representable as a double.
Return DBL_MANT_DIG - DBL_MIN_EXP (the maximum possible valid
- scale) if D is zero or tiny. Return a value greater than
- DBL_MANT_DIG - DBL_MIN_EXP if there is conversion trouble; on all
- current platforms this can happen only if D is infinite or a NaN. */
+ scale) if D is zero or tiny. Return one greater than that if
+ D is infinite, and two greater than that if D is a NaN. */
int
double_integer_scale (double d)
return (DBL_MIN_EXP - 1 <= exponent && exponent < INT_MAX
? DBL_MANT_DIG - 1 - exponent
: (DBL_MANT_DIG - DBL_MIN_EXP
- + (exponent == INT_MAX
- || (exponent == FP_ILOGBNAN
- && (FP_ILOGBNAN != FP_ILOGB0 || isnan (d)))
- || (!IEEE_FLOATING_POINT && exponent == INT_MIN
- && (FP_ILOGB0 != INT_MIN || d != 0)))));
+ + ((exponent == FP_ILOGBNAN
+ && (FP_ILOGBNAN != FP_ILOGB0 || isnan (d)))
+ ? 2
+ : exponent == INT_MAX)));
}
/* Convert the Lisp number N to an integer and return a pointer to the
CHECK_NUMBER (d);
+ int dscale = 0;
if (FIXNUMP (d))
{
if (XFIXNUM (d) == 0)
if (FIXNUMP (n))
return make_int (fixnum_divide (XFIXNUM (n), XFIXNUM (d)));
}
+ else if (FLOATP (d))
+ {
+ if (XFLOAT_DATA (d) == 0)
+ xsignal0 (Qarith_error);
+ dscale = double_integer_scale (XFLOAT_DATA (d));
+ }
int nscale = FLOATP (n) ? double_integer_scale (XFLOAT_DATA (n)) : 0;
- int dscale = FLOATP (d) ? double_integer_scale (XFLOAT_DATA (d)) : 0;
+
+ /* If the numerator is finite and the denominator infinite, the
+ quotient is zero and there is no need to try the impossible task
+ of rescaling the denominator. */
+ if (dscale == DBL_MANT_DIG - DBL_MIN_EXP + 1 && nscale < dscale)
+ return make_fixnum (0);
+
int_divide (mpz[0],
*rescale_for_division (n, &mpz[0], nscale, dscale),
*rescale_for_division (d, &mpz[1], dscale, nscale));
(zerop (% (round n d) 2)))))))))))
(ert-deftest special-round ()
- (let ((ns '(-1e+INF 1e+INF -1 1 -1e+NaN 1e+NaN)))
- (dolist (n ns)
- (unless (<= (abs n) 1)
- (should-error (ceiling n))
- (should-error (floor n))
- (should-error (round n))
- (should-error (truncate n)))
- (dolist (d ns)
- (unless (<= (abs (/ n d)) 1)
- (should-error (ceiling n d))
- (should-error (floor n d))
- (should-error (round n d))
- (should-error (truncate n d)))))))
+ (dolist (f '(ceiling floor round truncate))
+ (let ((ns '(-1e+INF 1e+INF -1 -0.0 0.0 0 1 -1e+NaN 1e+NaN)))
+ (dolist (n ns)
+ (if (not (<= (abs n) 1))
+ (should-error (funcall f n))
+ (should (= n (funcall f n)))
+ (dolist (d '(-1e+INF 1e+INF))
+ (should (eq 0 (funcall f n d)))))
+ (dolist (d ns)
+ (when (or (zerop d) (= (abs n) 1e+INF) (not (= n n)) (not (= d d)))
+ (should-error (funcall f n d))))))))
(ert-deftest big-round ()
(should (= (floor 54043195528445955 3)