;; Calculator for GNU Emacs, part II [calc-math.el]
-;; Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
+;; Copyright (C) 1990, 1991, 1992, 1993, 2001 Free Software Foundation, Inc.
;; Written by Dave Gillespie, daveg@synaptics.com.
;; This file is part of GNU Emacs.
(calc-slow-wrapper
(if (calc-is-inverse)
(calc-unary-op "^2" 'calcFunc-sqr arg)
- (calc-unary-op "sqrt" 'calcFunc-sqrt arg)))
-)
+ (calc-unary-op "sqrt" 'calcFunc-sqrt arg))))
(defun calc-isqrt (arg)
(interactive "P")
(calc-slow-wrapper
(if (calc-is-inverse)
(calc-unary-op "^2" 'calcFunc-sqr arg)
- (calc-unary-op "isqt" 'calcFunc-isqrt arg)))
-)
+ (calc-unary-op "isqt" 'calcFunc-isqrt arg))))
(defun calc-hypot (arg)
(interactive "P")
(calc-slow-wrapper
- (calc-binary-op "hypt" 'calcFunc-hypot arg))
-)
+ (calc-binary-op "hypt" 'calcFunc-hypot arg)))
(defun calc-ln (arg)
(interactive "P")
(calc-invert-func)
- (calc-exp arg)
-)
+ (calc-exp arg))
(defun calc-log10 (arg)
(interactive "P")
(calc-hyperbolic-func)
- (calc-ln arg)
-)
+ (calc-ln arg))
(defun calc-log (arg)
(interactive "P")
(calc-slow-wrapper
(if (calc-is-inverse)
(calc-binary-op "alog" 'calcFunc-alog arg)
- (calc-binary-op "log" 'calcFunc-log arg)))
-)
+ (calc-binary-op "log" 'calcFunc-log arg))))
(defun calc-ilog (arg)
(interactive "P")
(calc-slow-wrapper
(if (calc-is-inverse)
(calc-binary-op "alog" 'calcFunc-alog arg)
- (calc-binary-op "ilog" 'calcFunc-ilog arg)))
-)
+ (calc-binary-op "ilog" 'calcFunc-ilog arg))))
(defun calc-lnp1 (arg)
(interactive "P")
(calc-invert-func)
- (calc-expm1 arg)
-)
+ (calc-expm1 arg))
(defun calc-exp (arg)
(interactive "P")
(calc-unary-op "10^" 'calcFunc-exp10 arg))
(if (calc-is-inverse)
(calc-unary-op "ln" 'calcFunc-ln arg)
- (calc-unary-op "exp" 'calcFunc-exp arg))))
-)
+ (calc-unary-op "exp" 'calcFunc-exp arg)))))
(defun calc-expm1 (arg)
(interactive "P")
(calc-slow-wrapper
(if (calc-is-inverse)
(calc-unary-op "ln+1" 'calcFunc-lnp1 arg)
- (calc-unary-op "ex-1" 'calcFunc-expm1 arg)))
-)
+ (calc-unary-op "ex-1" 'calcFunc-expm1 arg))))
(defun calc-pi ()
(interactive)
(calc-pop-push-record 0 "e" (math-e)))
(if calc-symbolic-mode
(calc-pop-push-record 0 "pi" '(var pi var-pi))
- (calc-pop-push-record 0 "pi" (math-pi))))))
-)
+ (calc-pop-push-record 0 "pi" (math-pi)))))))
(defun calc-sin (arg)
(interactive "P")
(calc-unary-op "sinh" 'calcFunc-sinh arg))
(if (calc-is-inverse)
(calc-unary-op "asin" 'calcFunc-arcsin arg)
- (calc-unary-op "sin" 'calcFunc-sin arg))))
-)
+ (calc-unary-op "sin" 'calcFunc-sin arg)))))
(defun calc-arcsin (arg)
(interactive "P")
(calc-invert-func)
- (calc-sin arg)
-)
+ (calc-sin arg))
