]> git.eshelyaron.com Git - emacs.git/commitdiff
Further namespace updates for cl.texi
authorGlenn Morris <rgm@gnu.org>
Wed, 24 Oct 2012 07:41:11 +0000 (00:41 -0700)
committerGlenn Morris <rgm@gnu.org>
Wed, 24 Oct 2012 07:41:11 +0000 (00:41 -0700)
* doc/misc/cl.texi (Basic Setf, Macros, Declarations, Symbols, Numbers)
(Sequences, Lists, Structures, Assertions, Efficiency Concerns)
(Efficiency Concerns, Efficiency Concerns)
(Common Lisp Compatibility, Old CL Compatibility):
Further updates for cl-lib namespace.

doc/misc/ChangeLog
doc/misc/cl.texi

index 5535fdd77f0de6e21cb759dddc259e28b9fec270..76859e09d4205626e013f723a6f435c214410c76 100644 (file)
@@ -1,3 +1,11 @@
+2012-10-24  Glenn Morris  <rgm@gnu.org>
+
+       * cl.texi (Basic Setf, Macros, Declarations, Symbols, Numbers)
+       (Sequences, Lists, Structures, Assertions, Efficiency Concerns)
+       (Efficiency Concerns, Efficiency Concerns)
+       (Common Lisp Compatibility, Old CL Compatibility):
+       Further updates for cl-lib namespace.
+
 2012-10-24  Paul Eggert  <eggert@penguin.cs.ucla.edu>
 
        Update manual for new time stamp format (Bug#12706).
index 12fd76e2e1c454f99322c7bf10e3b19386c6e358..5908e94be0263692b5d76bb2a200b7ae8e1dc611 100644 (file)
@@ -1047,11 +1047,11 @@ The @code{setf} macro takes care to evaluate all subforms in
 the proper left-to-right order; for example,
 
 @example
-(setf (aref vec (incf i)) i)
+(setf (aref vec (cl-incf i)) i)
 @end example
 
 @noindent
-looks like it will evaluate @code{(incf i)} exactly once, before the
+looks like it will evaluate @code{(cl-incf i)} exactly once, before the
 following access to @code{i}; the @code{setf} expander will insert
 temporary variables as necessary to ensure that it does in fact work
 this way no matter what setf-method is defined for @code{aref}.
@@ -1081,7 +1081,7 @@ This package defines a number of other macros besides @code{setf}
 that operate on generalized variables.  Many are interesting and
 useful even when the @var{place} is just a variable name.
 
-@defspec psetf [place form]@dots{}
+@defspec cl-psetf [place form]@dots{}
 This macro is to @code{setf} what @code{cl-psetq} is to @code{setq}:
 When several @var{place}s and @var{form}s are involved, the
 assignments take place in parallel rather than sequentially.
@@ -1089,17 +1089,17 @@ Specifically, all subforms are evaluated from left to right, then
 all the assignments are done (in an undefined order).
 @end defspec
 
-@defspec incf place &optional x
+@defspec cl-incf place &optional x
 This macro increments the number stored in @var{place} by one, or
 by @var{x} if specified.  The incremented value is returned.  For
-example, @code{(incf i)} is equivalent to @code{(setq i (1+ i))}, and
-@code{(incf (car x) 2)} is equivalent to @code{(setcar x (+ (car x) 2))}.
+example, @code{(cl-incf i)} is equivalent to @code{(setq i (1+ i))}, and
+@code{(cl-incf (car x) 2)} is equivalent to @code{(setcar x (+ (car x) 2))}.
 
 Once again, care is taken to preserve the ``apparent'' order of
 evaluation.  For example,
 
 @example
-(incf (aref vec (incf i)))
+(cl-incf (aref vec (cl-incf i)))
 @end example
 
 @noindent
@@ -1109,27 +1109,27 @@ does, which means the above form is @emph{not} equivalent to the
 ``obvious'' expansion,
 
 @example
-(setf (aref vec (incf i)) (1+ (aref vec (incf i))))   ; Wrong!
+(setf (aref vec (cl-incf i)) (1+ (aref vec (cl-incf i))))   ; Wrong!
 @end example
 
 @noindent
 but rather to something more like
 
 @example
-(let ((temp (incf i)))
+(let ((temp (cl-incf i)))
   (setf (aref vec temp) (1+ (aref vec temp))))
 @end example
 
 @noindent
-Again, all of this is taken care of automatically by @code{incf} and
+Again, all of this is taken care of automatically by @code{cl-incf} and
 the other generalized-variable macros.
 
-As a more Emacs-specific example of @code{incf}, the expression
-@code{(incf (point) @var{n})} is essentially equivalent to
+As a more Emacs-specific example of @code{cl-incf}, the expression
+@code{(cl-incf (point) @var{n})} is essentially equivalent to
 @code{(forward-char @var{n})}.
 @end defspec
 
-@defspec decf place &optional x
+@defspec cl-decf place &optional x
 This macro decrements the number stored in @var{place} by one, or
 by @var{x} if specified.
 @end defspec
@@ -1256,7 +1256,7 @@ It does the bindings in sequential rather than parallel order.
 This is the ``generic'' modify macro.  It calls @var{function},
 which should be an unquoted function name, macro name, or lambda.
 It passes @var{place} and @var{args} as arguments, and assigns the
-result back to @var{place}.  For example, @code{(incf @var{place}
+result back to @var{place}.  For example, @code{(cl-incf @var{place}
 @var{n})} is the same as @code{(callf + @var{place} @var{n})}.
 Some more examples:
 
@@ -1279,7 +1279,7 @@ equivalent to @code{(callf2 cons @var{x} @var{place})}.
 @end defspec
 
 The @code{callf} and @code{callf2} macros serve as building
-blocks for other macros like @code{incf}, @code{pushnew}, and
+blocks for other macros like @code{cl-incf}, @code{pushnew}, and
 @code{define-modify-macro}.  The @code{letf} and @code{letf*}
 macros are used in the processing of symbol macros;
 @pxref{Macro Bindings}.
@@ -1294,7 +1294,7 @@ user to extend generalized variables in various ways.
 
 @defspec define-modify-macro name arglist function [doc-string]
 This macro defines a ``read-modify-write'' macro similar to
-@code{incf} and @code{decf}.  The macro @var{name} is defined
+@code{cl-incf} and @code{cl-decf}.  The macro @var{name} is defined
 to take a @var{place} argument followed by additional arguments
 described by @var{arglist}.  The call
 
@@ -1306,7 +1306,7 @@ described by @var{arglist}.  The call
 will be expanded to
 
 @example
-(callf @var{func} @var{place} @var{args}...)
+(cl-callf @var{func} @var{place} @var{args}...)
 @end example
 
 @noindent
@@ -1319,8 +1319,8 @@ which in turn is roughly equivalent to
 For example:
 
 @example
-(define-modify-macro incf (&optional (n 1)) +)
-(define-modify-macro concatf (&rest args) concat)
+(define-modify-macro cl-incf (&optional (n 1)) +)
+(define-modify-macro cl-concatf (&rest args) concat)
 @end example
 
 Note that @code{&key} is not allowed in @var{arglist}, but
@@ -1399,7 +1399,7 @@ For example, the simple form of @code{defsetf} is shorthand for
 
 The Lisp form that is returned can access the arguments from
 @var{arglist} and @var{store-var} in an unrestricted fashion;
-macros like @code{setf} and @code{incf} which invoke this
+macros like @code{setf} and @code{cl-incf} which invoke this
 setf-method will insert temporary variables as needed to make
 sure the apparent order of evaluation is preserved.
 
@@ -1452,7 +1452,7 @@ temporary variables.  In the setf-methods generated by
 @code{defsetf}, the second return value is simply the list of
 arguments in the place form, and the first return value is a
 list of a corresponding number of temporary variables generated
-by @code{gensym}.  Macros like @code{setf} and @code{incf} which
+by @code{cl-gensym}.  Macros like @code{setf} and @code{cl-incf} which
 use this setf-method will optimize away most temporaries that
 turn out to be unnecessary, so there is little reason for the
 setf-method itself to optimize.
@@ -1463,11 +1463,12 @@ This function returns the setf-method for @var{place}, by
 invoking the definition previously recorded by @code{defsetf}
 or @code{define-setf-method}.  The result is a list of five
 values as described above.  You can use this function to build
-your own @code{incf}-like modify macros.  (Actually, it is
+your own @code{cl-incf}-like modify macros.  (Actually, it is
+@c FIXME?
 better to use the internal functions @code{cl-setf-do-modify}
 and @code{cl-setf-do-store}, which are a bit easier to use and
 which also do a number of optimizations; consult the source
-code for the @code{incf} function for a simple example.)
+code for the @code{cl-incf} function for a simple example.)
 
 The argument @var{env} specifies the ``environment'' to be
 passed on to @code{macroexpand} if @code{get-setf-method} should
@@ -1504,14 +1505,14 @@ defined later.
 These Lisp forms make bindings to variables and function names,
 analogous to Lisp's built-in @code{let} form.
 
-@xref{Modify Macros}, for the @code{letf} and @code{letf*} forms which
+@xref{Modify Macros}, for the @code{letf} and @code{cl-letf*} forms which
 are also related to variable bindings.
 
 @menu
-* Dynamic Bindings::     The @code{progv} form.
+* Dynamic Bindings::     The @code{cl-progv} form.
 * Lexical Bindings::     @code{lexical-let} and lexical closures.
 * Function Bindings::    @code{flet} and @code{labels}.
-* Macro Bindings::       @code{macrolet} and @code{symbol-macrolet}.
+* Macro Bindings::       @code{cl-macrolet} and @code{cl-symbol-macrolet}.
 @end menu
 
 @node Dynamic Bindings
@@ -1519,10 +1520,10 @@ are also related to variable bindings.
 
 @noindent
 The standard @code{let} form binds variables whose names are known
-at compile-time.  The @code{progv} form provides an easy way to
+at compile-time.  The @code{cl-progv} form provides an easy way to
 bind variables whose names are computed at run-time.
 
-@defspec progv symbols values forms@dots{}
+@defspec cl-progv symbols values forms@dots{}
 This form establishes @code{let}-style variable bindings on a
 set of variables computed at run-time.  The expressions
 @var{symbols} and @var{values} are evaluated, and must return lists
@@ -1587,7 +1588,7 @@ call to @code{make-adder} itself.
 @example
 (defun make-counter ()
   (lexical-let ((n 0))
-    (function* (lambda (&optional (m 1)) (incf n m)))))
+    (cl-function (lambda (&optional (m 1)) (cl-incf n m)))))
 (setq count-1 (make-counter))
 (funcall count-1 3)
      @result{} 3
@@ -1696,8 +1697,8 @@ handling.  Attempts to redefine such functions using @code{flet} will
 fail if byte-compiled.  In such cases, use @code{labels} instead.
 
 Functions defined by @code{flet} may use the full Common Lisp
-argument notation supported by @code{defun*}; also, the function
-body is enclosed in an implicit block as if by @code{defun*}.
+argument notation supported by @code{cl-defun}; also, the function
+body is enclosed in an implicit block as if by @code{cl-defun}.
 @xref{Program Structure}.
 @end defspec
 
@@ -1730,21 +1731,21 @@ function, or a use of its name quoted by @code{quote} or
 @noindent
 These forms create local macros and ``symbol macros.''
 
-@defspec macrolet (bindings@dots{}) forms@dots{}
+@defspec cl-macrolet (bindings@dots{}) forms@dots{}
 This form is analogous to @code{flet}, but for macros instead of
 functions.  Each @var{binding} is a list of the same form as the
-arguments to @code{defmacro*} (i.e., a macro name, argument list,
+arguments to @code{cl-defmacro} (i.e., a macro name, argument list,
 and macro-expander forms).  The macro is defined accordingly for
-use within the body of the @code{macrolet}.
+use within the body of the @code{cl-macrolet}.
 
-Because of the nature of macros, @code{macrolet} is lexically
-scoped even in Emacs Lisp:  The @code{macrolet} binding will
+Because of the nature of macros, @code{cl-macrolet} is lexically
+scoped even in Emacs Lisp:  The @code{cl-macrolet} binding will
 affect only calls that appear physically within the body
 @var{forms}, possibly after expansion of other macros in the
 body.
 @end defspec
 
-@defspec symbol-macrolet (bindings@dots{}) forms@dots{}
+@defspec cl-symbol-macrolet (bindings@dots{}) forms@dots{}
 This form creates @dfn{symbol macros}, which are macros that look
 like variable references rather than function calls.  Each
 @var{binding} is a list @samp{(@var{var} @var{expansion})};
@@ -1753,8 +1754,8 @@ replaced by @var{expansion}.
 
 @example
 (setq bar '(5 . 9))
-(symbol-macrolet ((foo (car bar)))
-  (incf foo))
+(cl-symbol-macrolet ((foo (car bar)))
+  (cl-incf foo))
 bar
      @result{} (6 . 9)
 @end example
@@ -1766,23 +1767,23 @@ I.e., @code{(setq foo 4)} in the above would be equivalent to
 Likewise, a @code{let} or @code{let*} binding a symbol macro is
 treated like a @code{letf} or @code{letf*}.  This differs from true
 Common Lisp, where the rules of lexical scoping cause a @code{let}
-binding to shadow a @code{symbol-macrolet} binding.  In this package,
+binding to shadow a @code{cl-symbol-macrolet} binding.  In this package,
 only @code{lexical-let} and @code{lexical-let*} will shadow a symbol
 macro.
 
 There is no analogue of @code{defmacro} for symbol macros; all symbol
-macros are local.  A typical use of @code{symbol-macrolet} is in the
+macros are local.  A typical use of @code{cl-symbol-macrolet} is in the
 expansion of another macro:
 
 @example
-(defmacro* my-dolist ((x list) &rest body)
+(cl-defmacro my-dolist ((x list) &rest body)
   (let ((var (gensym)))
-    (list 'loop 'for var 'on list 'do
-          (list* 'symbol-macrolet (list (list x (list 'car var)))
+    (list 'cl-loop 'for var 'on list 'do
+          (cl-list* 'cl-symbol-macrolet (list (list x (list 'car var)))
                  body))))
 
 (setq mylist '(1 2 3 4))
-(my-dolist (x mylist) (incf x))
+(my-dolist (x mylist) (cl-incf x))
 mylist
      @result{} (2 3 4 5)
 @end example
@@ -1794,19 +1795,19 @@ reference onto the elements of the list.  The @code{my-dolist} call
 shown here expands to
 
 @example
-(loop for G1234 on mylist do
-      (symbol-macrolet ((x (car G1234)))
-        (incf x)))
+(cl-loop for G1234 on mylist do
+      (cl-symbol-macrolet ((x (car G1234)))
+        (cl-incf x)))
 @end example
 
 @noindent
 which in turn expands to
 
 @example
-(loop for G1234 on mylist do (incf (car G1234)))
+(cl-loop for G1234 on mylist do (cl-incf (car G1234)))
 @end example
 
-@xref{Loop Facility}, for a description of the @code{loop} macro.
+@xref{Loop Facility}, for a description of the @code{cl-loop} macro.
 This package defines a nonstandard @code{in-ref} loop clause that
 works much like @code{my-dolist}.
 @end defspec
@@ -1818,11 +1819,11 @@ works much like @code{my-dolist}.
 These conditional forms augment Emacs Lisp's simple @code{if},
 @code{and}, @code{or}, and @code{cond} forms.
 
-@defspec case keyform clause@dots{}
+@defspec cl-case keyform clause@dots{}
 This macro evaluates @var{keyform}, then compares it with the key
 values listed in the various @var{clause}s.  Whichever clause matches
 the key is executed; comparison is done by @code{eql}.  If no clause
-matches, the @code{case} form returns @code{nil}.  The clauses are
+matches, the @code{cl-case} form returns @code{nil}.  The clauses are
 of the form
 
 @example
@@ -1846,7 +1847,7 @@ four things depending on whether it is an @samp{a}, a @samp{b},
 a @key{RET} or @kbd{C-j}, or anything else.
 
