@ the fitting operation.
 If there are error forms on other rows of the data matrix, all the
 errors for a given data point are combined; the square root of the
 sum of the squares of the errors forms the 
-@texline @tmath{\sigma_i}
+@texline @math{\sigma_i}
 @infoline @expr{sigma_i} 
 used for the data point.
 
@@ -24407,14 +24400,14 @@ probably use @kbd{H a F} so that the output also contains error
 estimates.
 
 If the input contains error forms but all the 
-@texline @tmath{\sigma_i}
+@texline @math{\sigma_i}
 @infoline @expr{sigma_i} 
 values are the same, it is easy to see that the resulting fitted model
 will be the same as if the input did not have error forms at all 
-@texline (@tmath{\chi^2}
+@texline (@math{\chi^2}
 @infoline (@expr{chi^2}
 is simply scaled uniformly by 
-@texline @tmath{1 / \sigma^2},
+@texline @math{1 / \sigma^2},
 @infoline @expr{1 / sigma^2}, 
 which doesn't affect where it has a minimum).  But there @emph{will} be
 a difference in the estimated errors of the coefficients reported by
@@ -24449,20 +24442,20 @@ will have length @expr{M = d+1} with the constant term first.
 @item
 The covariance matrix @expr{C} computed from the fit.  This is
 an @var{m}x@var{m} symmetric matrix; the diagonal elements
-@texline @tmath{C_{jj}}
+@texline @math{C_{jj}}
 @infoline @expr{C_j_j} 
 are the variances 
-@texline @tmath{\sigma_j^2}
+@texline @math{\sigma_j^2}
 @infoline @expr{sigma_j^2} 
 of the parameters.  The other elements are covariances
-@texline @tmath{\sigma_{ij}^2} 
+@texline @math{\sigma_{ij}^2} 
 @infoline @expr{sigma_i_j^2} 
 that describe the correlation between pairs of parameters.  (A related
 set of numbers, the @dfn{linear correlation coefficients} 
-@texline @tmath{r_{ij}},
+@texline @math{r_{ij}},
 @infoline @expr{r_i_j},
 are defined as 
-@texline @tmath{\sigma_{ij}^2 / \sigma_i \, \sigma_j}.)
+@texline @math{\sigma_{ij}^2 / \sigma_i \, \sigma_j}.)
 @infoline @expr{sigma_i_j^2 / sigma_i sigma_j}.)
 
 @item
@@ -24473,11 +24466,11 @@ polynomial and multilinear fits described so far.
 
 @item
 The value of 
-@texline @tmath{\chi^2}
+@texline @math{\chi^2}
 @infoline @expr{chi^2} 
 for the fit, calculated by the formulas shown above.  This gives a
 measure of the quality of the fit; statisticians consider
-@texline @tmath{\chi^2 \approx N - M}
+@texline @math{\chi^2 \approx N - M}
 @infoline @expr{chi^2 = N - M} 
 to indicate a moderately good fit (where again @expr{N} is the number of
 data points and @expr{M} is the number of parameters).
@@ -24486,13 +24479,13 @@ data points and @expr{M} is the number of parameters).
 A measure of goodness of fit expressed as a probability @expr{Q}.
 This is computed from the @code{utpc} probability distribution
 function using 
-@texline @tmath{\chi^2}
+@texline @math{\chi^2}
 @infoline @expr{chi^2} 
 with @expr{N - M} degrees of freedom.  A
 value of 0.5 implies a good fit; some texts recommend that often
 @expr{Q = 0.1} or even 0.001 can signify an acceptable fit.  In
 particular, 
-@texline @tmath{\chi^2}
+@texline @math{\chi^2}
 @infoline @expr{chi^2} 
 statistics assume the errors in your inputs
 follow a normal (Gaussian) distribution; if they don't, you may
@@ -24501,7 +24494,7 @@ have to accept smaller values of @expr{Q}.
 The @expr{Q} value is computed only if the input included error
 estimates.  Otherwise, Calc will report the symbol @code{nan}
 for @expr{Q}.  The reason is that in this case the 
-@texline @tmath{\chi^2}
+@texline @math{\chi^2}
 @infoline @expr{chi^2}
 value has effectively been used to estimate the original errors
 in the input, and thus there is no redundant information left
@@ -24520,31 +24513,31 @@ Here is a complete list of the standard models recognized by @kbd{a F}:
 