(defun calc-sinh (arg)
(interactive "P")
(calc-hyperbolic-func)
- (calc-sin arg)
-)
+ (calc-sin arg))
(defun calc-arcsinh (arg)
(interactive "P")
(calc-invert-func)
(calc-hyperbolic-func)
- (calc-sin arg)
-)
+ (calc-sin arg))
(defun calc-cos (arg)
(interactive "P")
(calc-unary-op "cosh" 'calcFunc-cosh arg))
(if (calc-is-inverse)
(calc-unary-op "acos" 'calcFunc-arccos arg)
- (calc-unary-op "cos" 'calcFunc-cos arg))))
-)
+ (calc-unary-op "cos" 'calcFunc-cos arg)))))
(defun calc-arccos (arg)
(interactive "P")
(calc-invert-func)
- (calc-cos arg)
-)
+ (calc-cos arg))
(defun calc-cosh (arg)
(interactive "P")
(calc-hyperbolic-func)
- (calc-cos arg)
-)
+ (calc-cos arg))
(defun calc-arccosh (arg)
(interactive "P")
(calc-invert-func)
(calc-hyperbolic-func)
- (calc-cos arg)
-)
+ (calc-cos arg))
(defun calc-sincos ()
(interactive)
(calc-slow-wrapper
(if (calc-is-inverse)
(calc-enter-result 1 "asnc" (list 'calcFunc-arcsincos (calc-top-n 1)))
- (calc-enter-result 1 "sncs" (list 'calcFunc-sincos (calc-top-n 1)))))
-)
+ (calc-enter-result 1 "sncs" (list 'calcFunc-sincos (calc-top-n 1))))))
(defun calc-tan (arg)
(interactive "P")
(calc-unary-op "tanh" 'calcFunc-tanh arg))
(if (calc-is-inverse)
(calc-unary-op "atan" 'calcFunc-arctan arg)
- (calc-unary-op "tan" 'calcFunc-tan arg))))
-)
+ (calc-unary-op "tan" 'calcFunc-tan arg)))))
(defun calc-arctan (arg)
(interactive "P")
(calc-invert-func)
- (calc-tan arg)
-)
+ (calc-tan arg))
(defun calc-tanh (arg)
(interactive "P")
(calc-hyperbolic-func)
- (calc-tan arg)
-)
+ (calc-tan arg))
(defun calc-arctanh (arg)
(interactive "P")
(calc-invert-func)
(calc-hyperbolic-func)
- (calc-tan arg)
-)
+ (calc-tan arg))
(defun calc-arctan2 ()
(interactive)
(calc-slow-wrapper
- (calc-enter-result 2 "atn2" (cons 'calcFunc-arctan2 (calc-top-list-n 2))))
-)
+ (calc-enter-result 2 "atn2" (cons 'calcFunc-arctan2 (calc-top-list-n 2)))))
(defun calc-conj (arg)
(interactive "P")
(calc-wrapper
- (calc-unary-op "conj" 'calcFunc-conj arg))
-)
+ (calc-unary-op "conj" 'calcFunc-conj arg)))
(defun calc-imaginary ()
(interactive)
(calc-slow-wrapper
- (calc-pop-push-record 1 "i*" (math-imaginary (calc-top-n 1))))
-)
+ (calc-pop-push-record 1 "i*" (math-imaginary (calc-top-n 1)))))
(defun calc-to-degrees (arg)
(interactive "P")
(calc-wrapper
- (calc-unary-op ">deg" 'calcFunc-deg arg))
-)
+ (calc-unary-op ">deg" 'calcFunc-deg arg)))
(defun calc-to-radians (arg)
(interactive "P")
(calc-wrapper
- (calc-unary-op ">rad" 'calcFunc-rad arg))
-)
+ (calc-unary-op ">rad" 'calcFunc-rad arg)))
(defun calc-degrees-mode (arg)
(message "Angles measured in degrees.")))
