(setq args (cons (car rest) args)))
(setq rest (cdr rest)))
(if (cdr constants)
- (if args
- (list (car form)
- (apply (car form) constants)
- (if (cdr args)
- (cons (car form) (nreverse args))
- (car args)))
- (apply (car form) constants))
- form)))
+ (let ((const (apply (car form) (nreverse constants))))
+ (if args
+ (append (list (car form) const)
+ (nreverse args))
+ const))
+ form)))
+
+(defun byte-optimize-min-max (form)
+ "Optimize `min' and `max'."
+ (let ((opt (byte-optimize-associative-math form)))
+ (if (and (consp opt) (memq (car opt) '(min max))
+ (= (length opt) 4))
+ ;; (OP x y z) -> (OP (OP x y) z), in order to use binary byte ops.
+ (list (car opt)
+ (list (car opt) (nth 1 opt) (nth 2 opt))
+ (nth 3 opt))
+ opt)))
;; Use OP to reduce any leading prefix of constant numbers in the list
;; (cons ACCUM ARGS) down to a single number, and return the
(put '* 'byte-optimizer #'byte-optimize-multiply)
(put '- 'byte-optimizer #'byte-optimize-minus)
(put '/ 'byte-optimizer #'byte-optimize-divide)
-(put 'max 'byte-optimizer #'byte-optimize-associative-math)
-(put 'min 'byte-optimizer #'byte-optimize-associative-math)
+(put 'max 'byte-optimizer #'byte-optimize-min-max)
+(put 'min 'byte-optimizer #'byte-optimize-min-max)
(put '= 'byte-optimizer #'byte-optimize-binary-predicate)
(put 'eq 'byte-optimizer #'byte-optimize-binary-predicate)
(byte-defop-compiler (% byte-rem) 2)
(byte-defop-compiler aset 3)
-(byte-defop-compiler max byte-compile-associative)
-(byte-defop-compiler min byte-compile-associative)
-(byte-defop-compiler (+ byte-plus) byte-compile-associative)
-(byte-defop-compiler (* byte-mult) byte-compile-associative)
+(byte-defop-compiler max byte-compile-min-max)
+(byte-defop-compiler min byte-compile-min-max)
+(byte-defop-compiler (+ byte-plus) byte-compile-variadic-numeric)
+(byte-defop-compiler (* byte-mult) byte-compile-variadic-numeric)
;;####(byte-defop-compiler move-to-column 1)
(byte-defop-compiler-1 interactive byte-compile-noop)
(if byte-compile--for-effect (setq byte-compile--for-effect nil)
(byte-compile-out 'byte-constant (nth 1 form))))
-;; Compile a function that accepts one or more args and is right-associative.
-;; We do it by left-associativity so that the operations
-;; are done in the same order as in interpreted code.
-;; We treat the one-arg case, as in (+ x), like (* x 1).
-;; in order to convert markers to numbers, and trigger expected errors.
-(defun byte-compile-associative (form)
+;; Compile a pure function that accepts zero or more numeric arguments
+;; and has an opcode for the binary case.
+;; Single-argument calls are assumed to be numeric identity and are
+;; compiled as (* x 1) in order to convert markers to numbers and
+;; trigger type errors.
+(defun byte-compile-variadic-numeric (form)
+ (pcase (length form)
+ (1
+ ;; No args: use the identity value for the operation.
+ (byte-compile-constant (eval form)))
+ (2
+ ;; One arg: compile (OP x) as (* x 1). This is identity for
+ ;; all numerical values including -0.0, infinities and NaNs.
+ (byte-compile-form (nth 1 form))
+ (byte-compile-constant 1)
+ (byte-compile-out (get '* 'byte-opcode) 0))
+ (3
+ (byte-compile-form (nth 1 form))
+ (byte-compile-form (nth 2 form))
+ (byte-compile-out (get (car form) 'byte-opcode) 0))
+ (_
+ ;; >2 args: compile as a single function call.
+ (byte-compile-normal-call form))))
+
+(defun byte-compile-min-max (form)
+ "Byte-compile calls to `min' or `max'."
(if (cdr form)
- (let ((opcode (get (car form) 'byte-opcode))
- args)
- (if (and (< 3 (length form))
- (memq opcode (list (get '+ 'byte-opcode)
- (get '* 'byte-opcode))))
- ;; Don't use binary operations for > 2 operands, as that
- ;; may cause overflow/truncation in float operations.
- (byte-compile-normal-call form)
- (setq args (copy-sequence (cdr form)))
- (byte-compile-form (car args))
- (setq args (cdr args))
- (or args (setq args '(1)
- opcode (get '* 'byte-opcode)))
- (dolist (arg args)
- (byte-compile-form arg)
- (byte-compile-out opcode 0))))
- (byte-compile-constant (eval form))))
+ (byte-compile-variadic-numeric form)
+ ;; No args: warn and emit code that raises an error when executed.
+ (byte-compile-normal-call form)))
\f
;; more complicated compiler macros
(byte-defop-compiler indent-to)
(byte-defop-compiler insert)
(byte-defop-compiler-1 function byte-compile-function-form)
-(byte-defop-compiler-1 - byte-compile-minus)
+(byte-defop-compiler (- byte-diff) byte-compile-minus)
(byte-defop-compiler (/ byte-quo) byte-compile-quo)
(byte-defop-compiler nconc)
((byte-compile-normal-call form)))))
(defun byte-compile-minus (form)
- (let ((len (length form)))
- (cond
- ((= 1 len) (byte-compile-constant 0))
- ((= 2 len)
- (byte-compile-form (cadr form))
- (byte-compile-out 'byte-negate 0))
- ((= 3 len)
- (byte-compile-form (nth 1 form))
- (byte-compile-form (nth 2 form))
- (byte-compile-out 'byte-diff 0))
- ;; Don't use binary operations for > 2 operands, as that may
- ;; cause overflow/truncation in float operations.
- (t (byte-compile-normal-call form)))))
+ (if (/= (length form) 2)
+ (byte-compile-variadic-numeric form)
+ (byte-compile-form (cadr form))
+ (byte-compile-out 'byte-negate 0)))
(defun byte-compile-quo (form)
- (let ((len (length form)))
- (cond ((< len 2)
- (byte-compile-subr-wrong-args form "1 or more"))
- ((= len 3)
- (byte-compile-two-args form))
- (t
- ;; Don't use binary operations for > 2 operands, as that
- ;; may cause overflow/truncation in float operations.
- (byte-compile-normal-call form)))))
+ (if (= (length form) 3)
+ (byte-compile-two-args form)
+ ;; N-ary `/' is not the left-reduction of binary `/' because if any
+ ;; argument is a float, then everything is done in floating-point.
+ (byte-compile-normal-call form)))
(defun byte-compile-nconc (form)
(let ((len (length form)))