 @table @kbd
 @item 1
-Linear or multilinear.  @i{a + b x + c y + d z}.
+Linear or multilinear.  @mathit{a + b x + c y + d z}.
 @item 2-9
-Polynomials.  @i{a + b x + c x^2 + d x^3}.
+Polynomials.  @mathit{a + b x + c x^2 + d x^3}.
 @item e
-Exponential.  @i{a} @t{exp}@i{(b x)} @t{exp}@i{(c y)}.
+Exponential.  @mathit{a} @t{exp}@mathit{(b x)} @t{exp}@mathit{(c y)}.
 @item E
-Base-10 exponential.  @i{a} @t{10^}@i{(b x)} @t{10^}@i{(c y)}.
+Base-10 exponential.  @mathit{a} @t{10^}@mathit{(b x)} @t{10^}@mathit{(c y)}.
 @item x
-Exponential (alternate notation).  @t{exp}@i{(a + b x + c y)}.
+Exponential (alternate notation).  @t{exp}@mathit{(a + b x + c y)}.
 @item X
-Base-10 exponential (alternate).  @t{10^}@i{(a + b x + c y)}.
+Base-10 exponential (alternate).  @t{10^}@mathit{(a + b x + c y)}.
 @item l
-Logarithmic.  @i{a + b} @t{ln}@i{(x) + c} @t{ln}@i{(y)}.
+Logarithmic.  @mathit{a + b} @t{ln}@mathit{(x) + c} @t{ln}@mathit{(y)}.
 @item L
-Base-10 logarithmic.  @i{a + b} @t{log10}@i{(x) + c} @t{log10}@i{(y)}.
+Base-10 logarithmic.  @mathit{a + b} @t{log10}@mathit{(x) + c} @t{log10}@mathit{(y)}.
 @item ^
-General exponential.  @i{a b^x c^y}.
+General exponential.  @mathit{a b^x c^y}.
 @item p
-Power law.  @i{a x^b y^c}.
+Power law.  @mathit{a x^b y^c}.
 @item q
-Quadratic.  @i{a + b (x-c)^2 + d (x-e)^2}.
+Quadratic.  @mathit{a + b (x-c)^2 + d (x-e)^2}.
 @item g
 Gaussian.  
-@texline @tmath{{a \over b \sqrt{2 \pi}} \exp\left( -{1 \over 2} \left( x - c \over b \right)^2 \right)}.
-@infoline @i{(a / b sqrt(2 pi)) exp(-0.5*((x-c)/b)^2)}.
+@texline @math{{a \over b \sqrt{2 \pi}} \exp\left( -{1 \over 2} \left( x - c \over b \right)^2 \right)}.
+@infoline @mathit{(a / b sqrt(2 pi)) exp(-0.5*((x-c)/b)^2)}.
 @end table
 
 All of these models are used in the usual way; just press the appropriate
@@ -24656,18 +24649,18 @@ Calc uses the principal values of inverse functions like @code{ln}
 and @code{arcsin} when doing fits.  For example, when you enter
 the model @samp{y = sin(a t + b)} Calc actually uses the easier
 form @samp{arcsin(y) = a t + b}.  The @code{arcsin} function always
-returns results in the range from @i{-90} to 90 degrees (or the
+returns results in the range from @mathit{-90} to 90 degrees (or the
 equivalent range in radians).  Suppose you had data that you
 believed to represent roughly three oscillations of a sine wave,
 so that the argument of the sine might go from zero to 
-@texline @tmath{3\times360}
-@infoline @i{3*360} 
+@texline @math{3\times360}
+@infoline @mathit{3*360} 
 degrees.
 The above model would appear to be a good way to determine the
 true frequency and phase of the sine wave, but in practice it
 would fail utterly.  The righthand side of the actual model
 @samp{arcsin(y) = a t + b} will grow smoothly with @expr{t}, but
-the lefthand side will bounce back and forth between @i{-90} and 90.
+the lefthand side will bounce back and forth between @mathit{-90} and 90.
 No values of @expr{a} and @expr{b} can make the two sides match,
 even approximately.
 