((= arg 2) (calc-radians-mode))
((= arg 3) (calc-hms-mode))
- (t (error "Prefix argument out of range")))
-)
+ (t (error "Prefix argument out of range"))))
(defun calc-radians-mode ()
(interactive)
(calc-wrapper
(calc-change-mode 'calc-angle-mode 'rad)
- (message "Angles measured in radians."))
-)
+ (message "Angles measured in radians.")))
;;; Compute the integer square-root floor(sqrt(A)). A > 0. [I I] [Public]
((integerp a)
(math-isqrt-small a))
(t
- (math-normalize (cons 'bigpos (cdr (math-isqrt-bignum (cdr a)))))))
-)
+ (math-normalize (cons 'bigpos (cdr (math-isqrt-bignum (cdr a))))))))
(defun calcFunc-isqrt (a)
(if (math-realp a)
(math-isqrt (math-floor a))
- (math-floor (math-sqrt a)))
-)
+ (math-floor (math-sqrt a))))
;;; This returns (flag . result) where the flag is T if A is a perfect square.
a
(math-scale-bignum-3
(list (1+ (math-isqrt-small top)))
- (/ len 2))))))
-)
+ (/ len 2)))))))
(defun math-isqrt-bignum-iter (a guess) ; [l L l]
(math-working "isqrt" (cons 'bigpos guess))
(cons (and (= comp 0)
(math-zerop-bignum (cdr q))
(= (% (car s) 2) 0))
- guess)))
-)
+ guess))))
(defun math-zerop-bignum (a)
(and (eq (car a) 0)
(progn
(while (eq (car (setq a (cdr a))) 0))
- (null a)))
-)
+ (null a))))
(defun math-scale-bignum-3 (a n) ; [L L S]
(while (> n 0)
(setq a (cons 0 a)
n (1- n)))
- a
-)
+ a)
(defun math-isqrt-small (a) ; A > 0. [S S]
(let ((g (cond ((>= a 10000) 1000)
g2)
(while (< (setq g2 (/ (+ g (/ a g)) 2)) g)
(setq g g2))
- g)
-)
+ g))
(math-mul (math-sqrt (math-infinite-dir a inf)) inf)))
(progn
(calc-record-why 'numberp a)
- (list 'calcFunc-sqrt a)))
-)
-(fset 'calcFunc-sqrt (symbol-function 'math-sqrt))
+ (list 'calcFunc-sqrt a))))
+(defalias calcFunc-sqrt 'math-sqrt)
(defun math-infinite-dir (a &optional inf)
(or inf (setq inf (math-infinitep a)))
- (math-normalize (math-expr-subst a inf 1))
-)
+ (math-normalize (math-expr-subst a inf 1)))
(defun math-sqrt-float (a &optional guess) ; [F F F]
(if calc-symbolic-mode
(signal 'inexact-result nil)
- (math-with-extra-prec 1 (math-sqrt-raw a guess)))
-)
+ (math-with-extra-prec 1 (math-sqrt-raw a guess))))
(defun math-sqrt-raw (a &optional guess) ; [F F F]
(if (not (Math-posp a))
(setq guess (math-make-float (math-isqrt-small
(math-scale-int (nth 1 a) (- ldiff)))
(/ (+ (nth 2 a) ldiff) 2)))))
- (math-sqrt-float-iter a guess))
-)
+ (math-sqrt-float-iter a guess)))
(defun math-sqrt-float-iter (a guess) ; [F F F]
(math-working "sqrt" guess)
'(float 5 -1))))
(if (math-nearly-equal-float g2 guess)
g2
- (math-sqrt-float-iter a g2)))
-)
+ (math-sqrt-float-iter a g2))))
;;; True if A and B differ only in the last digit of precision. [P F F]
(defun math-nearly-equal-float (a b)
(and (not (consp ediff))
(< ediff 10)
(> ediff -10)
- (= (math-numdigs (nth 1 a)) calc-internal-prec)))))
-)
+ (= (math-numdigs (nth 1 a)) calc-internal-prec))))))