 @example
-(case (read-char)
+(cl-case (read-char)
   (?a (do-a-thing))
   (?b (do-b-thing))
   ((?\r ?\n) (do-ret-thing))
@@ -1854,20 +1855,20 @@ a @key{RET} or @kbd{C-j}, or anything else.
 @end example
 @end defspec
 
-@defspec ecase keyform clause@dots{}
-This macro is just like @code{case}, except that if the key does
+@defspec cl-ecase keyform clause@dots{}
+This macro is just like @code{cl-case}, except that if the key does
 not match any of the clauses, an error is signaled rather than
 simply returning @code{nil}.
 @end defspec
 
-@defspec typecase keyform clause@dots{}
-This macro is a version of @code{case} that checks for types
+@defspec cl-typecase keyform clause@dots{}
+This macro is a version of @code{cl-case} that checks for types
 rather than values.  Each @var{clause} is of the form
 @samp{(@var{type} @var{body}...)}.  @xref{Type Predicates},
 for a description of type specifiers.  For example,
 
 @example
-(typecase x
+(cl-typecase x
   (integer (munch-integer x))
   (float (munch-float x))
   (string (munch-integer (string-to-int x)))
@@ -1879,8 +1880,8 @@ The type specifier @code{t} matches any type of object; the word
 several types, use an @code{(or ...)} type specifier.
 @end defspec
 
-@defspec etypecase keyform clause@dots{}
-This macro is just like @code{typecase}, except that if the key does
+@defspec cl-etypecase keyform clause@dots{}
+This macro is just like @code{cl-typecase}, except that if the key does
 not match any of the clauses, an error is signaled rather than
 simply returning @code{nil}.
 @end defspec
@@ -1891,26 +1892,26 @@ simply returning @code{nil}.
 @noindent
 Common Lisp @dfn{blocks} provide a non-local exit mechanism very
 similar to @code{catch} and @code{throw}, but lexically rather than
-dynamically scoped.  This package actually implements @code{block}
+dynamically scoped.  This package actually implements @code{cl-block}
 in terms of @code{catch}; however, the lexical scoping allows the
 optimizing byte-compiler to omit the costly @code{catch} step if the
-body of the block does not actually @code{return-from} the block.
+body of the block does not actually @code{cl-return-from} the block.
 
-@defspec block name forms@dots{}
+@defspec cl-block name forms@dots{}
 The @var{forms} are evaluated as if by a @code{progn}.  However,
-if any of the @var{forms} execute @code{(return-from @var{name})},
-they will jump out and return directly from the @code{block} form.
-The @code{block} returns the result of the last @var{form} unless
-a @code{return-from} occurs.
+if any of the @var{forms} execute @code{(cl-return-from @var{name})},
+they will jump out and return directly from the @code{cl-block} form.
+The @code{cl-block} returns the result of the last @var{form} unless
+a @code{cl-return-from} occurs.
 
-The @code{block}/@code{return-from} mechanism is quite similar to
+The @code{cl-block}/@code{cl-return-from} mechanism is quite similar to
 the @code{catch}/@code{throw} mechanism.  The main differences are
 that block @var{name}s are unevaluated symbols, rather than forms
 (such as quoted symbols) which evaluate to a tag at run-time; and
 also that blocks are lexically scoped whereas @code{catch}/@code{throw}
 are dynamically scoped.  This means that functions called from the
 body of a @code{catch} can also @code{throw} to the @code{catch},
-but the @code{return-from} referring to a block name must appear
+but the @code{cl-return-from} referring to a block name must appear
 physically within the @var{forms} that make up the body of the block.
 They may not appear within other called functions, although they may
 appear within macro expansions or @code{lambda}s in the body.  Block
@@ -1919,11 +1920,11 @@ names and @code{catch} names form independent name-spaces.
 In true Common Lisp, @code{defun} and @code{defmacro} surround
 the function or expander bodies with implicit blocks with the
 same name as the function or macro.  This does not occur in Emacs
-Lisp, but this package provides @code{defun*} and @code{defmacro*}
+Lisp, but this package provides @code{cl-defun} and @code{cl-defmacro}
 forms which do create the implicit block.
 
 The Common Lisp looping constructs defined by this package,
-such as @code{loop} and @code{dolist}, also create implicit blocks
+such as @code{cl-loop} and @code{cl-dolist}, also create implicit blocks
 just as in Common Lisp.
 
 Because they are implemented in terms of Emacs Lisp @code{catch}
@@ -1931,22 +1932,22 @@ and @code{throw}, blocks have the same overhead as actual
 @code{catch} constructs (roughly two function calls).  However,
 the optimizing byte compiler will optimize away the @code{catch}
 if the block does
-not in fact contain any @code{return} or @code{return-from} calls
-that jump to it.  This means that @code{do} loops and @code{defun*}
-functions which don't use @code{return} don't pay the overhead to
+not in fact contain any @code{cl-return} or @code{cl-return-from} calls
+that jump to it.  This means that @code{cl-do} loops and @code{cl-defun}
+functions which don't use @code{cl-return} don't pay the overhead to
 support it.
 @end defspec
 
-@defspec return-from name [result]
+@defspec cl-return-from name [result]
 This macro returns from the block named @var{name}, which must be
 an (unevaluated) symbol.  If a @var{result} form is specified, it
 is evaluated to produce the result returned from the @code{block}.
 Otherwise, @code{nil} is returned.
 @end defspec
 
-@defspec return [result]
-This macro is exactly like @code{(return-from nil @var{result})}.
-Common Lisp loops like @code{do} and @code{dolist} implicitly enclose
+@defspec cl-return [result]
+This macro is exactly like @code{(cl-return-from nil @var{result})}.
+Common Lisp loops like @code{cl-do} and @code{cl-dolist} implicitly enclose
 themselves in @code{nil} blocks.
 @end defspec
 
@@ -1958,27 +1959,27 @@ The macros described here provide more sophisticated, high-level
 looping constructs to complement Emacs Lisp's basic @code{while}
 loop.
 
-@defspec loop forms@dots{}
+@defspec cl-loop forms@dots{}
 The @code{CL} package supports both the simple, old-style meaning of
 @code{loop} and the extremely powerful and flexible feature known as
 the @dfn{Loop Facility} or @dfn{Loop Macro}.  This more advanced
 facility is discussed in the following section; @pxref{Loop Facility}.
 The simple form of @code{loop} is described here.
 
-If @code{loop} is followed by zero or more Lisp expressions,
-then @code{(loop @var{exprs}@dots{})} simply creates an infinite
+If @code{cl-loop} is followed by zero or more Lisp expressions,
+then @code{(cl-loop @var{exprs}@dots{})} simply creates an infinite
 loop executing the expressions over and over.  The loop is
 enclosed in an implicit @code{nil} block.  Thus,
 
 @example
-(loop (foo)  (if (no-more) (return 72))  (bar))
+(cl-loop (foo)  (if (no-more) (return 72))  (bar))
 @end example
 
 @noindent
 is exactly equivalent to
 
 @example
-(block nil (while t (foo)  (if (no-more) (return 72))  (bar)))
+(cl-block nil (while t (foo)  (if (no-more) (return 72))  (bar)))
 @end example
 
 If any of the expressions are plain symbols, the loop is instead
@@ -1988,7 +1989,7 @@ in the above notation would simply access and throw away the
 value of a variable.)
 @end defspec
 
-@defspec do (spec@dots{}) (end-test [result@dots{}]) forms@dots{}
+@defspec cl-do (spec@dots{}) (end-test [result@dots{}]) forms@dots{}
 This macro creates a general iterative loop.  Each @var{spec} is
 of the form
 
@@ -2006,8 +2007,8 @@ begins.  Once the @var{end-test} becomes true, the @var{result}
 forms are evaluated (with the @var{var}s still bound to their
 values) to produce the result returned by @code{do}.
 
-The entire @code{do} loop is enclosed in an implicit @code{nil}
-block, so that you can use @code{(return)} to break out of the
+The entire @code{cl-do} loop is enclosed in an implicit @code{nil}
+block, so that you can use @code{(cl-return)} to break out of the
 loop at any time.
 
 If there are no @var{result} forms, the loop returns @code{nil}.
@@ -2023,21 +2024,21 @@ in place of @samp{(@var{var})}, again following the analogy with
 This example (from Steele) illustrates a loop which applies the
 function @code{f} to successive pairs of values from the lists
 @code{foo} and @code{bar}; it is equivalent to the call
-@code{(mapcar* 'f foo bar)}.  Note that this loop has no body
+@code{(cl-mapcar 'f foo bar)}.  Note that this loop has no body
 @var{forms} at all, performing all its work as side effects of
 the rest of the loop.
 
 @example
-(do ((x foo (cdr x))
-     (y bar (cdr y))
-     (z nil (cons (f (car x) (car y)) z)))
-  ((or (null x) (null y))
-   (nreverse z)))
+(cl-do ((x foo (cdr x))
+        (y bar (cdr y))
+        (z nil (cons (f (car x) (car y)) z)))
+     ((or (null x) (null y))
+      (nreverse z)))
 @end example
 @end defspec
 
-@defspec do* (spec@dots{}) (end-test [result@dots{}]) forms@dots{}
-This is to @code{do} what @code{let*} is to @code{let}.  In
+@defspec cl-do* (spec@dots{}) (end-test [result@dots{}]) forms@dots{}
+This is to @code{cl-do} what @code{let*} is to @code{let}.  In
 particular, the initial values are bound as if by @code{let*}
 rather than @code{let}, and the steps are assigned as if by
 @code{setq} rather than @code{cl-psetq}.
@@ -2045,18 +2046,18 @@ rather than @code{let}, and the steps are assigned as if by
 Here is another way to write the above loop:
 
 @example
-(do* ((xp foo (cdr xp))
-      (yp bar (cdr yp))
-      (x (car xp) (car xp))
-      (y (car yp) (car yp))
-      z)
+(cl-do* ((xp foo (cdr xp))
+         (yp bar (cdr yp))
+         (x (car xp) (car xp))
+         (y (car yp) (car yp))
+         z)
   ((or (null xp) (null yp))
    (nreverse z))
   (push (f x y) z))
 @end example
 @end defspec
 
-@defspec dolist (var list [result]) forms@dots{}
+@defspec cl-dolist (var list [result]) forms@dots{}
 This is a more specialized loop which iterates across the elements
 of a list.  @var{list} should evaluate to a list; the body @var{forms}
 are executed with @var{var} bound to each element of the list in
@@ -2066,7 +2067,7 @@ the loop.  Unlike with Emacs's built in @code{dolist}, the loop is
 surrounded by an implicit @code{nil} block.
 @end defspec
 
-@defspec dotimes (var count [result]) forms@dots{}
+@defspec cl-dotimes (var count [result]) forms@dots{}
 This is a more specialized loop which iterates a specified number
 of times.  The body is executed with @var{var} bound to the integers
 from zero (inclusive) to @var{count} (exclusive), in turn.  Then
@@ -2076,7 +2077,7 @@ to get the return value for the loop form.  Unlike with Emacs's built in
 @code{dolist}, the loop is surrounded by an implicit @code{nil} block.
 @end defspec
 
-@defspec do-symbols (var [obarray [result]]) forms@dots{}
+@defspec cl-do-symbols (var [obarray [result]]) forms@dots{}
 This loop iterates over all interned symbols.  If @var{obarray}
 is specified and is not @code{nil}, it loops over all symbols in
 that obarray.  For each symbol, the body @var{forms} are evaluated
@@ -2086,8 +2087,8 @@ is evaluated (with @var{var} bound to @code{nil}) to get the return
 value.  The loop is surrounded by an implicit @code{nil} block.
 @end defspec
 
-@defspec do-all-symbols (var [result]) forms@dots{}
-This is identical to @code{do-symbols} except that the @var{obarray}
+@defspec cl-do-all-symbols (var [result]) forms@dots{}
+This is identical to @code{cl-do-symbols} except that the @var{obarray}
 argument is omitted; it always iterates over the default obarray.
 @end defspec
 
@@ -2108,8 +2109,8 @@ construct called the ``Loop Facility'' or ``@code{loop} macro,''
 with an easy-to-use but very powerful and expressive syntax.
 
 @menu
-* Loop Basics::           @code{loop} macro, basic clause structure.
-* Loop Examples::         Working examples of @code{loop} macro.
+* Loop Basics::           @code{cl-loop} macro, basic clause structure.
+* Loop Examples::         Working examples of @code{cl-loop} macro.
 * For Clauses::           Clauses introduced by @code{for} or @code{as}.
 * Iteration Clauses::     @code{repeat}, @code{while}, @code{thereis}, etc.
 * Accumulation Clauses::  @code{collect}, @code{sum}, @code{maximize}, etc.
@@ -2120,19 +2121,19 @@ with an easy-to-use but very powerful and expressive syntax.
 @subsection Loop Basics
 
 @noindent
-The @code{loop} macro essentially creates a mini-language within
+The @code{cl-loop} macro essentially creates a mini-language within
 Lisp that is specially tailored for describing loops.  While this
 language is a little strange-looking by the standards of regular Lisp,
 it turns out to be very easy to learn and well-suited to its purpose.
 
-Since @code{loop} is a macro, all parsing of the loop language
-takes place at byte-compile time; compiled @code{loop}s are just
+Since @code{cl-loop} is a macro, all parsing of the loop language
+takes place at byte-compile time; compiled @code{cl-loop}s are just
 as efficient as the equivalent @code{while} loops written longhand.
 
-@defspec loop clauses@dots{}
+@defspec cl-loop clauses@dots{}
 A loop construct consists of a series of @var{clause}s, each
 introduced by a symbol like @code{for} or @code{do}.  Clauses
-are simply strung together in the argument list of @code{loop},
+are simply strung together in the argument list of @code{cl-loop},
 with minimal extra parentheses.  The various types of clauses
 specify initializations, such as the binding of temporary
 variables, actions to be taken in the loop, stepping actions,
@@ -2142,9 +2143,9 @@ Common Lisp specifies a certain general order of clauses in a
 loop:
 
 @example
-(loop @var{name-clause}
-      @var{var-clauses}@dots{}
-      @var{action-clauses}@dots{})
+(cl-loop @var{name-clause}
+         @var{var-clauses}@dots{}
+         @var{action-clauses}@dots{})
 @end example
 
 The @var{name-clause} optionally gives a name to the implicit
@@ -2155,7 +2156,7 @@ be modified or iterated throughout the course of the loop.  The
 @var{action-clauses} are things to be done during the loop, such
 as computing, collecting, and returning values.
 
-The Emacs version of the @code{loop} macro is less restrictive about
+The Emacs version of the @code{cl-loop} macro is less restrictive about
 the order of clauses, but things will behave most predictably if
 you put the variable-binding clauses @code{with}, @code{for}, and
 @code{repeat} before the action clauses.  As in Common Lisp,
@@ -2180,25 +2181,25 @@ for additional discussion and examples of the @code{loop} macro.
 
 @noindent
 Before listing the full set of clauses that are allowed, let's
-look at a few example loops just to get a feel for the @code{loop}
+look at a few example loops just to get a feel for the @code{cl-loop}
 language.
 
 @example
-(loop for buf in (buffer-list)
-      collect (buffer-file-name buf))
+(cl-loop for buf in (buffer-list)
+         collect (buffer-file-name buf))
 @end example
 
 @noindent
 This loop iterates over all Emacs buffers, using the list
 returned by @code{buffer-list}.  For each buffer @code{buf},
 it calls @code{buffer-file-name} and collects the results into
-a list, which is then returned from the @code{loop} construct.
+a list, which is then returned from the @code{cl-loop} construct.
 The result is a list of the file names of all the buffers in
 Emacs's memory.  The words @code{for}, @code{in}, and @code{collect}
-are reserved words in the @code{loop} language.
+are reserved words in the @code{cl-loop} language.
 
 @example
-(loop repeat 20 do (insert "Yowsa\n"))
+(cl-loop repeat 20 do (insert "Yowsa\n"))
 @end example
 
 @noindent
@@ -2206,7 +2207,7 @@ This loop inserts the phrase ``Yowsa'' twenty times in the
 current buffer.
 
 @example
-(loop until (eobp) do (munch-line) (forward-line 1))
+(cl-loop until (eobp) do (munch-line) (forward-line 1))
 @end example
 
 @noindent
@@ -2215,7 +2216,7 @@ of the buffer.  If point is already at the end of the buffer,
 the loop exits immediately.
 
 @example
-(loop do (munch-line) until (eobp) do (forward-line 1))
+(cl-loop do (munch-line) until (eobp) do (forward-line 1))
 @end example
 
 @noindent
@@ -2223,10 +2224,10 @@ This loop is similar to the above one, except that @code{munch-line}
 is always called at least once.
 