@@ -24722,16 +24715,16 @@ ln(y) = ln(a) + b ln(x)
 
 @noindent
 which matches the desired form with 
-@texline @tmath{Y = \ln(y)},
+@texline @math{Y = \ln(y)},
 @infoline @expr{Y = ln(y)}, 
-@texline @tmath{A = \ln(a)},
+@texline @math{A = \ln(a)},
 @infoline @expr{A = ln(a)},
 @expr{F = 1}, @expr{B = b}, and 
-@texline @tmath{G = \ln(x)}.
+@texline @math{G = \ln(x)}.
 @infoline @expr{G = ln(x)}.  
 Calc thus computes the logarithms of your @expr{y} and @expr{x} values,
 does a linear fit for @expr{A} and @expr{B}, then solves to get 
-@texline @tmath{a = \exp(A)} 
+@texline @math{a = \exp(A)} 
 @infoline @expr{a = exp(A)} 
 and @expr{b = B}.
 
@@ -24745,7 +24738,7 @@ y = a + b c^2 - 2 b c x + b x^2
 
 @noindent
 which matches with @expr{Y = y}, @expr{A = a + b c^2}, @expr{F = 1},
-@expr{B = -2 b c}, @expr{G = x} (the @i{-2} factor could just as easily
+@expr{B = -2 b c}, @expr{G = x} (the @mathit{-2} factor could just as easily
 have been put into @expr{G} instead of @expr{B}), @expr{C = b}, and
 @expr{H = x^2}.
 
@@ -24777,7 +24770,7 @@ from the list of parameters when you answer the variables prompt.
 A last desperate step would be to use the general-purpose
 @code{minimize} function rather than @code{fit}.  After all, both
 functions solve the problem of minimizing an expression (the 
-@texline @tmath{\chi^2}
+@texline @math{\chi^2}
 @infoline @expr{chi^2}
 sum) by adjusting certain parameters in the expression.  The @kbd{a F}
 command is able to use a vastly more efficient algorithm due to its
@@ -24788,7 +24781,7 @@ A compromise would be to pick out a few parameters without which the
 fit is linearizable, and use @code{minimize} on a call to @code{fit}
 which efficiently takes care of the rest of the parameters.  The thing
 to be minimized would be the value of 
-@texline @tmath{\chi^2}
+@texline @math{\chi^2}
 @infoline @expr{chi^2} 
 returned as the fifth result of the @code{xfit} function:
 
@@ -24848,11 +24841,11 @@ and @expr{y} to be plain numbers, and makes @expr{z} into an error
 form with this combined error.  The @expr{Y(x,y,z)} part of the
 linearized model is evaluated, and the result should be an error
 form.  The error part of that result is used for 
-@texline @tmath{\sigma_i}
+@texline @math{\sigma_i}
 @infoline @expr{sigma_i} 
 for the data point.  If for some reason @expr{Y(x,y,z)} does not return 
 an error form, the combined error from @expr{z} is used directly for 
-@texline @tmath{\sigma_i}.
+@texline @math{\sigma_i}.
 @infoline @expr{sigma_i}.  
 Finally, @expr{z} is also stripped of its error
 for use in computing @expr{F(x,y,z)}, @expr{G(x,y,z)} and so on;
@@ -24864,7 +24857,7 @@ the most reasonable thing in the typical case that @expr{Y(x,y,z)}
 depends only on the dependent variable @expr{z}, and in fact is
 often simply equal to @expr{z}.  For common cases like polynomials
 and multilinear models, the combined error is simply used as the
-@texline @tmath{\sigma}
+@texline @math{\sigma}
 @infoline @expr{sigma} 
 for the data point with no further ado.)
 