(defun math-nearly-equal (a b) ; [P N N] [Public]
(setq a (math-float a))
(if (eq (car b) 'cplx)
(and (math-nearly-equal-float a (nth 1 b))
(math-nearly-zerop-float a (nth 2 b)))
- (math-nearly-equal-float a b)))
-)
+ (math-nearly-equal-float a b))))
;;; True if A is nearly zero compared to B. [P F F]
(defun math-nearly-zerop-float (a b)
(or (eq (nth 1 a) 0)
(<= (+ (math-numdigs (nth 1 a)) (nth 2 a))
- (1+ (- (+ (math-numdigs (nth 1 b)) (nth 2 b)) calc-internal-prec))))
-)
+ (1+ (- (+ (math-numdigs (nth 1 b)) (nth 2 b)) calc-internal-prec)))))
(defun math-nearly-zerop (a b) ; [P N R] [Public]
(setq a (math-float a))
(math-nearly-zerop-float (nth 2 a) b))
(if (eq (car a) 'polar)
(math-nearly-zerop-float (nth 1 a) b)
- (math-nearly-zerop-float a b)))
-)
+ (math-nearly-zerop-float a b))))
;;; This implementation could be improved, accuracy-wise.
(defun math-hypot (a b)
(math-to-hms (math-hypot (math-from-hms a 'deg) b))))
((eq (car-safe b) 'hms)
(math-to-hms (math-hypot a (math-from-hms b 'deg))))
- (t nil))
-)
-(fset 'calcFunc-hypot (symbol-function 'math-hypot))
+ (t nil)))
+(defalias calcFunc-hypot 'math-hypot)
(defun calcFunc-sqr (x)
- (math-pow x 2)
-)
+ (math-pow x 2))
((eq (car-safe a) 'polar)
(let ((root (math-nth-root (nth 1 a) n)))
(and root (list 'polar root (math-div (nth 2 a) n)))))
- (t nil))
-)
+ (t nil)))
(defun math-nth-root-float (a n &optional guess)
(math-inexact-result)
1 (/ (+ (math-numdigs (nth 1 a))
(nth 2 a)
(/ n 2))
- n))))))
-)
+ n)))))))
(defun math-nth-root-float-iter (a guess) ; uses "n", "nf", "nfm1"
(math-working "root" guess)
nf)))
(if (math-nearly-equal-float g2 guess)
g2
- (math-nth-root-float-iter a g2)))
-)
+ (math-nth-root-float-iter a g2))))
(defun math-nth-root-integer (a n &optional guess) ; [I I S]
(math-nth-root-int-iter a (or guess
(math-scale-int 1 (/ (+ (math-numdigs a)
(1- n))
- n))))
-)
+ n)))))
(defun math-nth-root-int-iter (a guess) ; uses "n"
(math-working "root" guess)
(cons (and (equal (car g2) guess)
(eq (cdr q) 0)
(eq (cdr g2) 0))
- guess)))
-)
+ guess))))
(defun calcFunc-nroot (x n)
(calcFunc-pow x (if (integerp n)
(math-make-frac 1 n)
- (math-div 1 n)))
-)
+ (math-div 1 n))))
(math-from-hms a 'rad))
((memq calc-angle-mode '(deg hms))
(math-mul a (math-pi-over-180)))
- (t a))
-)
+ (t a)))
(defun math-from-radians (a) ; [N N]
(cond ((eq calc-angle-mode 'deg)
(list 'calcFunc-deg a)))
((eq calc-angle-mode 'hms)
(math-to-hms a 'rad))
- (t a))
-)
+ (t a)))
(defun math-to-radians-2 (a) ; [N N]
(cond ((eq (car-safe a) 'hms)
(if calc-symbolic-mode
(math-div (math-mul a '(var pi var-pi)) 180)
(math-mul a (math-pi-over-180))))
- (t a))
-)
+ (t a)))
(defun math-from-radians-2 (a) ; [N N]
(cond ((memq calc-angle-mode '(deg hms))
(if calc-symbolic-mode
(math-div (math-mul 180 a) '(var pi var-pi))
(math-div a (math-pi-over-180))))
