(defvar cl-key)
+;;;###autoload
(defun reduce (cl-func cl-seq &rest cl-keys)
"Reduce two-argument FUNCTION across SEQ.
\nKeywords supported: :start :end :from-end :initial-value :key
(cl-check-key (pop cl-seq))))))
cl-accum)))
+;;;###autoload
(defun fill (seq item &rest cl-keys)
"Fill the elements of SEQ with ITEM.
\nKeywords supported: :start :end
(setq cl-start (1+ cl-start)))))
seq))
+;;;###autoload
(defun replace (cl-seq1 cl-seq2 &rest cl-keys)
"Replace the elements of SEQ1 with the elements of SEQ2.
SEQ1 is destructively modified, then returned.
(setq cl-start2 (1+ cl-start2) cl-start1 (1+ cl-start1))))))
cl-seq1))
+;;;###autoload
(defun remove* (cl-item cl-seq &rest cl-keys)
"Remove all occurrences of ITEM in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
cl-seq))
cl-seq)))))
+;;;###autoload
(defun remove-if (cl-pred cl-list &rest cl-keys)
"Remove all items satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'remove* nil cl-list :if cl-pred cl-keys))
+;;;###autoload
(defun remove-if-not (cl-pred cl-list &rest cl-keys)
"Remove all items not satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'remove* nil cl-list :if-not cl-pred cl-keys))
+;;;###autoload
(defun delete* (cl-item cl-seq &rest cl-keys)
"Remove all occurrences of ITEM in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
cl-seq)
(apply 'remove* cl-item cl-seq cl-keys)))))
+;;;###autoload
(defun delete-if (cl-pred cl-list &rest cl-keys)
"Remove all items satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'delete* nil cl-list :if cl-pred cl-keys))
+;;;###autoload
(defun delete-if-not (cl-pred cl-list &rest cl-keys)
"Remove all items not satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'delete* nil cl-list :if-not cl-pred cl-keys))
+;;;###autoload
(defun remove-duplicates (cl-seq &rest cl-keys)
"Return a copy of SEQ with all duplicate elements removed.
\nKeywords supported: :test :test-not :key :start :end :from-end
\n(fn SEQ [KEYWORD VALUE]...)"
(cl-delete-duplicates cl-seq cl-keys t))
+;;;###autoload
(defun delete-duplicates (cl-seq &rest cl-keys)
"Remove all duplicate elements from SEQ (destructively).
\nKeywords supported: :test :test-not :key :start :end :from-end
(let ((cl-res (cl-delete-duplicates (append cl-seq nil) cl-keys nil)))
(if (stringp cl-seq) (concat cl-res) (vconcat cl-res)))))
+;;;###autoload
(defun substitute (cl-new cl-old cl-seq &rest cl-keys)
"Substitute NEW for OLD in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
(apply 'nsubstitute cl-new cl-old cl-seq :count cl-count
:start cl-i cl-keys))))))
+;;;###autoload
(defun substitute-if (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'substitute cl-new nil cl-list :if cl-pred cl-keys))
+;;;###autoload
(defun substitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items not satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'substitute cl-new nil cl-list :if-not cl-pred cl-keys))
+;;;###autoload
(defun nsubstitute (cl-new cl-old cl-seq &rest cl-keys)
"Substitute NEW for OLD in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
(setq cl-start (1+ cl-start))))))
cl-seq))
+;;;###autoload
(defun nsubstitute-if (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'nsubstitute cl-new nil cl-list :if cl-pred cl-keys))
+;;;###autoload
(defun nsubstitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items not satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'nsubstitute cl-new nil cl-list :if-not cl-pred cl-keys))
+;;;###autoload
(defun find (cl-item cl-seq &rest cl-keys)
"Find the first occurrence of ITEM in SEQ.
Return the matching ITEM, or nil if not found.
(let ((cl-pos (apply 'position cl-item cl-seq cl-keys)))
(and cl-pos (elt cl-seq cl-pos))))
+;;;###autoload
(defun find-if (cl-pred cl-list &rest cl-keys)
"Find the first item satisfying PREDICATE in SEQ.
Return the matching item, or nil if not found.
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'find nil cl-list :if cl-pred cl-keys))
+;;;###autoload
(defun find-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item not satisfying PREDICATE in SEQ.
Return the matching item, or nil if not found.
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'find nil cl-list :if-not cl-pred cl-keys))
+;;;###autoload
(defun position (cl-item cl-seq &rest cl-keys)
"Find the first occurrence of ITEM in SEQ.
Return the index of the matching item, or nil if not found.
(setq cl-start (1+ cl-start)))
(and (< cl-start cl-end) cl-start))))
+;;;###autoload
(defun position-if (cl-pred cl-list &rest cl-keys)
"Find the first item satisfying PREDICATE in SEQ.