@@ -25218,7 +25211,7 @@ If the lower limit is greater than the upper limit (assuming a
 positive step size), the result is generally zero.  However,
 Calc only guarantees a zero result when the upper limit is
 exactly one step less than the lower limit, i.e., if the number
-of iterations is @i{-1}.  Thus @samp{sum(f(k), k, n, n-1)} is zero
+of iterations is @mathit{-1}.  Thus @samp{sum(f(k), k, n, n-1)} is zero
 but the sum from @samp{n} to @samp{n-2} may report a nonzero value
 if Calc used a closed form solution.
 
@@ -25244,7 +25237,7 @@ formula works out to the indeterminate form @expr{0 / 0}, which
 Calc will not assume is zero.  Better would be to use
 @samp{(k != k_0) ? 1/(k-k_0) : 0}; the @samp{? :} operator does
 an ``if-then-else'' test:  This expression says, ``if 
-@texline @tmath{k \ne k_0},
+@texline @math{k \ne k_0},
 @infoline @expr{k != k_0},
 then @expr{1/(k-k_0)}, else zero.''  Now the formula @expr{1/(k-k_0)}
 will not even be evaluated by Calc when @expr{k = k_0}.
@@ -26259,16 +26252,16 @@ then the rule set @samp{[f(0) := 0, import(linearF)]} will apply
 all three rules.  It is possible to modify the imported rules
 slightly:  @samp{import(x, v1, x1, v2, x2, @dots{})} imports
 the rule set @expr{x} with all occurrences of 
-@texline @tmath{v_1},
+@texline @math{v_1},
 @infoline @expr{v1}, 
 as either a variable name or a function name, replaced with 
-@texline @tmath{x_1}
+@texline @math{x_1}
 @infoline @expr{x1} 
 and so on.  (If 
-@texline @tmath{v_1}
+@texline @math{v_1}
 @infoline @expr{v1} 
 is used as a function name, then 
-@texline @tmath{x_1}
+@texline @math{x_1}
 @infoline @expr{x1}
 must be either a function name itself or a @w{@samp{< >}} nameless
 function; @pxref{Specifying Operators}.)  For example, @samp{[g(0) := 0,
@@ -27734,7 +27727,7 @@ in its normal terms, and @kbd{u b} expresses the definition in base
 units.
 
 Two units, @code{pi} and @code{fsc} (the fine structure constant,
-approximately @i{1/137}) are dimensionless.  The units simplification
+approximately @mathit{1/137}) are dimensionless.  The units simplification
 commands simply treat these names as equivalent to their corresponding
 values.  However you can, for example, use @kbd{u c} to convert a pure
 number into multiples of the fine structure constant, or @kbd{u b} to
@@ -27951,10 +27944,10 @@ All the arithmetic stores accept the Inverse prefix to reverse the
 order of the operands.  If @expr{v} represents the contents of the
 variable, and @expr{a} is the value drawn from the stack, then regular
 @w{@kbd{s -}} assigns 
-@texline @tmath{v \coloneq v - a},
+@texline @math{v \coloneq v - a},
 @infoline @expr{v := v - a}, 
 but @kbd{I s -} assigns
-@texline @tmath{v \coloneq a - v}.
+@texline @math{v \coloneq a - v}.
 @infoline @expr{v := a - v}.  
 While @kbd{I s *} might seem pointless, it is
 useful if matrix multiplication is involved.  Actually, all the
@@ -28541,7 +28534,7 @@ the same length); either or both may instead be interval forms.  The
 ``z'' value must be a matrix with the same number of rows as elements
 in ``x'', and the same number of columns as elements in ``y''.  The
 result is a surface plot where 
-@texline @tmath{z_{ij}}
+@texline @math{z_{ij}}
 @infoline @expr{z_ij} 
 is the height of the point
 at coordinate @expr{(x_i, y_j)} on the surface.  The 3D graph will
@@ -28652,7 +28645,7 @@ values covered by all the curves ought to be roughly the same if
 they are to look nice on the same graph.)
 