- (t a))
-)
+ (t a)))
((equal x '(var nan var-nan))
x)
(t (calc-record-why 'scalarp x)
- (list 'calcFunc-sin x)))
-)
+ (list 'calcFunc-sin x))))
(defun calcFunc-cos (x) ; [N N] [Public]
(cond ((and (integerp x)
((equal x '(var nan var-nan))
x)
(t (calc-record-why 'scalarp x)
- (list 'calcFunc-cos x)))
-)
+ (list 'calcFunc-cos x))))
(defun calcFunc-sincos (x) ; [V N] [Public]
(if (Math-scalarp x)
(math-with-extra-prec 2
(let ((sc (math-sin-cos-raw (math-to-radians (math-float x)))))
(list 'vec (cdr sc) (car sc)))) ; the vector [cos, sin]
- (list 'vec (calcFunc-sin x) (calcFunc-cos x)))
-)
+ (list 'vec (calcFunc-sin x) (calcFunc-cos x))))
(defun calcFunc-tan (x) ; [N N] [Public]
(cond ((and (integerp x)
((equal x '(var nan var-nan))
x)
(t (calc-record-why 'scalarp x)
- (list 'calcFunc-tan x)))
-)
+ (list 'calcFunc-tan x))))
(defun math-sin-raw (x) ; [N N]
(cond ((eq (car x) 'cplx)
(math-neg-float (math-sin-raw (math-neg-float x))))
((math-lessp-float '(float 7 0) x) ; avoid inf loops due to roundoff
(math-sin-raw (math-mod x (math-two-pi))))
- (t (math-sin-raw-2 x x)))
-)
+ (t (math-sin-raw-2 x x))))
(defun math-cos-raw (x) ; [N N]
(if (eq (car-safe x) 'polar)
(math-polar (math-cos-raw (math-complex x)))
- (math-sin-raw (math-sub (math-pi-over-2) x)))
-)
+ (math-sin-raw (math-sub (math-pi-over-2) x))))
;;; This could use a smarter method: Reduce x as in math-sin-raw, then
;;; compute either sin(x) or cos(x), whichever is smaller, and compute
;;; the other using the identity sin(x)^2 + cos(x)^2 = 1.
(defun math-sin-cos-raw (x) ; [F.F F] (result is (sin x . cos x))
- (cons (math-sin-raw x) (math-cos-raw x))
-)
+ (cons (math-sin-raw x) (math-cos-raw x)))
(defun math-tan-raw (x) ; [N N]
(cond ((eq (car x) 'cplx)
(let ((sc (math-sin-cos-raw x)))
(if (eq (nth 1 (cdr sc)) 0)
(math-div (car sc) 0)
- (math-div-float (car sc) (cdr sc))))))
-)
+ (math-div-float (car sc) (cdr sc)))))))
(defun math-sin-raw-2 (x orgx) ; This avoids poss of inf recursion. [F F]
(let ((xmpo2 (math-sub-float (math-pi-over-2) x)))
(math-neg (math-cos-raw-2 (math-add (math-pi-over-2) x) orgx)))
((math-nearly-zerop-float x orgx) '(float 0 0))
(calc-symbolic-mode (signal 'inexact-result nil))
- (t (math-sin-series x 6 4 x (math-neg-float (math-sqr-float x))))))
-)
+ (t (math-sin-series x 6 4 x (math-neg-float (math-sqr-float x)))))))
(defun math-cos-raw-2 (x orgx) ; [F F]
(cond ((math-nearly-zerop-float x orgx) '(float 1 0))
(math-sin-series
(math-add-float '(float 1 0)
(math-mul-float xnegsqr '(float 5 -1)))
- 24 5 xnegsqr xnegsqr))))
-)
+ 24 5 xnegsqr xnegsqr)))))
(defun math-sin-series (sum nfac n x xnegsqr)
(math-working "sin" sum)
(if (math-nearly-equal-float sum nextsum)
sum
(math-sin-series nextsum (math-mul nfac (* n (1+ n)))
- (+ n 2) nextx xnegsqr)))
-)
+ (+ n 2) nextx xnegsqr))))
;;; Inverse sine, cosine, tangent.
