"Compute X^Y, dealing with errors appropriately."
(condition-case nil
(expt x y)
- (domain-error 0.0e+NaN)
- (range-error
- (cond ((and (< x 1.0) (> x -1.0))
- ;; For small x, the range error comes from large y.
- 0.0)
- ((and (> x 0.0) (< y 0.0))
- ;; For large positive x and negative y, the range error
- ;; comes from large negative y.
- 0.0)
- ((and (> x 0.0) (> y 0.0))
- ;; For large positive x and positive y, the range error
- ;; comes from large y.
- 1.0e+INF)
- ;; For the rest, x must be large and negative.
- ;; The range errors come from large integer y.
- ((< y 0.0)
- 0.0)
- ((eq (logand (truncate y) 1) 1) ; expansion of cl `oddp'
- ;; If y is odd
- -1.0e+INF)
- (t
- ;;
- 1.0e+INF)))
- (error 0.0e+NaN)))
+ (overflow-error
+ (if (or (natnump x) (cl-evenp y))
+ 1.0e+INF
+ -1.0e+INF))))
(defun calculator-fact (x)
"Simple factorial of X."