 @example
-(loop for x from 1 to 100
-      for y = (* x x)
-      until (>= y 729)
-      finally return (list x (= y 729)))
+(cl-loop for x from 1 to 100
+         for y = (* x x)
+         until (>= y 729)
+         finally return (list x (= y 729)))
 @end example
 
 @noindent
@@ -2246,7 +2247,7 @@ Note that even though this loop contains three clauses (two
 @code{for}s and an @code{until}) that would have been enough to
 define loops all by themselves, it still creates a single loop
 rather than some sort of triple-nested loop.  You must explicitly
-nest your @code{loop} constructs if you want nested loops.
+nest your @code{cl-loop} constructs if you want nested loops.
 
 @node For Clauses
 @subsection For Clauses
@@ -2272,7 +2273,7 @@ The variable is bound around the loop as if by @code{let}:
 
 @example
 (setq i 'happy)
-(loop for i from 1 to 10 do (do-something-with i))
+(cl-loop for i from 1 to 10 do (do-something-with i))
 i
      @result{} happy
 @end example
@@ -2302,10 +2303,10 @@ which are like @code{upto} and @code{downto} respectively except
 that they are exclusive rather than inclusive limits:
 
 @example
-(loop for x to 10 collect x)
-     @result{} (0 1 2 3 4 5 6 7 8 9 10)
-(loop for x below 10 collect x)
-     @result{} (0 1 2 3 4 5 6 7 8 9)
+(cl-loop for x to 10 collect x)
+        @result{} (0 1 2 3 4 5 6 7 8 9 10)
+(cl-loop for x below 10 collect x)
+        @result{} (0 1 2 3 4 5 6 7 8 9)
 @end example
 
 The @code{by} value is always positive, even for downward-counting
@@ -2320,25 +2321,25 @@ is used to traverse the list instead of @code{cdr}; it must be a
 function taking one argument.  For example:
 
 @example
-(loop for x in '(1 2 3 4 5 6) collect (* x x))
-     @result{} (1 4 9 16 25 36)
-(loop for x in '(1 2 3 4 5 6) by 'cddr collect (* x x))
-     @result{} (1 9 25)
+(cl-loop for x in '(1 2 3 4 5 6) collect (* x x))
+        @result{} (1 4 9 16 25 36)
+(cl-loop for x in '(1 2 3 4 5 6) by 'cddr collect (* x x))
+        @result{} (1 9 25)
 @end example
 
 @item for @var{var} on @var{list} by @var{function}
 This clause iterates @var{var} over all the cons cells of @var{list}.
 
 @example
-(loop for x on '(1 2 3 4) collect x)
-     @result{} ((1 2 3 4) (2 3 4) (3 4) (4))
+(cl-loop for x on '(1 2 3 4) collect x)
+        @result{} ((1 2 3 4) (2 3 4) (3 4) (4))
 @end example
 
 With @code{by}, there is no real reason that the @code{on} expression
 must be a list.  For example:
 
 @example
-(loop for x on first-animal by 'next-animal collect x)
+(cl-loop for x on first-animal by 'next-animal collect x)
 @end example
 
 @noindent
@@ -2352,7 +2353,7 @@ a @code{setf}-able ``reference'' onto the elements of the list
 rather than just a temporary variable.  For example,
 
 @example
-(loop for x in-ref my-list do (incf x))
+(cl-loop for x in-ref my-list do (cl-incf x))
 @end example
 
 @noindent
@@ -2364,8 +2365,8 @@ This clause iterates @var{var} over all the elements of @var{array},
 which may be a vector or a string.
 
 @example
-(loop for x across "aeiou"
-      do (use-vowel (char-to-string x)))
+(cl-loop for x across "aeiou"
+         do (use-vowel (char-to-string x)))
 @end example
 
 @item for @var{var} across-ref @var{array}
@@ -2397,10 +2398,10 @@ an unspecified order.
 As an example,
 
 @example
-(loop for sym being the symbols
-      when (fboundp sym)
-      when (string-match "^map" (symbol-name sym))
-      collect sym)
+(cl-loop for sym being the symbols
+         when (fboundp sym)
+         when (string-match "^map" (symbol-name sym))
+         collect sym)
 @end example
 
 @noindent
@@ -2411,7 +2412,7 @@ are also recognized but are equivalent to @code{symbols} in Emacs Lisp.
 
 Due to a minor implementation restriction, it will not work to have
 more than one @code{for} clause iterating over symbols, hash tables,
-keymaps, overlays, or intervals in a given @code{loop}.  Fortunately,
+keymaps, overlays, or intervals in a given @code{cl-loop}.  Fortunately,
 it would rarely if ever be useful to do so.  It @emph{is} valid to mix
 one of these types of clauses with other clauses like @code{for ... to}
 or @code{while}.
@@ -2423,10 +2424,10 @@ This clause iterates over the entries in @var{hash-table} with
 a second variable to the opposite part.
 
 @example
-(loop for k being the hash-keys of h
-            using (hash-values v)
-      do
-      (message "key %S -> value %S" k v))
+(cl-loop for k being the hash-keys of h
+               using (hash-values v)
+         do
+         (message "key %S -> value %S" k v))
 @end example
 
 @item for @var{var} being the key-codes of @var{keymap}
@@ -2438,10 +2439,10 @@ A @code{using} clause can access both the codes and the bindings
 together.
 
 @example
-(loop for c being the key-codes of (current-local-map)
-            using (key-bindings b)
-      do
-      (message "key %S -> binding %S" c b))
+(cl-loop for c being the key-codes of (current-local-map)
+               using (key-bindings b)
+         do
+         (message "key %S -> binding %S" c b))
 @end example
 
 
@@ -2497,8 +2498,8 @@ and successive iterations it will be set by evaluating @var{expr2}
 these two loops are effectively the same:
 
 @example
-(loop for x on my-list by 'cddr do ...)
-(loop for x = my-list then (cddr x) while x do ...)
+(cl-loop for x on my-list by 'cddr do ...)
+(cl-loop for x = my-list then (cddr x) while x do ...)
 @end example
 
 Note that this type of @code{for} clause does not imply any sort
@@ -2509,7 +2510,7 @@ If you omit the @code{then} term, @var{expr1} is used both for
 the initial setting and for successive settings:
 
 @example
-(loop for x = (random) when (> x 0) return x)
+(cl-loop for x = (random) when (> x 0) return x)
 @end example
 
 @noindent
@@ -2524,10 +2525,10 @@ in which case they are processed in parallel (as if by @code{let}
 and @code{cl-psetq}).
 
 @example
-(loop for x below 5 for y = nil then x collect (list x y))
-     @result{} ((0 nil) (1 1) (2 2) (3 3) (4 4))
-(loop for x below 5 and y = nil then x collect (list x y))
-     @result{} ((0 nil) (1 0) (2 1) (3 2) (4 3))
+(cl-loop for x below 5 for y = nil then x collect (list x y))
+        @result{} ((0 nil) (1 1) (2 2) (3 3) (4 4))
+(cl-loop for x below 5 and y = nil then x collect (list x y))
+        @result{} ((0 nil) (1 0) (2 1) (3 2) (4 3))
 @end example
 
 @noindent
@@ -2537,7 +2538,7 @@ that was just set by the previous clause; in the second loop,
 based on the value of @code{x} left over from the previous time
 through the loop.
 
-Another feature of the @code{loop} macro is @dfn{destructuring},
+Another feature of the @code{cl-loop} macro is @dfn{destructuring},
 similar in concept to the destructuring provided by @code{defmacro}.
 The @var{var} part of any @code{for} clause can be given as a list
 of variables instead of a single variable.  The values produced
@@ -2545,8 +2546,8 @@ during loop execution must be lists; the values in the lists are
 stored in the corresponding variables.
 
 @example
-(loop for (x y) in '((2 3) (4 5) (6 7)) collect (+ x y))
-     @result{} (5 9 13)
+(cl-loop for (x y) in '((2 3) (4 5) (6 7)) collect (+ x y))
+        @result{} (5 9 13)
 @end example
 
 In loop destructuring, if there are more values than variables
@@ -2558,9 +2559,9 @@ lists of variables like @code{(x . y)} are allowed, so for example
 to process an alist
 
 @example
-(loop for (key . value) in '((a . 1) (b . 2))
-      collect value)
-     @result{} (1 2)
+(cl-loop for (key . value) in '((a . 1) (b . 2))
+         collect value)
+        @result{} (1 2)
 @end example
 
 @node Iteration Clauses
@@ -2577,8 +2578,8 @@ This clause simply counts up to the specified number using an
 internal temporary variable.  The loops
 
 @example
-(loop repeat (1+ n) do ...)
-(loop for temp to n do ...)
+(cl-loop repeat (1+ n) do ...)
+(cl-loop for temp to n do ...)
 @end example
 
 @noindent
@@ -2593,7 +2594,7 @@ that surrounds the second one:
 
 @example
 (while @var{cond} @var{forms}@dots{})
-(loop while @var{cond} do @var{forms}@dots{})
+(cl-loop while @var{cond} do @var{forms}@dots{})
 @end example
 
 @item until @var{condition}
@@ -2607,7 +2608,7 @@ the @code{finally} clauses are not executed.  If all the conditions
 were non-@code{nil}, the loop returns @code{t}:
 
 @example
-(if (loop for size in size-list always (> size 10))
+(if (cl-loop for size in size-list always (> size 10))
     (some-big-sizes)
   (no-big-sizes))
 @end example
@@ -2684,11 +2685,11 @@ It is valid for several accumulation clauses of the same type to
 accumulate into the same place.  From Steele:
 
 @example
-(loop for name in '(fred sue alice joe june)
-      for kids in '((bob ken) () () (kris sunshine) ())
-      collect name
-      append kids)
-     @result{} (fred bob ken sue alice joe kris sunshine june)
+(cl-loop for name in '(fred sue alice joe june)
+         for kids in '((bob ken) () () (kris sunshine) ())
+         collect name
+         append kids)
+        @result{} (fred bob ken sue alice joe kris sunshine june)
 @end example
 
 @node Other Clauses
@@ -2704,17 +2705,17 @@ otherwise leaves the variable alone during the loop.  The following
 loops are basically equivalent:
 
 @example
-(loop with x = 17 do ...)
-(let ((x 17)) (loop do ...))
-(loop for x = 17 then x do ...)
+(cl-loop with x = 17 do ...)
+(let ((x 17)) (cl-loop do ...))
+(cl-loop for x = 17 then x do ...)
 @end example
 
 Naturally, the variable @var{var} might be used for some purpose
 in the rest of the loop.  For example:
 
 @example
-(loop for x in my-list  with res = nil  do (push x res)
-      finally return res)
+(cl-loop for x in my-list  with res = nil  do (push x res)
+         finally return res)
 @end example
 
 This loop inserts the elements of @code{my-list} at the front of
@@ -2749,18 +2750,18 @@ by the name @code{it} in the ``then'' part.  For example:
 @example
 (setq funny-numbers '(6 13 -1))
      @result{} (6 13 -1)
-(loop for x below 10
-      if (oddp x)
-        collect x into odds
-        and if (memq x funny-numbers) return (cdr it) end
-      else
-        collect x into evens
-      finally return (vector odds evens))
-     @result{} [(1 3 5 7 9) (0 2 4 6 8)]
+(cl-loop for x below 10
+         if (oddp x)
+           collect x into odds
+           and if (memq x funny-numbers) return (cdr it) end
+         else
+           collect x into evens
+         finally return (vector odds evens))
+        @result{} [(1 3 5 7 9) (0 2 4 6 8)]
 (setq funny-numbers '(6 7 13 -1))
      @result{} (6 7 13 -1)
-(loop <@r{same thing again}>)
-     @result{} (13 -1)
+(cl-loop <@r{same thing again}>)
+        @result{} (13 -1)
 @end example
 
 Note the use of @code{and} to put two clauses into the ``then''
@@ -2828,7 +2829,7 @@ was named).  The @code{return} clause is implemented a bit more
 efficiently, though.
 @end table
 
-While there is no high-level way to add user extensions to @code{loop}
+While there is no high-level way to add user extensions to @code{cl-loop}
 (comparable to @code{defsetf} for @code{setf}, say), this package
 does offer two properties called @code{cl-loop-handler} and
 @code{cl-loop-for-handler} which are functions to be called when
@@ -2836,7 +2837,7 @@ a given symbol is encountered as a top-level loop clause or
 @code{for} clause, respectively.  Consult the source code in
 file @file{cl-macs.el} for details.
 
-This package's @code{loop} macro is compatible with that of Common
+This package's @code{cl-loop} macro is compatible with that of Common
 Lisp, except that a few features are not implemented:  @code{loop-finish}
 and data-type specifiers.  Naturally, the @code{for} clauses which
 iterate over keymaps, overlays, intervals, frames, windows, and
@@ -2851,14 +2852,14 @@ functions, by contrast, always return exactly one result.  This
 package makes no attempt to emulate Common Lisp multiple return
 values; Emacs versions of Common Lisp functions that return more
 than one value either return just the first value (as in
-@code{compiler-macroexpand}) or return a list of values (as in
+@code{cl-compiler-macroexpand}) or return a list of values (as in
 @code{get-setf-method}).  This package @emph{does} define placeholders
 for the Common Lisp functions that work with multiple values, but
 in Emacs Lisp these functions simply operate on lists instead.
 The @code{values} form, for example, is a synonym for @code{list}
 in Emacs.
 
-@defspec multiple-value-bind (var@dots{}) values-form forms@dots{}
+@defspec cl-multiple-value-bind (var@dots{}) values-form forms@dots{}
 This form evaluates @var{values-form}, which must return a list of
 values.  It then binds the @var{var}s to these respective values,
 as if by @code{let}, and then executes the body @var{forms}.
@@ -2867,18 +2868,18 @@ are bound to @code{nil}.  If there are fewer @var{var}s than
 values, the excess values are ignored.
 @end defspec
 
-@defspec multiple-value-setq (var@dots{}) form
+@defspec cl-multiple-value-setq (var@dots{}) form
 This form evaluates @var{form}, which must return a list of values.
 It then sets the @var{var}s to these respective values, as if by
 @code{setq}.  Extra @var{var}s or values are treated the same as
-in @code{multiple-value-bind}.
+in @code{cl-multiple-value-bind}.
 @end defspec
 
 The older Quiroz package attempted a more faithful (but still
 imperfect) emulation of Common Lisp multiple values.  The old
 method ``usually'' simulated true multiple values quite well,
 but under certain circumstances would leave spurious return
-values in memory where a later, unrelated @code{multiple-value-bind}
+values in memory where a later, unrelated @code{cl-multiple-value-bind}
 form would see them.
 
 Since a perfect emulation is not feasible in Emacs Lisp, this
@@ -2897,7 +2898,7 @@ for @code{defmacro} due to technical difficulties.
 Destructuring is made available to the user by way of the
 following macro:
 
-@defspec destructuring-bind arglist expr forms@dots{}
+@defspec cl-destructuring-bind arglist expr forms@dots{}
 This macro expands to code which executes @var{forms}, with
 the variables in @var{arglist} bound to the list of values
 returned by @var{expr}.  The @var{arglist} can include all
@@ -2908,11 +2909,11 @@ if @var{expr} returns a list of the wrong number of arguments
 or with incorrect keyword arguments.
 @end defspec
 
-This package also includes the Common Lisp @code{define-compiler-macro}
+This package also includes the Common Lisp @code{cl-define-compiler-macro}
 facility, which allows you to define compile-time expansions and
 optimizations for your functions.
 