 For example, to plot 
-@texline @tmath{\sin n x}
+@texline @math{\sin n x}
 @infoline @expr{sin(n x)} 
 for integers @expr{n}
 from 1 to 5, you could use @kbd{v x} to create a vector of integers
@@ -28903,7 +28896,7 @@ values, but if you store a vector of integers in one of these variables,
 the @kbd{g a} and @kbd{g f} commands will use those style numbers
 instead of the defaults for new curves that are added to the graph.
 An entry should be a positive integer for a specific style, or 0 to let
-the style be chosen automatically, or @i{-1} to turn off lines or points
+the style be chosen automatically, or @mathit{-1} to turn off lines or points
 altogether.  If there are more curves than elements in the vector, the
 last few curves will continue to have the default styles.  Of course,
 you can later use @kbd{g s} and @kbd{g S} to change any of these styles.
@@ -28942,7 +28935,7 @@ picture of the graph composed of characters like @code{-} and @code{|}
 to a buffer called @samp{*Gnuplot Trail*}, which Calc then displays.
 The graph is made the same size as the Emacs screen, which on most
 dumb terminals will be 
-@texline @tmath{80\times24}
+@texline @math{80\times24}
 @infoline 80x24
 characters.  The graph is displayed in
 an Emacs ``recursive edit''; type @kbd{q} or @kbd{M-# M-#} to exit
@@ -29252,7 +29245,7 @@ would correctly split the line into two error forms.
 
 @xref{Matrix Functions}, to see how to pull the matrix apart into its
 constituent rows and columns.  (If it is a 
-@texline @tmath{1\times1}
+@texline @math{1\times1}
 @infoline 1x1
 matrix, just hit @kbd{v u} (@code{calc-unpack}) twice.)
 
@@ -29590,7 +29583,7 @@ same limit as last time.
 @key{INV GCD} computes the LCM (least common multiple) function.
 
 @key{INV FACT} is the gamma function.  
-@texline @tmath{\Gamma(x) = (x-1)!}.
+@texline @math{\Gamma(x) = (x-1)!}.
 @infoline @expr{gamma(x) = (x-1)!}.
 
 @key{PERM} is the number-of-permutations function, which is on the
@@ -31018,7 +31011,7 @@ forced to use upward-counting conventions.  In this case, if @var{initial}
 is greater than @var{final} the body will not be executed at all.
 Note that @var{step} may still be negative in this loop; the prefix
 argument merely constrains the loop-finished test.  Likewise, a prefix
-argument of @i{-1} forces downward-counting conventions.
+argument of @mathit{-1} forces downward-counting conventions.
 
 @kindex Z @{
 @kindex Z @}
@@ -31989,7 +31982,7 @@ same thing with a single division by 512.
 @tindex mysin
 A somewhat limited sine function could be defined as follows, using the
 well-known Taylor series expansion for 
-@texline @tmath{\sin x}:
+@texline @math{\sin x}:
 @infoline @samp{sin(x)}:
 
 @smallexample
@@ -32512,10 +32505,10 @@ which is not a Lisp list.
 Large integers are stored as lists of the form @samp{(bigpos @var{d0}
 @var{d1} @var{d2} @dots{})} for positive integers 1000000 or more, or
 @samp{(bigneg @var{d0} @var{d1} @var{d2} @dots{})} for negative integers
-@i{-1000000} or less.  Each @var{d} is a base-1000 ``digit,'' a Lisp integer
+@mathit{-1000000} or less.  Each @var{d} is a base-1000 ``digit,'' a Lisp integer
 from 0 to 999.  The least significant digit is @var{d0}; the last digit,
 @var{dn}, which is always nonzero, is the most significant digit.  For
-example, the integer @i{-12345678} is stored as @samp{(bigneg 678 345 12)}.
+example, the integer @mathit{-12345678} is stored as @samp{(bigneg 678 345 12)}.
 