((equal x '(var nan var-nan))
x)
(t (calc-record-why 'numberp x)
- (list 'calcFunc-arcsin x)))
-)
+ (list 'calcFunc-arcsin x))))
(defun calcFunc-arccos (x) ; [N N] [Public]
(cond ((eq x 1) 0)
((equal x '(var nan var-nan))
x)
(t (calc-record-why 'numberp x)
- (list 'calcFunc-arccos x)))
-)
+ (list 'calcFunc-arccos x))))
(defun calcFunc-arctan (x) ; [N N] [Public]
(cond ((eq x 0) 0)
((equal x '(var nan var-nan))
x)
(t (calc-record-why 'numberp x)
- (list 'calcFunc-arctan x)))
-)
+ (list 'calcFunc-arctan x))))
(defun math-arcsin-raw (x) ; [N N]
(let ((a (math-sqrt-raw (math-sub '(float 1 0) (math-sqr x)))))
(math-with-extra-prec 2 ; use extra precision for difficult case
(math-mul '(cplx 0 -1)
(math-ln-raw (math-add (math-mul '(cplx 0 1) x) a))))
- (math-arctan2-raw x a)))
-)
+ (math-arctan2-raw x a))))
(defun math-arccos-raw (x) ; [N N]
- (math-sub (math-pi-over-2) (math-arcsin-raw x))
-)
+ (math-sub (math-pi-over-2) (math-arcsin-raw x)))
(defun math-arctan-raw (x) ; [N N]
(cond ((memq (car x) '(cplx polar))
(math-sub-float '(float 1 0) x)
(math-add-float '(float 1 0)
x))))))
- (t (math-arctan-series x 3 x (math-neg-float (math-sqr-float x)))))
-)
+ (t (math-arctan-series x 3 x (math-neg-float (math-sqr-float x))))))
(defun math-arctan-series (sum n x xnegsqr)
(math-working "arctan" sum)
(nextsum (math-add-float sum (math-div-float nextx (math-float n)))))
(if (math-nearly-equal-float sum nextsum)
sum
- (math-arctan-series nextsum (+ n 2) nextx xnegsqr)))
-)
+ (math-arctan-series nextsum (+ n 2) nextx xnegsqr))))
(defun calcFunc-arctan2 (y x) ; [F R R] [Public]
(if (Math-anglep y)
(calcFunc-arctan2 y x)
'(var nan var-nan)))
(calc-record-why 'anglep y)
- (list 'calcFunc-arctan2 y x)))
-)
+ (list 'calcFunc-arctan2 y x))))
(defun math-arctan2-raw (y x) ; [F R R]
(cond ((math-zerop y)
(math-pi)))
(t
(math-sub-float (math-arctan-raw (math-div-float y x))
- (math-pi))))
-)
+ (math-pi)))))
(defun calcFunc-arcsincos (x) ; [V N] [Public]
(if (and (Math-vectorp x)
(= (length x) 3))
(calcFunc-arctan2 (nth 2 x) (nth 1 x))
- (math-reject-arg x "*Two-element vector expected"))
-)
+ (math-reject-arg x "*Two-element vector expected")))
((equal x '(var nan var-nan))
x)
(t (calc-record-why 'numberp x)
- (list 'calcFunc-exp x)))
-)
+ (list 'calcFunc-exp x))))
(defun calcFunc-expm1 (x) ; [N N] [Public]
(cond ((eq x 0) 0)
((equal x '(var nan var-nan))
x)
(t (calc-record-why 'numberp x)