-@defspec define-compiler-macro name arglist forms@dots{}
+@defspec cl-define-compiler-macro name arglist forms@dots{}
 This form is similar to @code{defmacro}, except that it only expands
 calls to @var{name} at compile-time; calls processed by the Lisp
 interpreter are not expanded, nor are they expanded by the
@@ -2930,25 +2931,25 @@ For example, here is a simplified version of a definition that
 appears as a standard part of this package:
 
 @example
-(define-compiler-macro member* (&whole form a list &rest keys)
-  (if (and (null keys)
-           (eq (car-safe a) 'quote)
-           (not (floatp-safe (cadr a))))
-      (list 'memq a list)
-    form))
+(cl-define-compiler-macro cl-member (&whole form a list &rest keys)
+     (if (and (null keys)
+              (eq (car-safe a) 'quote)
+              (not (floatp-safe (cadr a))))
+         (list 'memq a list)
+       form))
 @end example
 
 @noindent
-This definition causes @code{(member* @var{a} @var{list})} to change
+This definition causes @code{(cl-member @var{a} @var{list})} to change
 to a call to the faster @code{memq} in the common case where @var{a}
 is a non-floating-point constant; if @var{a} is anything else, or
 if there are any keyword arguments in the call, then the original
-@code{member*} call is left intact.  (The actual compiler macro
-for @code{member*} optimizes a number of other cases, including
+@code{cl-member} call is left intact.  (The actual compiler macro
+for @code{cl-member} optimizes a number of other cases, including
 common @code{:test} predicates.)
 @end defspec
 
-@defun compiler-macroexpand form
+@defun cl-compiler-macroexpand form
 This function is analogous to @code{macroexpand}, except that it
 expands compiler macros rather than regular macros.  It returns
 @var{form} unchanged if it is not a call to a function for which
@@ -2958,8 +2959,8 @@ decided to punt by returning its @code{&whole} argument.  Like
 for which no further expansion is possible.
 @end defun
 
-@xref{Macro Bindings}, for descriptions of the @code{macrolet}
-and @code{symbol-macrolet} forms for making ``local'' macro
+@xref{Macro Bindings}, for descriptions of the @code{cl-macrolet}
+and @code{cl-symbol-macrolet} forms for making ``local'' macro
 definitions.
 
 @node Declarations
@@ -2971,8 +2972,8 @@ mechanism that allows you to give the compiler special hints
 about the types of data that will be stored in particular variables,
 and about the ways those variables and functions will be used.  This
 package defines versions of all the Common Lisp declaration forms:
-@code{declare}, @code{locally}, @code{proclaim}, @code{declaim},
-and @code{the}.
+@code{cl-declare}, @code{cl-locally}, @code{cl-proclaim}, @code{cl-declaim},
+and @code{cl-the}.
 
 Most of the Common Lisp declarations are not currently useful in
 Emacs Lisp, as the byte-code system provides little opportunity
@@ -2982,53 +2983,53 @@ declarations are meaningful when the optimizing byte
 compiler is being used, however.  Under the earlier non-optimizing
 compiler, these declarations will effectively be ignored.
 
-@defun proclaim decl-spec
+@defun cl-proclaim decl-spec
 This function records a ``global'' declaration specified by
-@var{decl-spec}.  Since @code{proclaim} is a function, @var{decl-spec}
+@var{decl-spec}.  Since @code{cl-proclaim} is a function, @var{decl-spec}
 is evaluated and thus should normally be quoted.
 @end defun
 
-@defspec declaim decl-specs@dots{}
-This macro is like @code{proclaim}, except that it takes any number
+@defspec cl-declaim decl-specs@dots{}
+This macro is like @code{cl-proclaim}, except that it takes any number
 of @var{decl-spec} arguments, and the arguments are unevaluated and
-unquoted.  The @code{declaim} macro also puts an @code{(eval-when
+unquoted.  The @code{cl-declaim} macro also puts an @code{(cl-eval-when
 (compile load eval) ...)} around the declarations so that they will
 be registered at compile-time as well as at run-time.  (This is vital,
 since normally the declarations are meant to influence the way the
-compiler treats the rest of the file that contains the @code{declaim}
+compiler treats the rest of the file that contains the @code{cl-declaim}
 form.)
 @end defspec
 
-@defspec declare decl-specs@dots{}
+@defspec cl-declare decl-specs@dots{}
 This macro is used to make declarations within functions and other
 code.  Common Lisp allows declarations in various locations, generally
 at the beginning of any of the many ``implicit @code{progn}s''
 throughout Lisp syntax, such as function bodies, @code{let} bodies,
-etc.  Currently the only declaration understood by @code{declare}
+etc.  Currently the only declaration understood by @code{cl-declare}
 is @code{special}.
 @end defspec
 
-@defspec locally declarations@dots{} forms@dots{}
-In this package, @code{locally} is no different from @code{progn}.
+@defspec cl-locally declarations@dots{} forms@dots{}
+In this package, @code{cl-locally} is no different from @code{progn}.
 @end defspec
 
-@defspec the type form
-Type information provided by @code{the} is ignored in this package;
-in other words, @code{(the @var{type} @var{form})} is equivalent
+@defspec cl-the type form
+Type information provided by @code{cl-the} is ignored in this package;
+in other words, @code{(cl-the @var{type} @var{form})} is equivalent
 to @var{form}.  Future versions of the optimizing byte-compiler may
 make use of this information.
 
 For example, @code{mapcar} can map over both lists and arrays.  It is
 hard for the compiler to expand @code{mapcar} into an in-line loop
 unless it knows whether the sequence will be a list or an array ahead
-of time.  With @code{(mapcar 'car (the vector foo))}, a future
+of time.  With @code{(mapcar 'car (cl-the vector foo))}, a future
 compiler would have enough information to expand the loop in-line.
 For now, Emacs Lisp will treat the above code as exactly equivalent
 to @code{(mapcar 'car foo)}.
 @end defspec
 
-Each @var{decl-spec} in a @code{proclaim}, @code{declaim}, or
-@code{declare} should be a list beginning with a symbol that says
+Each @var{decl-spec} in a @code{cl-proclaim}, @code{cl-declaim}, or
+@code{cl-declare} should be a list beginning with a symbol that says
 what kind of declaration it is.  This package currently understands
 @code{special}, @code{inline}, @code{notinline}, @code{optimize},
 and @code{warn} declarations.  (The @code{warn} declaration is an
@@ -3045,16 +3046,16 @@ bound in the body of the function.  The compiler normally emits
 warnings for such references, since they could be typographical
 errors for references to local variables.
 
-The declaration @code{(declare (special @var{var1} @var{var2}))} is
+The declaration @code{(cl-declare (special @var{var1} @var{var2}))} is
 equivalent to @code{(defvar @var{var1}) (defvar @var{var2})} in the
 optimizing compiler, or to nothing at all in older compilers (which
 do not warn for non-local references).
 
 In top-level contexts, it is generally better to write
-@code{(defvar @var{var})} than @code{(declaim (special @var{var}))},
+@code{(defvar @var{var})} than @code{(cl-declaim (special @var{var}))},
 since @code{defvar} makes your intentions clearer.  But the older
 byte compilers can not handle @code{defvar}s appearing inside of
-functions, while @code{(declare (special @var{var}))} takes care
+functions, while @code{(cl-declare (special @var{var}))} takes care
 to work correctly with all compilers.
 
 @item inline
@@ -3072,8 +3073,8 @@ The following declarations are all equivalent.  Note that the
 and declare it inline all at once.
 
 @example
-(declaim (inline foo bar))
-(eval-when (compile load eval) (proclaim '(inline foo bar)))
+(cl-declaim (inline foo bar))
+(cl-eval-when (compile load eval) (cl-proclaim '(inline foo bar)))
 (defsubst foo (...) ...)       ; instead of defun
 @end example
 
@@ -3083,10 +3084,10 @@ request that a function you have defined should be inlined,
 but it is impolite to use it to request inlining of an external
 function.
 
-In Common Lisp, it is possible to use @code{(declare (inline @dots{}))}
+In Common Lisp, it is possible to use @code{(cl-declare (inline @dots{}))}
 before a particular call to a function to cause just that call to
 be inlined; the current byte compilers provide no way to implement
-this, so @code{(declare (inline @dots{}))} is currently ignored by
+this, so @code{(cl-declare (inline @dots{}))} is currently ignored by
 this package.
 
 @item notinline
@@ -3107,6 +3108,7 @@ and @code{safety}.  The value of a quality should be an integer from
 The default level for both qualities is 1.
 
 In this package, with the optimizing compiler, the
+@c FIXME does not exist?
 @code{speed} quality is tied to the @code{byte-compile-optimize}
 flag, which is set to @code{nil} for @code{(speed 0)} and to
 @code{t} for higher settings; and the @code{safety} quality is
@@ -3125,10 +3127,10 @@ Emacs itself, Emacs will not crash with a segmentation fault
 just because of an error in a fully-optimized Lisp program.
 
 The @code{optimize} declaration is normally used in a top-level
-@code{proclaim} or @code{declaim} in a file; Common Lisp allows
-it to be used with @code{declare} to set the level of optimization
+@code{cl-proclaim} or @code{cl-declaim} in a file; Common Lisp allows
+it to be used with @code{cl-declare} to set the level of optimization
 locally for a given form, but this will not work correctly with the
-current version of the optimizing compiler.  (The @code{declare}
+current version of the optimizing compiler.  (The @code{cl-declare}
 will set the new optimization level, but that level will not
 automatically be unset after the enclosing form is done.)
 
@@ -3152,8 +3154,8 @@ This package defines several symbol-related features that were
 missing from Emacs Lisp.
 
 @menu
-* Property Lists::       @code{get*}, @code{remprop}, @code{getf}, @code{remf}.
-* Creating Symbols::     @code{gensym}, @code{gentemp}.
+* Property Lists::       @code{cl-get}, @code{cl-remprop}, @code{cl-getf}, @code{cl-remf}.
+* Creating Symbols::     @code{cl-gensym}, @code{cl-gentemp}.
 @end menu
 
 @node Property Lists
@@ -3165,18 +3167,18 @@ and @code{put} for operating on properties attached to symbols.
 There are also functions for working with property lists as
 first-class data structures not attached to particular symbols.
 
-@defun get* symbol property &optional default
+@defun cl-get symbol property &optional default
 This function is like @code{get}, except that if the property is
 not found, the @var{default} argument provides the return value.
 (The Emacs Lisp @code{get} function always uses @code{nil} as
-the default; this package's @code{get*} is equivalent to Common
+the default; this package's @code{cl-get} is equivalent to Common
 Lisp's @code{get}.)
 
-The @code{get*} function is @code{setf}-able; when used in this
+The @code{cl-get} function is @code{setf}-able; when used in this
 fashion, the @var{default} argument is allowed but ignored.
 @end defun
 
-@defun remprop symbol property
+@defun cl-remprop symbol property
 This function removes the entry for @var{property} from the property
 list of @var{symbol}.  It returns a true value if the property was
 indeed found and removed, or @code{nil} if there was no such property.
@@ -3184,10 +3186,10 @@ indeed found and removed, or @code{nil} if there was no such property.
 since @code{get} did not allow a @var{default}, it was very difficult
 to distinguish between a missing property and a property whose value
 was @code{nil}; thus, setting a property to @code{nil} was close
-enough to @code{remprop} for most purposes.)
+enough to @code{cl-remprop} for most purposes.)
 @end defun
 
-@defun getf place property &optional default
+@defun cl-getf place property &optional default
 This function scans the list @var{place} as if it were a property
 list, i.e., a list of alternating property names and values.  If
 an even-numbered element of @var{place} is found which is @code{eq}
@@ -3198,7 +3200,7 @@ is given).
 In particular,
 
 @example
-(get sym prop)  @equiv{}  (getf (symbol-plist sym) prop)
+(get sym prop)  @equiv{}  (cl-get (symbol-plist sym) prop)
 @end example
 
 It is valid to use @code{getf} as a @code{setf} place, in which case
@@ -3209,25 +3211,26 @@ list that corresponds to @var{property}, or to cons a new property-value
 pair onto the list if the property is not yet present.
 
 @example
-(put sym prop val)  @equiv{}  (setf (getf (symbol-plist sym) prop) val)
+(put sym prop val)  @equiv{}  (setf (cl-get (symbol-plist sym) prop) val)
 @end example
 
-The @code{get} and @code{get*} functions are also @code{setf}-able.
+The @code{get} and @code{cl-get} functions are also @code{setf}-able.
 The fact that @code{default} is ignored can sometimes be useful:
 
 @example
-(incf (get* 'foo 'usage-count 0))
+(cl-incf (cl-get 'foo 'usage-count 0))
 @end example
 
 Here, symbol @code{foo}'s @code{usage-count} property is incremented
 if it exists, or set to 1 (an incremented 0) otherwise.
 
+@c FIXME cl-getf?
 When not used as a @code{setf} form, @code{getf} is just a regular
 function and its @var{place} argument can actually be any Lisp
 expression.
 @end defun
 
-@defspec remf place property
+@defspec cl-remf place property
 This macro removes the property-value pair for @var{property} from
 the property list stored at @var{place}, which is any @code{setf}-able
 place expression.  It returns true if the property was found.  Note
@@ -3248,7 +3251,7 @@ out the property and value cells.
 These functions create unique symbols, typically for use as
 temporary variables.
 
-@defun gensym &optional x
+@defun cl-gensym &optional x
 This function creates a new, uninterned symbol (using @code{make-symbol})
 with a unique name.  (The name of an uninterned symbol is relevant
 only if the symbol is printed.)  By default, the name is generated
@@ -3260,20 +3263,20 @@ their names will not conflict with ``real'' variables in the user's
 code.
 @end defun
 
-@defvar *gensym-counter*
-This variable holds the counter used to generate @code{gensym} names.
-It is incremented after each use by @code{gensym}.  In Common Lisp
+@defvar cl--gensym-counter
+This variable holds the counter used to generate @code{cl-gensym} names.
+It is incremented after each use by @code{cl-gensym}.  In Common Lisp
 this is initialized with 0, but this package initializes it with a
 random (time-dependent) value to avoid trouble when two files that
-each used @code{gensym} in their compilation are loaded together.
+each used @code{cl-gensym} in their compilation are loaded together.
 (Uninterned symbols become interned when the compiler writes them
 out to a file and the Emacs loader loads them, so their names have to
 be treated a bit more carefully than in Common Lisp where uninterned
 symbols remain uninterned after loading.)
 @end defvar
 
-@defun gentemp &optional x
-This function is like @code{gensym}, except that it produces a new
+@defun cl-gentemp &optional x
+This function is like @code{cl-gensym}, except that it produces a new
 @emph{interned} symbol.  If the symbol that is generated already
 exists, the function keeps incrementing the counter and trying
 again until a new symbol is generated.
@@ -3294,10 +3297,10 @@ This section defines a few simple Common Lisp operations on numbers
 which were left out of Emacs Lisp.
 
 @menu
-* Predicates on Numbers::       @code{plusp}, @code{oddp}, @code{floatp-safe}, etc.
-* Numerical Functions::         @code{abs}, @code{floor*}, etc.
-* Random Numbers::              @code{random*}, @code{make-random-state}.
-* Implementation Parameters::   @code{most-positive-float}.
+* Predicates on Numbers::       @code{cl-plusp}, @code{cl-oddp}, @code{cl-floatp-safe}, etc.
+* Numerical Functions::         @code{abs}, @code{cl-floor}, etc.
+* Random Numbers::              @code{cl-random}, @code{cl-make-random-state}.
+* Implementation Parameters::   @code{cl-most-positive-float}.
 @end menu
 
 @iftex
@@ -3311,27 +3314,27 @@ which were left out of Emacs Lisp.
 These functions return @code{t} if the specified condition is
 true of the numerical argument, or @code{nil} otherwise.
 
-@defun plusp number
+@defun cl-plusp number
 This predicate tests whether @var{number} is positive.  It is an
 error if the argument is not a number.
 @end defun
 
-@defun minusp number
+@defun cl-minusp number
 This predicate tests whether @var{number} is negative.  It is an
 error if the argument is not a number.
 @end defun
 
-@defun oddp integer
+@defun cl-oddp integer
 This predicate tests whether @var{integer} is odd.  It is an
 error if the argument is not an integer.
 @end defun
 
-@defun evenp integer
+@defun cl-evenp integer
 This predicate tests whether @var{integer} is even.  It is an
 error if the argument is not an integer.
 @end defun
 
-@defun floatp-safe object
+@defun cl-floatp-safe object
 This predicate tests whether @var{object} is a floating-point
 number.  On systems that support floating-point, this is equivalent
 to @code{floatp}.  On other systems, this always returns @code{nil}.
@@ -3347,30 +3350,26 @@ to @code{floatp}.  On other systems, this always returns @code{nil}.
 @noindent
 These functions perform various arithmetic operations on numbers.
 