 The distinction between small and large integers is entirely hidden from
 the user.  In @code{defmath} definitions, the Lisp predicate @code{integerp}
@@ -32536,7 +32529,7 @@ Floating-point numbers are stored in the form, @samp{(float @var{mant}
 @samp{10^@var{p}} in absolute value (@var{p} represents the current
 precision), and @var{exp} (the ``exponent'') is a fixnum.  The value of
 the float is @samp{@var{mant} * 10^@var{exp}}.  For example, the number
-@i{-3.14} is stored as @samp{(float -314 -2) = -314*10^-2}.  Other constraints
+@mathit{-3.14} is stored as @samp{(float -314 -2) = -314*10^-2}.  Other constraints
 are that the number 0.0 is always stored as @samp{(float 0 0)}, and,
 except for the 0.0 case, the rightmost base-10 digit of @var{mant} is
 always nonzero.  (If the rightmost digit is zero, the number is
@@ -32848,7 +32841,7 @@ is applied to the top stack element, or, if @var{unary} is not
 specified, nothing happens.  When the argument is two or more,
 the binary function @var{func} is reduced across the top @var{arg}
 stack elements; when the argument is negative, the function is
-mapped between the next-to-top @i{-@var{arg}} stack elements and the
+mapped between the next-to-top @mathit{-@var{arg}} stack elements and the
 top element.
 @end defun
 
@@ -33267,7 +33260,7 @@ or formula, this calls @code{reject-arg}.
 @end defun
 
 @defun compare x y
-Compare the numbers @var{x} and @var{y}, and return @i{-1} if
+Compare the numbers @var{x} and @var{y}, and return @mathit{-1} if
 @samp{(lessp @var{x} @var{y})}, 1 if @samp{(lessp @var{y} @var{x})},
 0 if @samp{(math-equal @var{x} @var{y})}, or 2 if the order is
 undefined or cannot be determined.
@@ -33280,7 +33273,7 @@ considered to have zero digits.
 @end defun
 
 @defun scale-int x n
-Shift integer @var{x} left @var{n} decimal digits, or right @i{-@var{n}}
+Shift integer @var{x} left @var{n} decimal digits, or right @mathit{-@var{n}}
 digits with truncation toward zero.
 @end defun
 
@@ -33488,7 +33481,7 @@ function @code{frac}, and can be rather slow.
 @defun quarter-integer n
 If @var{n} is an integer or integer-valued float, this function
 returns zero.  If @var{n} is a half-integer (i.e., an integer plus
-@i{1:2} or 0.5), it returns 2.  If @var{n} is a quarter-integer,
+@mathit{1:2} or 0.5), it returns 2.  If @var{n} is a quarter-integer,
 it returns 1 or 3.  If @var{n} is anything else, this function
 returns @code{nil}.
 @end defun
@@ -35631,8 +35624,8 @@ input data set.  Each entry may be a single value or a vector of values.
 @c 20
 @item
 With a prefix argument of 1, take a single 
-@texline @tmath{@var{n}\times2}
-@infoline @i{@var{N}x2} 
+@texline @var{n}@math{\times2}
+@infoline @mathit{@var{N}x2} 
 matrix from the stack instead of two separate data vectors.
 
 @c 21
@@ -35834,7 +35827,7 @@ to evaluate variables.
 The variable is replaced by the formula shown on the right.  The
 Inverse flag reverses the order of the operands, e.g., @kbd{I s - x}
 assigns 
-@texline @tmath{x \coloneq a-x}.
+@texline @math{x \coloneq a-x}.
 @infoline @expr{x := a-x}.
 
 @c 48
@@ -35842,7 +35835,7 @@ assigns
 Press @kbd{?} repeatedly to see how to choose a model.  Answer the
 variables prompt with @expr{iv} or @expr{iv;pv} to specify
 independent and parameter variables.  A positive prefix argument
-takes @i{@var{n}+1} vectors from the stack; a zero prefix takes a matrix
+takes @mathit{@var{n}+1} vectors from the stack; a zero prefix takes a matrix
 and a vector from the stack.
 
 @c 49