Return the index of the matching item, or nil if not found.
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'position nil cl-list :if cl-pred cl-keys))
+;;;###autoload
(defun position-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item not satisfying PREDICATE in SEQ.
Return the index of the matching item, or nil if not found.
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'position nil cl-list :if-not cl-pred cl-keys))
+;;;###autoload
(defun count (cl-item cl-seq &rest cl-keys)
"Count the number of occurrences of ITEM in SEQ.
\nKeywords supported: :test :test-not :key :start :end
(setq cl-start (1+ cl-start)))
cl-count)))
+;;;###autoload
(defun count-if (cl-pred cl-list &rest cl-keys)
"Count the number of items satisfying PREDICATE in SEQ.
\nKeywords supported: :key :start :end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'count nil cl-list :if cl-pred cl-keys))
+;;;###autoload
(defun count-if-not (cl-pred cl-list &rest cl-keys)
"Count the number of items not satisfying PREDICATE in SEQ.
\nKeywords supported: :key :start :end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'count nil cl-list :if-not cl-pred cl-keys))
+;;;###autoload
(defun mismatch (cl-seq1 cl-seq2 &rest cl-keys)
"Compare SEQ1 with SEQ2, return index of first mismatching element.
Return nil if the sequences match. If one sequence is a prefix of the
(and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2))
cl-start1)))))
+;;;###autoload
(defun search (cl-seq1 cl-seq2 &rest cl-keys)
"Search for SEQ1 as a subsequence of SEQ2.
Return the index of the leftmost element of the first match found;
(if cl-from-end (setq cl-end2 cl-pos) (setq cl-start2 (1+ cl-pos))))
(and (< cl-start2 cl-end2) cl-pos)))))
+;;;###autoload
(defun sort* (cl-seq cl-pred &rest cl-keys)
"Sort the argument SEQ according to PREDICATE.
This is a destructive function; it reuses the storage of SEQ if possible.
(funcall cl-pred (funcall cl-key cl-x)
(funcall cl-key cl-y)))))))))
+;;;###autoload
(defun stable-sort (cl-seq cl-pred &rest cl-keys)
"Sort the argument SEQ stably according to PREDICATE.
This is a destructive function; it reuses the storage of SEQ if possible.
\n(fn SEQ PREDICATE [KEYWORD VALUE]...)"
(apply 'sort* cl-seq cl-pred cl-keys))
+;;;###autoload
(defun merge (cl-type cl-seq1 cl-seq2 cl-pred &rest cl-keys)
"Destructively merge the two sequences to produce a new sequence.
TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
(coerce (nconc (nreverse cl-res) cl-seq1 cl-seq2) cl-type))))
;;; See compiler macro in cl-macs.el
+;;;###autoload
(defun member* (cl-item cl-list &rest cl-keys)
"Find the first occurrence of ITEM in LIST.
Return the sublist of LIST whose car is ITEM.
(member cl-item cl-list)
(memq cl-item cl-list))))
+;;;###autoload
(defun member-if (cl-pred cl-list &rest cl-keys)
"Find the first item satisfying PREDICATE in LIST.
Return the sublist of LIST whose car matches.
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
(apply 'member* nil cl-list :if cl-pred cl-keys))
+;;;###autoload
(defun member-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item not satisfying PREDICATE in LIST.
Return the sublist of LIST whose car matches.
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
(apply 'member* nil cl-list :if-not cl-pred cl-keys))
+;;;###autoload
(defun cl-adjoin (cl-item cl-list &rest cl-keys)
(if (cl-parsing-keywords (:key) t
(apply 'member* (cl-check-key cl-item) cl-list cl-keys))
(cons cl-item cl-list)))
;;; See compiler macro in cl-macs.el
+;;;###autoload
(defun assoc* (cl-item cl-alist &rest cl-keys)
"Find the first item whose car matches ITEM in LIST.
\nKeywords supported: :test :test-not :key
(assoc cl-item cl-alist)
(assq cl-item cl-alist))))
+;;;###autoload
(defun assoc-if (cl-pred cl-list &rest cl-keys)
"Find the first item whose car satisfies PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
(apply 'assoc* nil cl-list :if cl-pred cl-keys))
+;;;###autoload
(defun assoc-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item whose car does not satisfy PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
(apply 'assoc* nil cl-list :if-not cl-pred cl-keys))
+;;;###autoload
(defun rassoc* (cl-item cl-alist &rest cl-keys)
"Find the first item whose cdr matches ITEM in LIST.