-@defun gcd &rest integers
+@defun cl-gcd &rest integers
 This function returns the Greatest Common Divisor of the arguments.
 For one argument, it returns the absolute value of that argument.
 For zero arguments, it returns zero.
 @end defun
 
-@defun lcm &rest integers
+@defun cl-lcm &rest integers
 This function returns the Least Common Multiple of the arguments.
 For one argument, it returns the absolute value of that argument.
 For zero arguments, it returns one.
 @end defun
 
-@defun isqrt integer
+@defun cl-isqrt integer
 This function computes the ``integer square root'' of its integer
 argument, i.e., the greatest integer less than or equal to the true
 square root of the argument.
 @end defun
 
-@defun floor* number &optional divisor
-This function implements the Common Lisp @code{floor} function.
-It is called @code{floor*} to avoid name conflicts with the
-simpler @code{floor} function built-in to Emacs.
-
-With one argument, @code{floor*} returns a list of two numbers:
+@defun cl-floor number &optional divisor
+With one argument, @code{cl-floor} returns a list of two numbers:
 The argument rounded down (toward minus infinity) to an integer,
 and the ``remainder'' which would have to be added back to the
 first return value to yield the argument again.  If the argument
@@ -3379,37 +3378,37 @@ If the argument is a floating-point number, the first
 result is a Lisp integer and the second is a Lisp float between
 0 (inclusive) and 1 (exclusive).
 
-With two arguments, @code{floor*} divides @var{number} by
+With two arguments, @code{cl-floor} divides @var{number} by
 @var{divisor}, and returns the floor of the quotient and the
 corresponding remainder as a list of two numbers.  If
-@code{(floor* @var{x} @var{y})} returns @code{(@var{q} @var{r})},
+@code{(cl-floor @var{x} @var{y})} returns @code{(@var{q} @var{r})},
 then @code{@var{q}*@var{y} + @var{r} = @var{x}}, with @var{r}
 between 0 (inclusive) and @var{r} (exclusive).  Also, note
-that @code{(floor* @var{x})} is exactly equivalent to
-@code{(floor* @var{x} 1)}.
+that @code{(cl-floor @var{x})} is exactly equivalent to
+@code{(cl-floor @var{x} 1)}.
 
 This function is entirely compatible with Common Lisp's @code{floor}
 function, except that it returns the two results in a list since
 Emacs Lisp does not support multiple-valued functions.
 @end defun
 
-@defun ceiling* number &optional divisor
+@defun cl-ceiling number &optional divisor
 This function implements the Common Lisp @code{ceiling} function,
 which is analogous to @code{floor} except that it rounds the
 argument or quotient of the arguments up toward plus infinity.
 The remainder will be between 0 and minus @var{r}.
 @end defun
 
-@defun truncate* number &optional divisor
+@defun cl-truncate number &optional divisor
 This function implements the Common Lisp @code{truncate} function,
 which is analogous to @code{floor} except that it rounds the
 argument or quotient of the arguments toward zero.  Thus it is
-equivalent to @code{floor*} if the argument or quotient is
-positive, or to @code{ceiling*} otherwise.  The remainder has
+equivalent to @code{cl-floor} if the argument or quotient is
+positive, or to @code{cl-ceiling} otherwise.  The remainder has
 the same sign as @var{number}.
 @end defun
 
-@defun round* number &optional divisor
+@defun cl-round number &optional divisor
 This function implements the Common Lisp @code{round} function,
 which is analogous to @code{floor} except that it rounds the
 argument or quotient of the arguments to the nearest integer.
@@ -3417,21 +3416,22 @@ In the case of a tie (the argument or quotient is exactly
 halfway between two integers), it rounds to the even integer.
 @end defun
 
-@defun mod* number divisor
+@defun cl-mod number divisor
 This function returns the same value as the second return value
-of @code{floor}.
+of @code{cl-floor}.
 @end defun
 
-@defun rem* number divisor
+@defun cl-rem number divisor
 This function returns the same value as the second return value
-of @code{truncate}.
+of @code{cl-truncate}.
 @end defun
 
+@c FIXME this stuff is probably no longer of interest to anyone.
 These definitions are compatible with those in the Quiroz
-@file{cl.el} package, except that this package appends @samp{*}
-to certain function names to avoid conflicts with existing
-Emacs functions, and that the mechanism for returning
-multiple values is different.
+@file{cl.el} package, except that
+@c this package appends @samp{*} to certain function names to avoid
+@c conflicts with existing Emacs functions, and that
+the mechanism for returning multiple values is different.
 
 @iftex
 @secno=8
@@ -3447,7 +3447,7 @@ algorithm, which is much more likely to give statistically clean
 random numbers than the simple generators supplied by many
 operating systems.
 
-@defun random* number &optional state
+@defun cl-random number &optional state
 This function returns a random nonnegative number less than
 @var{number}, and of the same type (either integer or floating-point).
 The @var{state} argument should be a @code{random-state} object
@@ -3458,21 +3458,21 @@ function modifies this state object as a side effect.  If
 @code{random-state} object.
 @end defun
 
-@defvar *random-state*
+@defvar cl--random-state
 This variable contains the system ``default'' @code{random-state}
-object, used for calls to @code{random*} that do not specify an
+object, used for calls to @code{cl-random} that do not specify an
 alternative state object.  Since any number of programs in the
-Emacs process may be accessing @code{*random-state*} in interleaved
+Emacs process may be accessing @code{cl--random-state} in interleaved
 fashion, the sequence generated from this variable will be
 irreproducible for all intents and purposes.
 @end defvar
 
-@defun make-random-state &optional state
+@defun cl-make-random-state &optional state
 This function creates or copies a @code{random-state} object.
 If @var{state} is omitted or @code{nil}, it returns a new copy of
-@code{*random-state*}.  This is a copy in the sense that future
-sequences of calls to @code{(random* @var{n})} and
-@code{(random* @var{n} @var{s})} (where @var{s} is the new
+@code{cl--random-state}.  This is a copy in the sense that future
+sequences of calls to @code{(cl-random @var{n})} and
+@code{(cl-random @var{n} @var{s})} (where @var{s} is the new
 random-state object) will return identical sequences of random
 numbers.
 
@@ -3487,13 +3487,13 @@ different sequence of random numbers.
 It is valid to print a @code{random-state} object to a buffer or
 file and later read it back with @code{read}.  If a program wishes
 to use a sequence of pseudo-random numbers which can be reproduced
-later for debugging, it can call @code{(make-random-state t)} to
+later for debugging, it can call @code{(cl-make-random-state t)} to
 get a new sequence, then print this sequence to a file.  When the
 program is later rerun, it can read the original run's random-state
 from the file.
 @end defun
 
-@defun random-state-p object
+@defun cl-random-state-p object
 This predicate returns @code{t} if @var{object} is a
 @code{random-state} object, or @code{nil} otherwise.
 @end defun
@@ -3512,7 +3512,7 @@ function that must be called before the parameters can be used.
 
 @defun cl-float-limits
 This function makes sure that the Common Lisp floating-point parameters
-like @code{most-positive-float} have been initialized.  Until it is
+like @code{cl-most-positive-float} have been initialized.  Until it is
 called, these parameters will be @code{nil}.  If this version of Emacs
 does not support floats, the parameters will remain @code{nil}.  If the
 parameters have already been initialized, the function returns
@@ -3530,50 +3530,50 @@ precisions, it has families of constants like
 floating-point precision, so this package omits the precision word
 from the constants' names.
 
-@defvar most-positive-float
+@defvar cl-most-positive-float
 This constant equals the largest value a Lisp float can hold.
 For those systems whose arithmetic supports infinities, this is
 the largest @emph{finite} value.  For IEEE machines, the value
 is approximately @code{1.79e+308}.
 @end defvar
 
-@defvar most-negative-float
+@defvar cl-most-negative-float
 This constant equals the most-negative value a Lisp float can hold.
-(It is assumed to be equal to @code{(- most-positive-float)}.)
+(It is assumed to be equal to @code{(- cl-most-positive-float)}.)
 @end defvar
 
-@defvar least-positive-float
+@defvar cl-least-positive-float
 This constant equals the smallest Lisp float value greater than zero.
 For IEEE machines, it is about @code{4.94e-324} if denormals are
 supported or @code{2.22e-308} if not.
 @end defvar
 
-@defvar least-positive-normalized-float
+@defvar cl-least-positive-normalized-float
 This constant equals the smallest @emph{normalized} Lisp float greater
 than zero, i.e., the smallest value for which IEEE denormalization
 will not result in a loss of precision.  For IEEE machines, this
 value is about @code{2.22e-308}.  For machines that do not support
 the concept of denormalization and gradual underflow, this constant
-will always equal @code{least-positive-float}.
+will always equal @code{cl-least-positive-float}.
 @end defvar
 
-@defvar least-negative-float
-This constant is the negative counterpart of @code{least-positive-float}.
+@defvar cl-least-negative-float
+This constant is the negative counterpart of @code{cl-least-positive-float}.
 @end defvar
 
-@defvar least-negative-normalized-float
+@defvar cl-least-negative-normalized-float
 This constant is the negative counterpart of
-@code{least-positive-normalized-float}.
+@code{cl-least-positive-normalized-float}.
 @end defvar
 
-@defvar float-epsilon
+@defvar cl-float-epsilon
 This constant is the smallest positive Lisp float that can be added
 to 1.0 to produce a distinct value.  Adding a smaller number to 1.0
 will yield 1.0 again due to roundoff.  For IEEE machines, epsilon
 is about @code{2.22e-16}.
 @end defvar
 
-@defvar float-negative-epsilon
+@defvar cl-float-negative-epsilon
 This is the smallest positive value that can be subtracted from
 1.0 to produce a distinct value.  For IEEE machines, it is about
 @code{1.11e-16}.
@@ -3590,10 +3590,10 @@ Emacs Lisp includes a few of these, notably @code{elt} and
 
 @menu
 * Sequence Basics::          Arguments shared by all sequence functions.
-* Mapping over Sequences::   @code{mapcar*}, @code{mapcan}, @code{map}, @code{every}, etc.
-* Sequence Functions::       @code{subseq}, @code{remove*}, @code{substitute}, etc.
-* Searching Sequences::      @code{find}, @code{position}, @code{count}, @code{search}, etc.
-* Sorting Sequences::        @code{sort*}, @code{stable-sort}, @code{merge}.
+* Mapping over Sequences::   @code{cl-mapcar}, @code{cl-mapcan}, @code{cl-map}, @code{cl-every}, etc.
+* Sequence Functions::       @code{cl-subseq}, @code{cl-remove}, @code{cl-substitute}, etc.
+* Searching Sequences::      @code{cl-find}, @code{cl-position}, @code{cl-count}, @code{cl-search}, etc.
+* Sorting Sequences::        @code{cl-sort}, @code{cl-stable-sort}, @code{cl-merge}.
 @end menu
 
 @node Sequence Basics
@@ -3607,7 +3607,7 @@ may appear in any order.
 The @code{:key} argument should be passed either @code{nil}, or a
 function of one argument.  This key function is used as a filter
 through which the elements of the sequence are seen; for example,
-@code{(find x y :key 'car)} is similar to @code{(assoc* x y)}:
+@code{(cl-find x y :key 'car)} is similar to @code{(cl-assoc x y)}:
 It searches for an element of the list whose @code{car} equals
 @code{x}, rather than for an element which equals @code{x} itself.
 If @code{:key} is omitted or @code{nil}, the filter is effectively
@@ -3632,7 +3632,7 @@ and sequence elements match if the predicate returns true on them
 (or false in the case of @code{-if-not}).  For example:
 
 @example
-(remove* 0 seq :test '=)  @equiv{}  (remove-if 'zerop seq)
+(cl-remove 0 seq :test '=)  @equiv{}  (cl-remove-if 'zerop seq)
 @end example
 
 @noindent
@@ -3662,14 +3662,14 @@ are called on various elements.  Therefore, it is a bad idea to depend
 on side effects of these functions.  For example, @code{:from-end}
 may cause the sequence to be scanned actually in reverse, or it may
 be scanned forwards but computing a result ``as if'' it were scanned
-backwards.  (Some functions, like @code{mapcar*} and @code{every},
+backwards.  (Some functions, like @code{cl-mapcar} and @code{cl-every},
 @emph{do} specify exactly the order in which the function is called
 so side effects are perfectly acceptable in those cases.)
 
 Strings may contain ``text properties'' as well
 as character data.  Except as noted, it is undefined whether or
 not text properties are preserved by sequence functions.  For
-example, @code{(remove* ?A @var{str})} may or may not preserve
+example, @code{(cl-remove ?A @var{str})} may or may not preserve
 the properties of the characters copied from @var{str} into the
 result.
 
@@ -3681,7 +3681,7 @@ These functions ``map'' the function you specify over the elements
 of lists or arrays.  They are all variations on the theme of the
 built-in function @code{mapcar}.
 
-@defun mapcar* function seq &rest more-seqs
+@defun cl-mapcar function seq &rest more-seqs
 This function calls @var{function} on successive parallel sets of
 elements from its argument sequences.  Given a single @var{seq}
 argument it is equivalent to @code{mapcar}; given @var{n} sequences,
@@ -3694,86 +3694,87 @@ is always a list.
 
 Common Lisp's @code{mapcar} accepts multiple arguments but works
 only on lists; Emacs Lisp's @code{mapcar} accepts a single sequence
-argument.  This package's @code{mapcar*} works as a compatible
+argument.  This package's @code{cl-mapcar} works as a compatible
 superset of both.
 @end defun
 
-@defun map result-type function seq &rest more-seqs
+@defun cl-map result-type function seq &rest more-seqs
 This function maps @var{function} over the argument sequences,
-just like @code{mapcar*}, but it returns a sequence of type
+just like @code{cl-mapcar}, but it returns a sequence of type
 @var{result-type} rather than a list.  @var{result-type} must
 be one of the following symbols: @code{vector}, @code{string},
 @code{list} (in which case the effect is the same as for
 @code{mapcar*}), or @code{nil} (in which case the results are
-thrown away and @code{map} returns @code{nil}).
+thrown away and @code{cl-map} returns @code{nil}).
 @end defun
 
-@defun maplist function list &rest more-lists
+@defun cl-maplist function list &rest more-lists
 This function calls @var{function} on each of its argument lists,
 then on the @code{cdr}s of those lists, and so on, until the
 shortest list runs out.  The results are returned in the form
-of a list.  Thus, @code{maplist} is like @code{mapcar*} except
+of a list.  Thus, @code{cl-maplist} is like @code{cl-mapcar} except
 that it passes in the list pointers themselves rather than the
 @code{car}s of the advancing pointers.
 @end defun
 
+@c FIXME does not exist?
 @defun cl-mapc function seq &rest more-seqs
-This function is like @code{mapcar*}, except that the values returned
+This function is like @code{cl-mapcar}, except that the values returned
 by @var{function} are ignored and thrown away rather than being
 collected into a list.  The return value of @code{cl-mapc} is @var{seq},
 the first sequence.  This function is more general than the Emacs
 primitive @code{mapc}.
 @end defun
 
-@defun mapl function list &rest more-lists
-This function is like @code{maplist}, except that it throws away
+@defun cl-mapl function list &rest more-lists
+This function is like @code{cl-maplist}, except that it throws away
 the values returned by @var{function}.
 @end defun
 
-@defun mapcan function seq &rest more-seqs
-This function is like @code{mapcar*}, except that it concatenates
+@defun cl-mapcan function seq &rest more-seqs
+This function is like @code{cl-mapcar}, except that it concatenates
 the return values (which must be lists) using @code{nconc},
 rather than simply collecting them into a list.
 @end defun
 
-@defun mapcon function list &rest more-lists
-This function is like @code{maplist}, except that it concatenates
+@defun cl-mapcon function list &rest more-lists
+This function is like @code{cl-maplist}, except that it concatenates
 the return values using @code{nconc}.
 @end defun
 
-@defun some predicate seq &rest more-seqs
+@defun cl-some predicate seq &rest more-seqs
 This function calls @var{predicate} on each element of @var{seq}
 in turn; if @var{predicate} returns a non-@code{nil} value,
 @code{some} returns that value, otherwise it returns @code{nil}.
 Given several sequence arguments, it steps through the sequences
 in parallel until the shortest one runs out, just as in
-@code{mapcar*}.  You can rely on the left-to-right order in which
+@code{cl-mapcar}.  You can rely on the left-to-right order in which
 the elements are visited, and on the fact that mapping stops
 immediately as soon as @var{predicate} returns non-@code{nil}.
 @end defun
 
-@defun every predicate seq &rest more-seqs
+@defun cl-every predicate seq &rest more-seqs
 This function calls @var{predicate} on each element of the sequence(s)
 in turn; it returns @code{nil} as soon as @var{predicate} returns
 @code{nil} for any element, or @code{t} if the predicate was true
 for all elements.
 @end defun
 
-@defun notany predicate seq &rest more-seqs
+@defun cl-notany predicate seq &rest more-seqs
 This function calls @var{predicate} on each element of the sequence(s)
 in turn; it returns @code{nil} as soon as @var{predicate} returns
 a non-@code{nil} value for any element, or @code{t} if the predicate
 was @code{nil} for all elements.
 @end defun
 
-@defun notevery predicate seq &rest more-seqs
+@defun cl-notevery predicate seq &rest more-seqs
 This function calls @var{predicate} on each element of the sequence(s)
 in turn; it returns a non-@code{nil} value as soon as @var{predicate}
 returns @code{nil} for any element, or @code{t} if the predicate was
 true for all elements.
 @end defun
 
-@defun reduce function seq @t{&key :from-end :start :end :initial-value :key}
+@defun cl-reduce function seq @t{&key :from-end :start :end :initial-value :key}
 This function combines the elements of @var{seq} using an associative
 binary operation.  Suppose @var{function} is @code{*} and @var{seq} is
 the list @code{(2 3 4 5)}.  The first two elements of the list are
@@ -3781,16 +3782,16 @@ combined with @code{(* 2 3) = 6}; this is combined with the next
 element, @code{(* 6 4) = 24}, and that is combined with the final
 element: @code{(* 24 5) = 120}.  Note that the @code{*} function happens
 to be self-reducing, so that @code{(* 2 3 4 5)} has the same effect as
-an explicit call to @code{reduce}.
+an explicit call to @code{cl-reduce}.
 