- (list 'calcFunc-expm1 x)))
-)
+ (list 'calcFunc-expm1 x))))
(defun calcFunc-exp10 (x) ; [N N] [Public]
(if (eq x 0)
1
- (math-pow '(float 1 1) x))
-)
+ (math-pow '(float 1 1) x)))
(defun math-exp-raw (x) ; [N N]
(cond ((math-zerop x) '(float 1 0))
(math-mul-float (math-ipow (math-sqrt-e) hint)
(math-add-float '(float 1 0)
(math-exp-minus-1-raw hfrac)))))
- (t (math-add-float '(float 1 0) (math-exp-minus-1-raw x))))
-)
+ (t (math-add-float '(float 1 0) (math-exp-minus-1-raw x)))))
(defun math-exp-minus-1-raw (x) ; [F F]
- (math-exp-series x 2 3 x x)
-)
+ (math-exp-series x 2 3 x x))
(defun math-exp-series (sum nfac n xpow x)
(math-working "exp" sum)
(math-float nfac)))))
(if (math-nearly-equal-float sum nextsum)
sum
- (math-exp-series nextsum (math-mul nfac n) (1+ n) nextx x)))
-)
+ (math-exp-series nextsum (math-mul nfac n) (1+ n) nextx x))))
x
'(var inf var-inf)))
(t (calc-record-why 'numberp x)
- (list 'calcFunc-ln x)))
-)
+ (list 'calcFunc-ln x))))
(defun calcFunc-log10 (x) ; [N N] [Public]
(cond ((math-equal-int x 1)
x
'(var inf var-inf)))
(t (calc-record-why 'numberp x)
- (list 'calcFunc-log10 x)))
-)
+ (list 'calcFunc-log10 x))))
(defun calcFunc-log (x &optional b) ; [N N N] [Public]
(cond ((or (null b) (equal b '(var e var-e)))
(t (if (Math-numberp b)
(calc-record-why 'numberp x)
(calc-record-why 'numberp b))
- (list 'calcFunc-log x b)))
-)
+ (list 'calcFunc-log x b))))
(defun calcFunc-alog (x &optional b)
(cond ((or (null b) (equal b '(var e var-e)))
(math-normalize (list 'calcFunc-exp x)))
- (t (math-pow b x)))
-)
+ (t (math-pow b x))))
(defun calcFunc-ilog (x b)
(if (and (math-natnump x) (not (eq x 0))
(if (Math-natnum-lessp x b)
0
(cdr (math-integer-log x b))))
- (math-floor (calcFunc-log x b)))
-)
+ (math-floor (calcFunc-log x b))))
(defun math-integer-log (x b)
(let ((pows (list b))
(or (Math-lessp x next)
(setq pow next
sum (+ sum n))))
- (cons (equal pow x) sum))
-)
+ (cons (equal pow x) sum)))
(defun math-log-base-raw (b) ; [N N]
(eq (nth 1 math-log-base-cache) calc-internal-prec)))
(setq math-log-base-cache (list b calc-internal-prec
(math-ln-raw (math-float b)))))
- (nth 2 math-log-base-cache)
-)
+ (nth 2 math-log-base-cache))
(setq math-log-base-cache nil)
(defun calcFunc-lnp1 (x) ; [N N] [Public]
x
'(var inf var-inf)))
(t (calc-record-why 'numberp x)
- (list 'calcFunc-lnp1 x)))
-)
+ (list 'calcFunc-lnp1 x))))
(defun math-ln-raw (x) ; [N N] --- must be float format!