\nKeywords supported: :test :test-not :key
(and cl-alist (car cl-alist)))
(rassq cl-item cl-alist)))
+;;;###autoload
(defun rassoc-if (cl-pred cl-list &rest cl-keys)
"Find the first item whose cdr satisfies PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
(apply 'rassoc* nil cl-list :if cl-pred cl-keys))
+;;;###autoload
(defun rassoc-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item whose cdr does not satisfy PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
(apply 'rassoc* nil cl-list :if-not cl-pred cl-keys))
+;;;###autoload
(defun union (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-union operation.
The result list contains all items that appear in either LIST1 or LIST2.
(pop cl-list2))
cl-list1)))
+;;;###autoload
(defun nunion (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-union operation.
The result list contains all items that appear in either LIST1 or LIST2.
(cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
(t (apply 'union cl-list1 cl-list2 cl-keys))))
+;;;###autoload
(defun intersection (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-intersection operation.
The result list contains all items that appear in both LIST1 and LIST2.
(pop cl-list2))
cl-res)))))
+;;;###autoload
(defun nintersection (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-intersection operation.
The result list contains all items that appear in both LIST1 and LIST2.
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(and cl-list1 cl-list2 (apply 'intersection cl-list1 cl-list2 cl-keys)))
+;;;###autoload
(defun set-difference (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-difference operation.
The result list contains all items that appear in LIST1 but not LIST2.
(pop cl-list1))
cl-res))))
+;;;###autoload
(defun nset-difference (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-difference operation.
The result list contains all items that appear in LIST1 but not LIST2.
(if (or (null cl-list1) (null cl-list2)) cl-list1
(apply 'set-difference cl-list1 cl-list2 cl-keys)))
+;;;###autoload
(defun set-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-exclusive-or operation.
The result list contains all items that appear in exactly one of LIST1, LIST2.
(t (append (apply 'set-difference cl-list1 cl-list2 cl-keys)
(apply 'set-difference cl-list2 cl-list1 cl-keys)))))
+;;;###autoload
(defun nset-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-exclusive-or operation.
The result list contains all items that appear in exactly one of LIST1, LIST2.
(t (nconc (apply 'nset-difference cl-list1 cl-list2 cl-keys)
(apply 'nset-difference cl-list2 cl-list1 cl-keys)))))
+;;;###autoload
(defun subsetp (cl-list1 cl-list2 &rest cl-keys)
"Return true if LIST1 is a subset of LIST2.
I.e., if every element of LIST1 also appears in LIST2.
(pop cl-list1))
(null cl-list1)))))
+;;;###autoload
(defun subst-if (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
Return a copy of TREE with all matching elements replaced by NEW.
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
(apply 'sublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys))
+;;;###autoload
(defun subst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
Return a copy of TREE with all non-matching elements replaced by NEW.
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
(apply 'sublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys))
+;;;###autoload
(defun nsubst (cl-new cl-old cl-tree &rest cl-keys)
"Substitute NEW for OLD everywhere in TREE (destructively).
Any element of TREE which is `eql' to OLD is changed to NEW (via a call
\n(fn NEW OLD TREE [KEYWORD VALUE]...)"
(apply 'nsublis (list (cons cl-old cl-new)) cl-tree cl-keys))
+;;;###autoload
(defun nsubst-if (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elements matching PREDICATE in TREE (destructively).
Any element of TREE which matches is changed to NEW (via a call to `setcar').
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
(apply 'nsublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys))
+;;;###autoload
(defun nsubst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elements not matching PREDICATE in TREE (destructively).
Any element of TREE which matches is changed to NEW (via a call to `setcar').
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
(apply 'nsublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys))
+;;;###autoload
(defun sublis (cl-alist cl-tree &rest cl-keys)
"Perform substitutions indicated by ALIST in TREE (non-destructively).
Return a copy of TREE with all matching elements replaced.
(cons cl-a cl-d)))
cl-tree))))
+;;;###autoload
(defun nsublis (cl-alist cl-tree &rest cl-keys)
"Perform substitutions indicated by ALIST in TREE (destructively).
Any matching element of TREE is changed via a call to `setcar'.
(progn (setcdr cl-tree (cdr (car cl-p))) (setq cl-tree nil))
(setq cl-tree (cdr cl-tree))))))
+;;;###autoload
(defun tree-equal (cl-x cl-y &rest cl-keys)
"Return t if trees TREE1 and TREE2 have `eql' leaves.
Atoms are compared by `eql'; cons cells are compared recursively.
(run-hooks 'cl-seq-load-hook)
-;;; arch-tag: ec1cc072-9006-4225-b6ba-d6b07ed1710c
+;; Local variables:
+;; generated-autoload-file: "cl-loaddefs.el"
+;; End:
+
+;; arch-tag: ec1cc072-9006-4225-b6ba-d6b07ed1710c
;;; cl-seq.el ends here