 If @code{:from-end} is true, the reduction is right-associative instead
 of left-associative:
 
 @example
-(reduce '- '(1 2 3 4))
-     @equiv{} (- (- (- 1 2) 3) 4) @result{} -8
-(reduce '- '(1 2 3 4) :from-end t)
-     @equiv{} (- 1 (- 2 (- 3 4))) @result{} -2
+(cl-reduce '- '(1 2 3 4))
+        @equiv{} (- (- (- 1 2) 3) 4) @result{} -8
+(cl-reduce '- '(1 2 3 4) :from-end t)
+        @equiv{} (- 1 (- 2 (- 3 4))) @result{} -2
 @end example
 
 If @code{:key} is specified, it is a function of one argument which
@@ -3807,7 +3808,7 @@ If the sequence is empty (and there is no initial value), then
 @end defun
 
 All of these mapping operations can be expressed conveniently in
-terms of the @code{loop} macro.  In compiled code, @code{loop} will
+terms of the @code{cl-loop} macro.  In compiled code, @code{cl-loop} will
 be faster since it generates the loop as in-line code with no
 function calls.
 
@@ -3818,7 +3819,7 @@ function calls.
 This section describes a number of Common Lisp functions for
 operating on sequences.
 
-@defun subseq sequence start &optional end
+@defun cl-subseq sequence start &optional end
 This function returns a given subsequence of the argument
 @var{sequence}, which may be a list, string, or vector.
 The indices @var{start} and @var{end} must be in range, and
@@ -3830,30 +3831,30 @@ with @var{sequence}.
 As an extension to Common Lisp, @var{start} and/or @var{end}
 may be negative, in which case they represent a distance back
 from the end of the sequence.  This is for compatibility with
-Emacs's @code{substring} function.  Note that @code{subseq} is
+Emacs's @code{substring} function.  Note that @code{cl-subseq} is
 the @emph{only} sequence function that allows negative
 @var{start} and @var{end}.
 
-You can use @code{setf} on a @code{subseq} form to replace a
+You can use @code{setf} on a @code{cl-subseq} form to replace a
 specified range of elements with elements from another sequence.
-The replacement is done as if by @code{replace}, described below.
+The replacement is done as if by @code{cl-replace}, described below.
 @end defun
 
-@defun concatenate result-type &rest seqs
+@defun cl-concatenate result-type &rest seqs
 This function concatenates the argument sequences together to
 form a result sequence of type @var{result-type}, one of the
 symbols @code{vector}, @code{string}, or @code{list}.  The
 arguments are always copied, even in cases such as
-@code{(concatenate 'list '(1 2 3))} where the result is
+@code{(cl-concatenate 'list '(1 2 3))} where the result is
 identical to an argument.
 @end defun
 
-@defun fill seq item @t{&key :start :end}
+@defun cl-fill seq item @t{&key :start :end}
 This function fills the elements of the sequence (or the specified
 part of the sequence) with the value @var{item}.
 @end defun
 
-@defun replace seq1 seq2 @t{&key :start1 :end1 :start2 :end2}
+@defun cl-replace seq1 seq2 @t{&key :start1 :end1 :start2 :end2}
 This function copies part of @var{seq2} into part of @var{seq1}.
 The sequence @var{seq1} is not stretched or resized; the amount
 of data copied is simply the shorter of the source and destination
@@ -3867,7 +3868,7 @@ start and end arguments specify overlapping regions, the effect
 is undefined.
 @end defun
 
-@defun remove* item seq @t{&key :test :test-not :key :count :start :end :from-end}
+@defun cl-remove item seq @t{&key :test :test-not :key :count :start :end :from-end}
 This returns a copy of @var{seq} with all elements matching
 @var{item} removed.  The result may share storage with or be
 @code{eq} to @var{seq} in some circumstances, but the original
@@ -3884,25 +3885,25 @@ end of the sequence rather than the beginning (this matters only
 if @var{count} was also specified).
 @end defun
 
-@defun delete* item seq @t{&key :test :test-not :key :count :start :end :from-end}
+@defun cl-delete item seq @t{&key :test :test-not :key :count :start :end :from-end}
 This deletes all elements of @var{seq} which match @var{item}.
 It is a destructive operation.  Since Emacs Lisp does not support
-stretchable strings or vectors, this is the same as @code{remove*}
-for those sequence types.  On lists, @code{remove*} will copy the
+stretchable strings or vectors, this is the same as @code{cl-remove}
+for those sequence types.  On lists, @code{cl-remove} will copy the
 list if necessary to preserve the original list, whereas
-@code{delete*} will splice out parts of the argument list.
+@code{cl-delete} will splice out parts of the argument list.
 Compare @code{append} and @code{nconc}, which are analogous
 non-destructive and destructive list operations in Emacs Lisp.
 @end defun
 
-@findex remove-if
-@findex remove-if-not
-@findex delete-if
-@findex delete-if-not
-The predicate-oriented functions @code{remove-if}, @code{remove-if-not},
-@code{delete-if}, and @code{delete-if-not} are defined similarly.
+@findex cl-remove-if
+@findex cl-remove-if-not
+@findex cl-delete-if
+@findex cl-delete-if-not
+The predicate-oriented functions @code{cl-remove-if}, @code{cl-remove-if-not},
+@code{cl-delete-if}, and @code{cl-delete-if-not} are defined similarly.
 
-@defun remove-duplicates seq @t{&key :test :test-not :key :start :end :from-end}
+@defun cl-remove-duplicates seq @t{&key :test :test-not :key :start :end :from-end}
 This function returns a copy of @var{seq} with duplicate elements
 removed.  Specifically, if two elements from the sequence match
 according to the @code{:test}, @code{:test-not}, and @code{:key}
@@ -3912,30 +3913,30 @@ is true, the leftmost one is retained instead.  If @code{:start} or
 examined or removed.
 @end defun
 
-@defun delete-duplicates seq @t{&key :test :test-not :key :start :end :from-end}
+@defun cl-delete-duplicates seq @t{&key :test :test-not :key :start :end :from-end}
 This function deletes duplicate elements from @var{seq}.  It is
-a destructive version of @code{remove-duplicates}.
+a destructive version of @code{cl-remove-duplicates}.
 @end defun
 
-@defun substitute new old seq @t{&key :test :test-not :key :count :start :end :from-end}
+@defun cl-substitute new old seq @t{&key :test :test-not :key :count :start :end :from-end}
 This function returns a copy of @var{seq}, with all elements
 matching @var{old} replaced with @var{new}.  The @code{:count},
 @code{:start}, @code{:end}, and @code{:from-end} arguments may be
 used to limit the number of substitutions made.
 @end defun
 
-@defun nsubstitute new old seq @t{&key :test :test-not :key :count :start :end :from-end}
-This is a destructive version of @code{substitute}; it performs
+@defun cl-nsubstitute new old seq @t{&key :test :test-not :key :count :start :end :from-end}
+This is a destructive version of @code{cl-substitute}; it performs
 the substitution using @code{setcar} or @code{aset} rather than
 by returning a changed copy of the sequence.
 @end defun
 
-@findex substitute-if
-@findex substitute-if-not
-@findex nsubstitute-if
-@findex nsubstitute-if-not
-The @code{substitute-if}, @code{substitute-if-not}, @code{nsubstitute-if},
-and @code{nsubstitute-if-not} functions are defined similarly.  For
+@findex cl-substitute-if
+@findex cl-substitute-if-not
+@findex cl-nsubstitute-if
+@findex cl-nsubstitute-if-not
+The @code{cl-substitute-if}, @code{cl-substitute-if-not}, @code{cl-nsubstitute-if},
+and @code{cl-nsubstitute-if-not} functions are defined similarly.  For
 these, a @var{predicate} is given in place of the @var{old} argument.
 
 @node Searching Sequences
@@ -3943,9 +3944,9 @@ these, a @var{predicate} is given in place of the @var{old} argument.
 
 @noindent
 These functions search for elements or subsequences in a sequence.
-(See also @code{member*} and @code{assoc*}; @pxref{Lists}.)
+(See also @code{cl-member} and @code{cl-assoc}; @pxref{Lists}.)
 
-@defun find item seq @t{&key :test :test-not :key :start :end :from-end}
+@defun cl-find item seq @t{&key :test :test-not :key :start :end :from-end}
 This function searches @var{seq} for an element matching @var{item}.
 If it finds a match, it returns the matching element.  Otherwise,
 it returns @code{nil}.  It returns the leftmost match, unless
@@ -3954,30 +3955,30 @@ match.  The @code{:start} and @code{:end} arguments may be used to
 limit the range of elements that are searched.
 @end defun
 
-@defun position item seq @t{&key :test :test-not :key :start :end :from-end}
-This function is like @code{find}, except that it returns the
+@defun cl-position item seq @t{&key :test :test-not :key :start :end :from-end}
+This function is like @code{cl-find}, except that it returns the
 integer position in the sequence of the matching item rather than
 the item itself.  The position is relative to the start of the
 sequence as a whole, even if @code{:start} is non-zero.  The function
 returns @code{nil} if no matching element was found.
 @end defun
 
-@defun count item seq @t{&key :test :test-not :key :start :end}
+@defun cl-count item seq @t{&key :test :test-not :key :start :end}
 This function returns the number of elements of @var{seq} which
 match @var{item}.  The result is always a nonnegative integer.
 @end defun
 
-@findex find-if
-@findex find-if-not
-@findex position-if
-@findex position-if-not
-@findex count-if
-@findex count-if-not
-The @code{find-if}, @code{find-if-not}, @code{position-if},
-@code{position-if-not}, @code{count-if}, and @code{count-if-not}
+@findex cl-find-if
+@findex cl-find-if-not
+@findex cl-position-if
+@findex cl-position-if-not
+@findex cl-count-if
+@findex cl-count-if-not
+The @code{cl-find-if}, @code{cl-find-if-not}, @code{cl-position-if},
+@code{cl-position-if-not}, @code{cl-count-if}, and @code{cl-count-if-not}
 functions are defined similarly.
 
-@defun mismatch seq1 seq2 @t{&key :test :test-not :key :start1 :end1 :start2 :end2 :from-end}
+@defun cl-mismatch seq1 seq2 @t{&key :test :test-not :key :start1 :end1 :start2 :end2 :from-end}
 This function compares the specified parts of @var{seq1} and
 @var{seq2}.  If they are the same length and the corresponding
 elements match (according to @code{:test}, @code{:test-not},
@@ -3992,11 +3993,11 @@ to left starting at @code{(1- @var{end1})} and @code{(1- @var{end2})}.
 If the sequences differ, then one plus the index of the rightmost
 difference (relative to @var{seq1}) is returned.
 
-An interesting example is @code{(mismatch str1 str2 :key 'upcase)},
+An interesting example is @code{(cl-mismatch str1 str2 :key 'upcase)},
 which compares two strings case-insensitively.
 @end defun
 
-@defun search seq1 seq2 @t{&key :test :test-not :key :from-end :start1 :end1 :start2 :end2}
+@defun cl-search seq1 seq2 @t{&key :test :test-not :key :from-end :start1 :end1 :start2 :end2}
 This function searches @var{seq2} for a subsequence that matches
 @var{seq1} (or part of it specified by @code{:start1} and
 @code{:end1}.)  Only matches which fall entirely within the region
@@ -4010,7 +4011,7 @@ function finds the @emph{rightmost} matching subsequence.
 @node Sorting Sequences
 @section Sorting Sequences
 
-@defun sort* seq predicate @t{&key :key}
+@defun clsort seq predicate @t{&key :key}
 This function sorts @var{seq} into increasing order as determined
 by using @var{predicate} to compare pairs of elements.  @var{predicate}
 should return true (non-@code{nil}) if and only if its first argument
@@ -4025,7 +4026,7 @@ accepts a @code{:key} argument which is used to preprocess data
 fed to the @var{predicate} function.  For example,
 
 @example
-(setq data (sort* data 'string-lessp :key 'downcase))
+(setq data (cl-sort data 'string-lessp :key 'downcase))
 @end example
 
 @noindent
@@ -4035,25 +4036,25 @@ would be useful for sorting association lists.  It should only be a
 simple accessor though, it's used heavily in the current
 implementation.
 
-The @code{sort*} function is destructive; it sorts lists by actually
+The @code{cl-sort} function is destructive; it sorts lists by actually
 rearranging the @code{cdr} pointers in suitable fashion.
 @end defun
 
-@defun stable-sort seq predicate @t{&key :key}
+@defun cl-stable-sort seq predicate @t{&key :key}
 This function sorts @var{seq} @dfn{stably}, meaning two elements
 which are equal in terms of @var{predicate} are guaranteed not to
 be rearranged out of their original order by the sort.
 
-In practice, @code{sort*} and @code{stable-sort} are equivalent
+In practice, @code{cl-sort} and @code{cl-stable-sort} are equivalent
 in Emacs Lisp because the underlying @code{sort} function is
 stable by default.  However, this package reserves the right to
-use non-stable methods for @code{sort*} in the future.
+use non-stable methods for @code{cl-sort} in the future.
 @end defun
 
-@defun merge type seq1 seq2 predicate @t{&key :key}
+@defun cl-merge type seq1 seq2 predicate @t{&key :key}
 This function merges two sequences @var{seq1} and @var{seq2} by
 interleaving their elements.  The result sequence, of type @var{type}
-(in the sense of @code{concatenate}), has length equal to the sum
+(in the sense of @code{cl-concatenate}), has length equal to the sum
 of the lengths of the two input sequences.  The sequences may be
 modified destructively.  Order of elements within @var{seq1} and
 @var{seq2} is preserved in the interleaving; elements of the two
@@ -4073,10 +4074,10 @@ a merged sequence which is (stably) sorted according to
 The functions described here operate on lists.
 
 @menu
-* List Functions::                @code{caddr}, @code{first}, @code{list*}, etc.
-* Substitution of Expressions::   @code{subst}, @code{sublis}, etc.
-* Lists as Sets::                 @code{member*}, @code{adjoin}, @code{union}, etc.
-* Association Lists::             @code{assoc*}, @code{rassoc*}, @code{acons}, @code{pairlis}.
+* List Functions::                @code{cl-caddr}, @code{cl-first}, @code{cl-list*}, etc.
+* Substitution of Expressions::   @code{cl-subst}, @code{cl-sublis}, etc.
+* Lists as Sets::                 @code{cl-member}, @code{cl-adjoin}, @code{cl-union}, etc.
+* Association Lists::             @code{cl-assoc}, @code{cl-rassoc}, @code{cl-acons}, @code{cl-pairlis}.
 @end menu
 
 @node List Functions
@@ -4086,7 +4087,7 @@ The functions described here operate on lists.
 This section describes a number of simple operations on lists,
 i.e., chains of cons cells.
 