(cond ((eq (car-safe x) 'cplx)
(math-pi))))
(t (list 'cplx ; negative and real
(math-ln-raw (math-neg-float x))
- (math-pi))))
-)
+ (math-pi)))))
(defun math-ln-raw-2 (x) ; [F F]
(cond ((math-lessp-float '(float 14 -1) x)
(math-ln-2)))
(t ; now .7 < x <= 1.4
(math-ln-raw-3 (math-div-float (math-sub-float x '(float 1 0))
- (math-add-float x '(float 1 0))))))
-)
+ (math-add-float x '(float 1 0)))))))
(defun math-ln-raw-3 (x) ; [F F]
(math-mul-float (math-ln-raw-series x 3 x (math-sqr-float x))
- '(float 2 0))
-)
+ '(float 2 0)))
;;; Compute ln((1+x)/(1-x))
(defun math-ln-raw-series (sum n x xsqr)
(nextsum (math-add-float sum (math-div-float nextx (math-float n)))))
(if (math-nearly-equal-float sum nextsum)
sum
- (math-ln-raw-series nextsum (+ n 2) nextx xsqr)))
-)
+ (math-ln-raw-series nextsum (+ n 2) nextx xsqr))))
(defun math-ln-plus-1-raw (x)
- (math-lnp1-series x 2 x (math-neg x))
-)
+ (math-lnp1-series x 2 x (math-neg x)))
(defun math-lnp1-series (sum n xpow x)
(math-working "lnp1" sum)
(nextsum (math-add-float sum (math-div-float nextx (math-float n)))))
(if (math-nearly-equal-float sum nextsum)
sum
- (math-lnp1-series nextsum (1+ n) nextx x)))
-)
+ (math-lnp1-series nextsum (1+ n) nextx x))))
(math-defcache math-ln-10 (float (bigpos 018 684 045 994 092 585 302 2) -21)
(math-ln-raw-2 '(float 1 1)))
(equal x '(var nan var-nan)))
x)
(t (calc-record-why 'numberp x)
- (list 'calcFunc-sinh x)))
-)
+ (list 'calcFunc-sinh x))))
(put 'calcFunc-sinh 'math-expandable t)
(defun calcFunc-cosh (x) ; [N N] [Public]
(equal x '(var nan var-nan)))
(math-abs x))
(t (calc-record-why 'numberp x)
- (list 'calcFunc-cosh x)))
-)
+ (list 'calcFunc-cosh x))))
(put 'calcFunc-cosh 'math-expandable t)
(defun calcFunc-tanh (x) ; [N N] [Public]
((equal x '(var nan var-nan))
x)
(t (calc-record-why 'numberp x)
- (list 'calcFunc-tanh x)))
-)
+ (list 'calcFunc-tanh x))))
(put 'calcFunc-tanh 'math-expandable t)
(defun calcFunc-arcsinh (x) ; [N N] [Public]
(equal x '(var nan var-nan)))
x)
(t (calc-record-why 'numberp x)
- (list 'calcFunc-arcsinh x)))
-)
+ (list 'calcFunc-arcsinh x))))
(put 'calcFunc-arcsinh 'math-expandable t)
(defun calcFunc-arccosh (x) ; [N N] [Public]
(equal x '(var nan var-nan)))
x)
(t (calc-record-why 'numberp x)
- (list 'calcFunc-arccosh x)))
-)
+ (list 'calcFunc-arccosh x))))
(put 'calcFunc-arccosh 'math-expandable t)
(defun calcFunc-arctanh (x) ; [N N] [Public]
((equal x '(var nan var-nan))
x)
(t (calc-record-why 'numberp x)
- (list 'calcFunc-arctanh x)))
-)
+ (list 'calcFunc-arctanh x))))
(put 'calcFunc-arctanh 'math-expandable t)
(math-expand-formulas
(math-div (math-mul a '(var pi var-pi)) 180))
((math-infinitep a) a)
- (t (list 'calcFunc-rad a)))
-)
+ (t (list 'calcFunc-rad a))))
(put 'calcFunc-rad 'math-expandable t)
;;; Convert A from HMS or radians to degrees.
(math-expand-formulas
(math-div (math-mul 180 a) '(var pi var-pi)))
((math-infinitep a) a)
- (t (list 'calcFunc-deg a)))
-)
+ (t (list 'calcFunc-deg a))))
(put 'calcFunc-deg 'math-expandable t)
-
+;;; calc-math.el ends here