-@defun caddr x
+@defun cl-caddr x
 This function is equivalent to @code{(car (cdr (cdr @var{x})))}.
 Likewise, this package defines all 28 @code{c@var{xxx}r} functions
 where @var{xxx} is up to four @samp{a}s and/or @samp{d}s.
@@ -4094,24 +4095,24 @@ All of these functions are @code{setf}-able, and calls to them
 are expanded inline by the byte-compiler for maximum efficiency.
 @end defun
 
-@defun first x
+@defun cl-first x
 This function is a synonym for @code{(car @var{x})}.  Likewise,
-the functions @code{second}, @code{third}, @dots{}, through
-@code{tenth} return the given element of the list @var{x}.
+the functions @code{cl-second}, @code{cl-third}, @dots{}, through
+@code{cl-tenth} return the given element of the list @var{x}.
 @end defun
 
-@defun rest x
+@defun cl-rest x
 This function is a synonym for @code{(cdr @var{x})}.
 @end defun
 
-@defun endp x
+@defun cl-endp x
 Common Lisp defines this function to act like @code{null}, but
 signaling an error if @code{x} is neither a @code{nil} nor a
-cons cell.  This package simply defines @code{endp} as a synonym
+cons cell.  This package simply defines @code{cl-endp} as a synonym
 for @code{null}.
 @end defun
 
-@defun list-length x
+@defun cl-list-length x
 This function returns the length of list @var{x}, exactly like
 @code{(length @var{x})}, except that if @var{x} is a circular
 list (where the cdr-chain forms a loop rather than terminating
@@ -4119,38 +4120,35 @@ with @code{nil}), this function returns @code{nil}.  (The regular
 @code{length} function would get stuck if given a circular list.)
 @end defun
 
-@defun list* arg &rest others
+@defun cl-list* arg &rest others
 This function constructs a list of its arguments.  The final
 argument becomes the @code{cdr} of the last cell constructed.
-Thus, @code{(list* @var{a} @var{b} @var{c})} is equivalent to
+Thus, @code{(cl-list* @var{a} @var{b} @var{c})} is equivalent to
 @code{(cons @var{a} (cons @var{b} @var{c}))}, and
-@code{(list* @var{a} @var{b} nil)} is equivalent to
+@code{(cl-list* @var{a} @var{b} nil)} is equivalent to
 @code{(list @var{a} @var{b})}.
-
-(Note that this function really is called @code{list*} in Common
-Lisp; it is not a name invented for this package like @code{member*}
-or @code{defun*}.)
 @end defun
 
-@defun ldiff list sublist
+@defun cl-ldiff list sublist
 If @var{sublist} is a sublist of @var{list}, i.e., is @code{eq} to
 one of the cons cells of @var{list}, then this function returns
 a copy of the part of @var{list} up to but not including
-@var{sublist}.  For example, @code{(ldiff x (cddr x))} returns
+@var{sublist}.  For example, @code{(cl-ldiff x (cddr x))} returns
 the first two elements of the list @code{x}.  The result is a
 copy; the original @var{list} is not modified.  If @var{sublist}
 is not a sublist of @var{list}, a copy of the entire @var{list}
 is returned.
 @end defun
 
-@defun copy-list list
+@defun cl-copy-list list
 This function returns a copy of the list @var{list}.  It copies
 dotted lists like @code{(1 2 . 3)} correctly.
 @end defun
 
 @defun copy-tree x &optional vecp
 This function returns a copy of the tree of cons cells @var{x}.
-Unlike @code{copy-sequence} (and its alias @code{copy-list}),
+@c FIXME? cl-copy-list is not an alias of copy-sequence.
+Unlike @code{copy-sequence} (and its alias @code{cl-copy-list}),
 which copies only along the @code{cdr} direction, this function
 copies (recursively) along both the @code{car} and the @code{cdr}
 directions.  If @var{x} is not a cons cell, the function simply
@@ -4159,7 +4157,7 @@ is true, this function copies vectors (recursively) as well as
 cons cells.
 @end defun
 
-@defun tree-equal x y @t{&key :test :test-not :key}
+@defun cl-tree-equal x y @t{&key :test :test-not :key}
 This function compares two trees of cons cells.  If @var{x} and
 @var{y} are both cons cells, their @code{car}s and @code{cdr}s are
 compared recursively.  If neither @var{x} nor @var{y} is a cons
@@ -4177,10 +4175,10 @@ applied to the elements of both trees.  @xref{Sequences}.
 
 @noindent
 These functions substitute elements throughout a tree of cons
-cells.  (@xref{Sequence Functions}, for the @code{substitute}
+cells.  (@xref{Sequence Functions}, for the @code{cl-substitute}
 function, which works on just the top-level elements of a list.)
 
-@defun subst new old tree @t{&key :test :test-not :key}
+@defun cl-subst new old tree @t{&key :test :test-not :key}
 This function substitutes occurrences of @var{old} with @var{new}
 in @var{tree}, a tree of cons cells.  It returns a substituted
 tree, which will be a copy except that it may share storage with
@@ -4195,21 +4193,21 @@ The @code{:key} function is applied to the elements of the tree
 but not to @var{old}.
 @end defun
 
-@defun nsubst new old tree @t{&key :test :test-not :key}
-This function is like @code{subst}, except that it works by
+@defun cl-nsubst new old tree @t{&key :test :test-not :key}
+This function is like @code{cl-subst}, except that it works by
 destructive modification (by @code{setcar} or @code{setcdr})
 rather than copying.
 @end defun
 
-@findex subst-if
-@findex subst-if-not
-@findex nsubst-if
-@findex nsubst-if-not
-The @code{subst-if}, @code{subst-if-not}, @code{nsubst-if}, and
-@code{nsubst-if-not} functions are defined similarly.
+@findex cl-subst-if
+@findex cl-subst-if-not
+@findex cl-nsubst-if
+@findex cl-nsubst-if-not
+The @code{cl-subst-if}, @code{cl-subst-if-not}, @code{cl-nsubst-if}, and
+@code{cl-nsubst-if-not} functions are defined similarly.
 
-@defun sublis alist tree @t{&key :test :test-not :key}
-This function is like @code{subst}, except that it takes an
+@defun cl-sublis alist tree @t{&key :test :test-not :key}
+This function is like @code{cl-subst}, except that it takes an
 association list @var{alist} of @var{old}-@var{new} pairs.
 Each element of the tree (after applying the @code{:key}
 function, if any), is compared with the @code{car}s of
@@ -4217,8 +4215,8 @@ function, if any), is compared with the @code{car}s of
 @code{cdr}.
 @end defun
 
-@defun nsublis alist tree @t{&key :test :test-not :key}
-This is a destructive version of @code{sublis}.
+@defun cl-nsublis alist tree @t{&key :test :test-not :key}
+This is a destructive version of @code{cl-sublis}.
 @end defun
 
 @node Lists as Sets
@@ -4228,7 +4226,7 @@ This is a destructive version of @code{sublis}.
 These functions perform operations on lists which represent sets
 of elements.
 
-@defun member* item list @t{&key :test :test-not :key}
+@defun cl-member item list @t{&key :test :test-not :key}
 This function searches @var{list} for an element matching @var{item}.
 If a match is found, it returns the cons cell whose @code{car} was
 the matching element.  Otherwise, it returns @code{nil}.  Elements
@@ -4236,34 +4234,33 @@ are compared by @code{eql} by default; you can use the @code{:test},
 @code{:test-not}, and @code{:key} arguments to modify this behavior.
 @xref{Sequences}.
 
-Note that this function's name is suffixed by @samp{*} to avoid
-the incompatible @code{member} function defined in Emacs.
-(That function uses @code{equal} for comparisons; it is equivalent
-to @code{(member* @var{item} @var{list} :test 'equal)}.)
+The standard Emacs lisp function @code{member} uses @code{equal} for
+comparisons; it is equivalent to @code{(cl-member @var{item} @var{list}
+:test 'equal)}.
 @end defun
 
-@findex member-if
-@findex member-if-not
-The @code{member-if} and @code{member-if-not} functions
+@findex cl-member-if
+@findex cl-member-if-not
+The @code{cl-member-if} and @code{cl-member-if-not} functions
 analogously search for elements which satisfy a given predicate.
 
-@defun tailp sublist list
+@defun cl-tailp sublist list
 This function returns @code{t} if @var{sublist} is a sublist of
 @var{list}, i.e., if @var{sublist} is @code{eql} to @var{list} or to
 any of its @code{cdr}s.
 @end defun
 
-@defun adjoin item list @t{&key :test :test-not :key}
+@defun cl-adjoin item list @t{&key :test :test-not :key}
 This function conses @var{item} onto the front of @var{list},
 like @code{(cons @var{item} @var{list})}, but only if @var{item}
-is not already present on the list (as determined by @code{member*}).
+is not already present on the list (as determined by @code{cl-member}).
 If a @code{:key} argument is specified, it is applied to
 @var{item} as well as to the elements of @var{list} during
 the search, on the reasoning that @var{item} is ``about'' to
 become part of the list.
 @end defun
 
-@defun union list1 list2 @t{&key :test :test-not :key}
+@defun cl-union list1 list2 @t{&key :test :test-not :key}
 This function combines two lists which represent sets of items,
 returning a list that represents the union of those two sets.
 The result list will contain all items which appear in @var{list1}
@@ -4275,46 +4272,46 @@ result list.  The order of elements in the result list is also
 undefined.
 @end defun
 
-@defun nunion list1 list2 @t{&key :test :test-not :key}
-This is a destructive version of @code{union}; rather than copying,
+@defun cl-nunion list1 list2 @t{&key :test :test-not :key}
+This is a destructive version of @code{cl-union}; rather than copying,
 it tries to reuse the storage of the argument lists if possible.
 @end defun
 
-@defun intersection list1 list2 @t{&key :test :test-not :key}
+@defun cl-intersection list1 list2 @t{&key :test :test-not :key}
 This function computes the intersection of the sets represented
 by @var{list1} and @var{list2}.  It returns the list of items
 which appear in both @var{list1} and @var{list2}.
 @end defun
 
-@defun nintersection list1 list2 @t{&key :test :test-not :key}
-This is a destructive version of @code{intersection}.  It
+@defun cl-nintersection list1 list2 @t{&key :test :test-not :key}
+This is a destructive version of @code{cl-intersection}.  It
 tries to reuse storage of @var{list1} rather than copying.
 It does @emph{not} reuse the storage of @var{list2}.
 @end defun
 
-@defun set-difference list1 list2 @t{&key :test :test-not :key}
+@defun cl-set-difference list1 list2 @t{&key :test :test-not :key}
 This function computes the ``set difference'' of @var{list1}
 and @var{list2}, i.e., the set of elements that appear in
 @var{list1} but @emph{not} in @var{list2}.
 @end defun
 
-@defun nset-difference list1 list2 @t{&key :test :test-not :key}
-This is a destructive @code{set-difference}, which will try
+@defun cl-nset-difference list1 list2 @t{&key :test :test-not :key}
+This is a destructive @code{cl-set-difference}, which will try
 to reuse @var{list1} if possible.
 @end defun
 
-@defun set-exclusive-or list1 list2 @t{&key :test :test-not :key}
+@defun cl-set-exclusive-or list1 list2 @t{&key :test :test-not :key}
 This function computes the ``set exclusive or'' of @var{list1}
 and @var{list2}, i.e., the set of elements that appear in
 exactly one of @var{list1} and @var{list2}.
 @end defun
 
-@defun nset-exclusive-or list1 list2 @t{&key :test :test-not :key}
-This is a destructive @code{set-exclusive-or}, which will try
+@defun cl-nset-exclusive-or list1 list2 @t{&key :test :test-not :key}
+This is a destructive @code{cl-set-exclusive-or}, which will try
 to reuse @var{list1} and @var{list2} if possible.
 @end defun
 
-@defun subsetp list1 list2 @t{&key :test :test-not :key}
+@defun cl-subsetp list1 list2 @t{&key :test :test-not :key}
 This function checks whether @var{list1} represents a subset
 of @var{list2}, i.e., whether every element of @var{list1}
 also appears in @var{list2}.
@@ -4328,7 +4325,7 @@ An @dfn{association list} is a list representing a mapping from
 one set of values to another; any list whose elements are cons
 cells is an association list.
 
-@defun assoc* item a-list @t{&key :test :test-not :key}
+@defun cl-assoc item a-list @t{&key :test :test-not :key}
 This function searches the association list @var{a-list} for an
 element whose @code{car} matches (in the sense of @code{:test},
 @code{:test-not}, and @code{:key}, or by comparison with @code{eql})
@@ -4340,27 +4337,27 @@ are not cons cells.  (This corresponds to the behavior of
 elements of @var{a-list} to be an error.)
 @end defun
 
-@defun rassoc* item a-list @t{&key :test :test-not :key}
+@defun cl-rassoc item a-list @t{&key :test :test-not :key}
 This function searches for an element whose @code{cdr} matches
 @var{item}.  If @var{a-list} represents a mapping, this applies
 the inverse of the mapping to @var{item}.
 @end defun
 
-@findex assoc-if
-@findex assoc-if-not
-@findex rassoc-if
-@findex rassoc-if-not
-The @code{assoc-if}, @code{assoc-if-not}, @code{rassoc-if},
-and @code{rassoc-if-not} functions are defined similarly.
+@findex cl-assoc-if
+@findex cl-assoc-if-not
+@findex cl-rassoc-if
+@findex cl-rassoc-if-not
+The @code{cl-assoc-if}, @code{cl-assoc-if-not}, @code{cl-rassoc-if},
+and @code{cl-rassoc-if-not} functions are defined similarly.
 
 Two simple functions for constructing association lists are:
 
-@defun acons key value alist
+@defun cl-acons key value alist
 This is equivalent to @code{(cons (cons @var{key} @var{value}) @var{alist})}.
 @end defun
 
-@defun pairlis keys values &optional alist
-This is equivalent to @code{(nconc (mapcar* 'cons @var{keys} @var{values})
+@defun cl-pairlis keys values &optional alist
+This is equivalent to @code{(nconc (cl-mapcar 'cons @var{keys} @var{values})
 @var{alist})}.
 @end defun
 
@@ -4382,15 +4379,15 @@ system provides no way to create new distinct types, this package
 implements structures as vectors (or lists upon request) with a
 special ``tag'' symbol to identify them.
 
-@defspec defstruct name slots@dots{}
-The @code{defstruct} form defines a new structure type called
+@defspec cl-defstruct name slots@dots{}
+The @code{cl-defstruct} form defines a new structure type called
 @var{name}, with the specified @var{slots}.  (The @var{slots}
 may begin with a string which documents the structure type.)
 In the simplest case, @var{name} and each of the @var{slots}
 are symbols.  For example,
 
 @example
-(defstruct person name age sex)
+(cl-defstruct person name age sex)
 @end example
 
 @noindent
@@ -4401,7 +4398,7 @@ and @code{(person-sex @var{p})}.  You can also change these slots by
 using @code{setf} on any of these place forms:
 
 @example
-(incf (person-age birthday-boy))
+(cl-incf (person-age birthday-boy))
 @end example
 
 You can create a new @code{person} by calling @code{make-person},
@@ -4465,10 +4462,10 @@ the slot's value is determined when the object is created and does
 not change afterward.
 
 @example
-(defstruct person
-  (name nil :read-only t)
-  age
-  (sex 'unknown))
+(cl-defstruct person
+     (name nil :read-only t)
+     age
+     (sex 'unknown))
 @end example
 
 Any slot options other than @code{:read-only} are ignored.
@@ -4480,10 +4477,10 @@ by arguments.  (By contrast, slot options are key-value pairs not
 enclosed in lists.)
 
 @example
-(defstruct (person (:constructor create-person)
-                   (:type list)
-                   :named)
-  name age sex)
+(cl-defstruct (person (:constructor create-person)
+                      (:type list)
+                      :named)
+     name age sex)
 @end example
 
 The following structure options are recognized.
@@ -4529,15 +4526,15 @@ as well unless you disable it with a simple-format @code{:constructor}
 option.
 
 @example
-(defstruct
- (person
-  (:constructor nil)   ; no default constructor
-  (:constructor new-person (name sex &optional (age 0)))
-  (:constructor new-hound (&key (name "Rover")
-                                (dog-years 0)
-                           &aux (age (* 7 dog-years))
-                                (sex 'canine))))
- name age sex)
+(cl-defstruct
   (person
+     (:constructor nil)   ; no default constructor
+     (:constructor new-person (name sex &optional (age 0)))
+     (:constructor new-hound (&key (name "Rover")
+                                   (dog-years 0)
+                              &aux (age (* 7 dog-years))
+                                   (sex 'canine))))
   name age sex)
 @end example
 
 The first constructor here takes its arguments positionally rather
@@ -4576,7 +4573,7 @@ only if they used the default predicate name.
 @item :include
 This option implements a very limited form of C++-style inheritance.
 The argument is the name of another structure type previously
-created with @code{defstruct}.  The effect is to cause the new
+created with @code{cl-defstruct}.  The effect is to cause the new
 structure type to inherit all of the included structure's slots
 (plus, of course, any new slots described by this struct's slot
 descriptors).  The new structure is considered a ``specialization''
@@ -4589,12 +4586,12 @@ slot descriptors for slots in the included structure, possibly with
 modified default values.  Borrowing an example from Steele:
 
 @example
-(defstruct person name (age 0) sex)
-     @result{} person
-(defstruct (astronaut (:include person (age 45)))
-  helmet-size
-  (favorite-beverage 'tang))
-     @result{} astronaut
+(cl-defstruct person name (age 0) sex)
+        @result{} person
+(cl-defstruct (astronaut (:include person (age 45)))
+     helmet-size
+     (favorite-beverage 'tang))
+        @result{} astronaut
 
 (setq joe (make-person :name "Joe"))
      @result{} [cl-struct-person "Joe" 0 nil]
@@ -4650,9 +4647,9 @@ use named vectors.  Therefore, @code{:named} is only useful in
 conjunction with @code{:type}.
 
 @example
-(defstruct (person1) name age sex)
-(defstruct (person2 (:type list) :named) name age sex)
-(defstruct (person3 (:type list)) name age sex)
+(cl-defstruct (person1) name age sex)
+(cl-defstruct (person2 (:type list) :named) name age sex)
+(cl-defstruct (person3 (:type list)) name age sex)
 
 (setq p1 (make-person1))
      @result{} [cl-struct-person1 nil nil nil]
@@ -4669,7 +4666,7 @@ conjunction with @code{:type}.
      @result{} error: function person3-p undefined
 @end example
 
-Since unnamed structures don't have tags, @code{defstruct} is not
+Since unnamed structures don't have tags, @code{cl-defstruct} is not
 able to make a useful predicate for recognizing them.  Also,
 accessors like @code{person3-name} will be generated but they
 will not be able to do any type checking.  The @code{person3-name}
@@ -4691,7 +4688,7 @@ of the included type and the first new slot.
 @end table
 @end defspec
 
-Except as noted, the @code{defstruct} facility of this package is
+Except as noted, the @code{cl-defstruct} facility of this package is
 entirely compatible with that of Common Lisp.
 
 @node Assertions
@@ -4708,10 +4705,10 @@ If the optimization property @code{speed} has been set to 3, and
 away the following assertions.  Because assertions might be optimized
 away, it is a bad idea for them to include side-effects.
 
-@defspec assert test-form [show-args string args@dots{}]
+@defspec cl-assert test-form [show-args string args@dots{}]
 This form verifies that @var{test-form} is true (i.e., evaluates to
 a non-@code{nil} value).  If so, it returns @code{nil}.  If the test
-is not satisfied, @code{assert} signals an error.
+is not satisfied, @code{cl-assert} signals an error.
 
 A default error message will be supplied which includes @var{test-form}.
 You can specify a different error message by including a @var{string}
@@ -4724,7 +4721,7 @@ will also include all non-constant arguments of the top-level
 @var{form}.  For example:
 
 @example
-(assert (> x 10) t "x is too small: %d")
+(cl-assert (> x 10) t "x is too small: %d")
 @end example
 
 This usage of @var{show-args} is an extension to Common Lisp.  In
@@ -4734,16 +4731,16 @@ error.  Since Emacs Lisp does not support continuable errors, it
 makes no sense to specify @var{places}.
 @end defspec
 
-@defspec check-type form type [string]
+@defspec cl-check-type form type [string]
 This form verifies that @var{form} evaluates to a value of type
-@var{type}.  If so, it returns @code{nil}.  If not, @code{check-type}
+@var{type}.  If so, it returns @code{nil}.  If not, @code{cl-check-type}
 signals a @code{wrong-type-argument} error.  The default error message
 lists the erroneous value along with @var{type} and @var{form}
 themselves.  If @var{string} is specified, it is included in the
 error message in place of @var{type}.  For example:
 
 @example
-(check-type x (integer 1 *) "a positive integer")
+(cl-check-type x (integer 1 *) "a positive integer")
 @end example
 
 @xref{Type Predicates}, for a description of the type specifiers
@@ -4757,6 +4754,7 @@ user to modify @var{place}.
 
 The following error-related macro is also defined:
 
+@c FIXME standard for some time.
 @defspec ignore-errors forms@dots{}
 This executes @var{forms} exactly like a @code{progn}, except that
 errors are ignored during the @var{forms}.  More precisely, if
@@ -4772,14 +4770,14 @@ returns the result of the last @var{form}.
 @appendixsec Macros
 
 @noindent
-Many of the advanced features of this package, such as @code{defun*},
-@code{loop}, and @code{setf}, are implemented as Lisp macros.  In
+Many of the advanced features of this package, such as @code{cl-defun},
+@code{cl-loop}, and @code{setf}, are implemented as Lisp macros.  In
 byte-compiled code, these complex notations will be expanded into
 equivalent Lisp code which is simple and efficient.  For example,
 the forms
 
 @example
-(incf i n)
+(cl-incf i n)
 (push x (car p))
 @end example
 
@@ -4794,13 +4792,13 @@ are expanded at compile-time to the Lisp forms
 @noindent
 which are the most efficient ways of doing these respective operations
 in Lisp.  Thus, there is no performance penalty for using the more
-readable @code{incf} and @code{push} forms in your compiled code.
+readable @code{cl-incf} and @code{push} forms in your compiled code.
 
 @emph{Interpreted} code, on the other hand, must expand these macros
 every time they are executed.  For this reason it is strongly
 recommended that code making heavy use of macros be compiled.
 (The features labeled ``Special Form'' instead of ``Function'' in
-this manual are macros.)  A loop using @code{incf} a hundred times
+this manual are macros.)  A loop using @code{cl-incf} a hundred times
 will execute considerably faster if compiled, and will also
 garbage-collect less because the macro expansion will not have
 to be generated, used, and thrown away a hundred times.
@@ -4824,36 +4822,36 @@ and type @kbd{C-x C-e} immediately after the closing parenthesis;
 the expansion
 
 @example
-(block nil
-  (let* ((x 0)
-         (G1004 nil))
-    (while (< x 10)
-      (setq G1004 (cons x G1004))
-      (setq x (+ x 1)))
-    (nreverse G1004)))
+(cl-block nil
+     (let* ((x 0)
+            (G1004 nil))
+       (while (< x 10)
+         (setq G1004 (cons x G1004))
+         (setq x (+ x 1)))
+       (nreverse G1004)))
 @end example
 
 @noindent
-will be inserted into the buffer.  (The @code{block} macro is
+will be inserted into the buffer.  (The @code{cl-block} macro is
 expanded differently in the interpreter and compiler, so
 @code{cl-prettyexpand} just leaves it alone.  The temporary
-variable @code{G1004} was created by @code{gensym}.)
+variable @code{G1004} was created by @code{cl-gensym}.)
 
 If the optional argument @var{full} is true, then @emph{all}
-macros are expanded, including @code{block}, @code{eval-when},
+macros are expanded, including @code{cl-block}, @code{cl-eval-when},
 and compiler macros.  Expansion is done as if @var{form} were
 a top-level form in a file being compiled.  For example,
 
 @example
-(cl-prettyexpand '(pushnew 'x list))
-     @print{} (setq list (adjoin 'x list))
-(cl-prettyexpand '(pushnew 'x list) t)
+(cl-prettyexpand '(cl-pushnew 'x list))
+     @print{} (setq list (cl-adjoin 'x list))
+(cl-prettyexpand '(cl-pushnew 'x list) t)
      @print{} (setq list (if (memq 'x list) list (cons 'x list)))
-(cl-prettyexpand '(caddr (member* 'a list)) t)
+(cl-prettyexpand '(caddr (cl-member 'a list)) t)
      @print{} (car (cdr (cdr (memq 'a list))))
 @end example
 
-Note that @code{adjoin}, @code{caddr}, and @code{member*} all
+Note that @code{cl-adjoin}, @code{cl-caddr}, and @code{cl-member} all
 have built-in compiler macros to optimize them in common cases.
 @end defun
 
@@ -4875,22 +4873,22 @@ phrase ``it is an error if'' to indicate a situation which is not
 supposed to arise in complying programs; implementations are strongly
 encouraged but not required to signal an error in these situations.
 This package sometimes omits such error checking in the interest of
-compactness and efficiency.  For example, @code{do} variable
+compactness and efficiency.  For example, @code{cl-do} variable
 specifiers are supposed to be lists of one, two, or three forms;
 extra forms are ignored by this package rather than signaling a
-syntax error.  The @code{endp} function is simply a synonym for
+syntax error.  The @code{cl-endp} function is simply a synonym for
 @code{null} in this package.  Functions taking keyword arguments
 will accept an odd number of arguments, treating the trailing
 keyword as if it were followed by the value @code{nil}.
 
-Argument lists (as processed by @code{defun*} and friends)
+Argument lists (as processed by @code{cl-defun} and friends)
 @emph{are} checked rigorously except for the minor point just
 mentioned; in particular, keyword arguments are checked for
 validity, and @code{&allow-other-keys} and @code{:allow-other-keys}
 are fully implemented.  Keyword validity checking is slightly
 time consuming (though not too bad in byte-compiled code);
 you can use @code{&allow-other-keys} to omit this check.  Functions
-defined in this package such as @code{find} and @code{member*}
+defined in this package such as @code{cl-find} and @code{cl-member}
 do check their keyword arguments for validity.
 
 @ifinfo
@@ -4904,10 +4902,10 @@ do check their keyword arguments for validity.
 Use of the optimizing Emacs compiler is highly recommended; many of the Common
 Lisp macros emit
 code which can be improved by optimization.  In particular,
-@code{block}s (whether explicit or implicit in constructs like
-@code{defun*} and @code{loop}) carry a fair run-time penalty; the
-optimizing compiler removes @code{block}s which are not actually
-referenced by @code{return} or @code{return-from} inside the block.
+@code{cl-block}s (whether explicit or implicit in constructs like
+@code{cl-defun} and @code{cl-loop}) carry a fair run-time penalty; the
+optimizing compiler removes @code{cl-block}s which are not actually
+referenced by @code{cl-return} or @code{cl-return-from} inside the block.
 
 @node Common Lisp Compatibility
 @appendix Common Lisp Compatibility
@@ -4916,20 +4914,22 @@ referenced by @code{return} or @code{return-from} inside the block.
 Following is a list of all known incompatibilities between this
 package and Common Lisp as documented in Steele (2nd edition).
 
+@ignore
 Certain function names, such as @code{member}, @code{assoc}, and
 @code{floor}, were already taken by (incompatible) Emacs Lisp
 functions; this package appends @samp{*} to the names of its
 Common Lisp versions of these functions.
+@end ignore
 
-The word @code{defun*} is required instead of @code{defun} in order
+The word @code{cl-defun} is required instead of @code{defun} in order
 to use extended Common Lisp argument lists in a function.  Likewise,
-@code{defmacro*} and @code{function*} are versions of those forms
+@code{cl-defmacro} and @code{cl-function} are versions of those forms
 which understand full-featured argument lists.  The @code{&whole}
 keyword does not work in @code{defmacro} argument lists (except
 inside recursive argument lists).
 
 The @code{equal} predicate does not distinguish
-between IEEE floating-point plus and minus zero.  The @code{equalp}
+between IEEE floating-point plus and minus zero.  The @code{cl-equalp}
 predicate has several differences with Common Lisp; @pxref{Predicates}.
 
 The @code{setf} mechanism is entirely compatible, except that
@@ -4937,21 +4937,21 @@ setf-methods return a list of five values rather than five
 values directly.  Also, the new ``@code{setf} function'' concept
 (typified by @code{(defun (setf foo) @dots{})}) is not implemented.
 
-The @code{do-all-symbols} form is the same as @code{do-symbols}
+The @code{cl-do-all-symbols} form is the same as @code{cl-do-symbols}
 with no @var{obarray} argument.  In Common Lisp, this form would
 iterate over all symbols in all packages.  Since Emacs obarrays
 are not a first-class package mechanism, there is no way for
-@code{do-all-symbols} to locate any but the default obarray.
+@code{cl-do-all-symbols} to locate any but the default obarray.
 
-The @code{loop} macro is complete except that @code{loop-finish}
+The @code{cl-loop} macro is complete except that @code{loop-finish}
 and type specifiers are unimplemented.
 
 The multiple-value return facility treats lists as multiple
 values, since Emacs Lisp cannot support multiple return values
 directly.  The macros will be compatible with Common Lisp if
 @code{values} or @code{values-list} is always used to return to
-a @code{multiple-value-bind} or other multiple-value receiver;
-if @code{values} is used without @code{multiple-value-@dots{}}
+a @code{cl-multiple-value-bind} or other multiple-value receiver;
+if @code{values} is used without @code{cl-multiple-value-@dots{}}
 or vice-versa the effect will be different from Common Lisp.
 
 Many Common Lisp declarations are ignored, and others match
@@ -4960,17 +4960,18 @@ example, local @code{special} declarations, which are purely
 advisory in Emacs Lisp, do not rigorously obey the scoping rules
 set down in Steele's book.
 
-The variable @code{*gensym-counter*} starts out with a pseudo-random
+The variable @code{cl--gensym-counter} starts out with a pseudo-random
 value rather than with zero.  This is to cope with the fact that
 generated symbols become interned when they are written to and
 loaded back from a file.
 
-The @code{defstruct} facility is compatible, except that structures
+The @code{cl-defstruct} facility is compatible, except that structures
 are of type @code{:type vector :named} by default rather than some
 special, distinct type.  Also, the @code{:type} slot option is ignored.
 
-The second argument of @code{check-type} is treated differently.
+The second argument of @code{cl-check-type} is treated differently.
 
+@c FIXME Time to remove this?
 @node Old CL Compatibility
 @appendix Old CL Compatibility
 
@@ -4989,6 +4990,7 @@ is more predictable though more noticeably different from Common Lisp.
 The @code{defkeyword} form and @code{keywordp} function are not
 implemented in this package.
 
+@ignore
 The @code{member}, @code{floor}, @code{ceiling}, @code{truncate},
 @code{round}, @code{mod}, and @code{rem} functions are suffixed
 by @samp{*} in this package to avoid collision with existing
@@ -4998,6 +5000,7 @@ causing serious portability problems.  (Some more
 recent versions of the Quiroz package changed the names to
 @code{cl-member}, etc.; this package defines the latter names as
 aliases for @code{member*}, etc.)
+@end ignore
 
 Certain functions in the old package which were buggy or inconsistent
 with the Common Lisp standard are incompatible with the conforming
@@ -5006,9 +5009,9 @@ were synonyms for @code{eq} and @code{memq} in that package, @code{setf}
 failed to preserve correct order of evaluation of its arguments, etc.
 
 Finally, unlike the older package, this package is careful to
-prefix all of its internal names with @code{cl-}.  Except for a
+prefix all of its internal names with @code{cl--}.  Except for a
 few functions which are explicitly defined as additional features
-(such as @code{floatp-safe} and @code{letf}), this package does not
+(such as @code{cl-floatp-safe} and @code{letf}), this package does not
 export any non-@samp{cl-} symbols which are not also part of Common
 Lisp.
 
@@ -5267,7 +5270,7 @@ where a more iteratively-minded programmer might write one of
 these forms:
 
 @example
-(let ((total 0)) (dolist (x my-list) (incf total x)) total)
+(let ((total 0)) (dolist (x my-list) (cl-incf total x)) total)
 (loop for x in my-list sum x)
 @end example