;; Copyright (C) 1990, 1991, 1992, 1993, 2001 Free Software Foundation, Inc.
;; Author: David Gillespie <daveg@synaptics.com>
-;; Maintainers: D. Goel <deego@gnufans.org>
-;; Colin Walters <walters@debian.org>
+;; Maintainer: Jay Belanger <belanger@truman.edu>
;; This file is part of GNU Emacs.
(calc-slow-wrapper
(calc-binary-op "pgcd" 'calcFunc-pgcd arg)))
+
(defun calc-poly-div (arg)
(interactive "P")
(calc-slow-wrapper
- (setq calc-poly-div-remainder nil)
- (calc-binary-op "pdiv" 'calcFunc-pdiv arg)
- (if (and calc-poly-div-remainder (null arg))
- (progn
- (calc-clear-command-flag 'clear-message)
- (calc-record calc-poly-div-remainder "prem")
- (if (not (Math-zerop calc-poly-div-remainder))
- (message "(Remainder was %s)"
- (math-format-flat-expr calc-poly-div-remainder 0))
- (message "(No remainder)"))))))
+ (let ((calc-poly-div-remainder nil))
+ (calc-binary-op "pdiv" 'calcFunc-pdiv arg)
+ (if (and calc-poly-div-remainder (null arg))
+ (progn
+ (calc-clear-command-flag 'clear-message)
+ (calc-record calc-poly-div-remainder "prem")
+ (if (not (Math-zerop calc-poly-div-remainder))
+ (message "(Remainder was %s)"
+ (math-format-flat-expr calc-poly-div-remainder 0))
+ (message "(No remainder)")))))))
(defun calc-poly-rem (arg)
(interactive "P")
(memq (car name) '(vec calcFunc-assign calcFunc-condition))
name))
+;; math-eval-rules-cache and math-eval-rules-cache-other are
+;; declared in calc.el, but are used here by math-recompile-eval-rules.
+(defvar math-eval-rules-cache)
+(defvar math-eval-rules-cache-other)
+
(defun math-recompile-eval-rules ()
(setq math-eval-rules-cache (and (calc-has-rules 'var-EvalRules)
(math-compile-rewrites
(defalias 'calcFunc-esimplify 'math-simplify-extended)
+;; math-top-only is local to math-simplify, but is used by
+;; math-simplify-step, which is called by math-simplify.
+(defvar math-top-only)
+
(defun math-simplify (top-expr)
(let ((math-simplifying t)
- (top-only (consp calc-simplify-mode))
+ (math-top-only (consp calc-simplify-mode))
(simp-rules (append (and (calc-has-rules 'var-AlgSimpRules)
'((var AlgSimpRules var-AlgSimpRules)))
(and math-living-dangerously
(calc-has-rules 'var-IntegSimpRules)
'((var IntegSimpRules var-IntegSimpRules)))))
res)
- (if top-only
+ (if math-top-only
(let ((r simp-rules))
(setq res (math-simplify-step (math-normalize top-expr))
calc-simplify-mode '(nil)
(defun math-simplify-step (a)
(if (Math-primp a)
a
- (let ((aa (if (or top-only
+ (let ((aa (if (or math-top-only
(memq (car a) '(calcFunc-quote calcFunc-condition
calcFunc-evalto)))
a
(defun math-need-std-simps ()
nil)
+;; The function created by math-defsimplify uses the variable
+;; math-simplify-expr, and so is used by functions in math-defsimplify
+(defvar math-simplify-expr)
+
(math-defsimplify (+ -)
(math-simplify-plus))
(defun math-simplify-plus ()
- (cond ((and (memq (car-safe (nth 1 expr)) '(+ -))
- (Math-numberp (nth 2 (nth 1 expr)))
- (not (Math-numberp (nth 2 expr))))
- (let ((x (nth 2 expr))
- (op (car expr)))
- (setcar (cdr (cdr expr)) (nth 2 (nth 1 expr)))
- (setcar expr (car (nth 1 expr)))
- (setcar (cdr (cdr (nth 1 expr))) x)
- (setcar (nth 1 expr) op)))
- ((and (eq (car expr) '+)
- (Math-numberp (nth 1 expr))
- (not (Math-numberp (nth 2 expr))))
- (let ((x (nth 2 expr)))
- (setcar (cdr (cdr expr)) (nth 1 expr))
- (setcar (cdr expr) x))))
- (let ((aa expr)
+ (cond ((and (memq (car-safe (nth 1 math-simplify-expr)) '(+ -))
+ (Math-numberp (nth 2 (nth 1 math-simplify-expr)))
+ (not (Math-numberp (nth 2 math-simplify-expr))))
+ (let ((x (nth 2 math-simplify-expr))
+ (op (car math-simplify-expr)))
+ (setcar (cdr (cdr math-simplify-expr)) (nth 2 (nth 1 math-simplify-expr)))
+ (setcar math-simplify-expr (car (nth 1 math-simplify-expr)))
+ (setcar (cdr (cdr (nth 1 math-simplify-expr))) x)
+ (setcar (nth 1 math-simplify-expr) op)))
+ ((and (eq (car math-simplify-expr) '+)
+ (Math-numberp (nth 1 math-simplify-expr))
+ (not (Math-numberp (nth 2 math-simplify-expr))))
+ (let ((x (nth 2 math-simplify-expr)))
+ (setcar (cdr (cdr math-simplify-expr)) (nth 1 math-simplify-expr))
+ (setcar (cdr math-simplify-expr) x))))
+ (let ((aa math-simplify-expr)
aaa temp)
(while (memq (car-safe (setq aaa (nth 1 aa))) '(+ -))
- (if (setq temp (math-combine-sum (nth 2 aaa) (nth 2 expr)
- (eq (car aaa) '-) (eq (car expr) '-) t))
+ (if (setq temp (math-combine-sum (nth 2 aaa) (nth 2 math-simplify-expr)
+ (eq (car aaa) '-)
+ (eq (car math-simplify-expr) '-) t))
(progn
- (setcar (cdr (cdr expr)) temp)
- (setcar expr '+)
+ (setcar (cdr (cdr math-simplify-expr)) temp)
+ (setcar math-simplify-expr '+)
(setcar (cdr (cdr aaa)) 0)))
(setq aa (nth 1 aa)))
- (if (setq temp (math-combine-sum aaa (nth 2 expr)
- nil (eq (car expr) '-) t))
+ (if (setq temp (math-combine-sum aaa (nth 2 math-simplify-expr)
+ nil (eq (car math-simplify-expr) '-) t))
(progn
- (setcar (cdr (cdr expr)) temp)
- (setcar expr '+)
+ (setcar (cdr (cdr math-simplify-expr)) temp)
+ (setcar math-simplify-expr '+)
(setcar (cdr aa) 0)))
- expr))
+ math-simplify-expr))
(math-defsimplify *
(math-simplify-times))
(defun math-simplify-times ()
- (if (eq (car-safe (nth 2 expr)) '*)
- (and (math-beforep (nth 1 (nth 2 expr)) (nth 1 expr))
- (or (math-known-scalarp (nth 1 expr) t)
- (math-known-scalarp (nth 1 (nth 2 expr)) t))
- (let ((x (nth 1 expr)))
- (setcar (cdr expr) (nth 1 (nth 2 expr)))
- (setcar (cdr (nth 2 expr)) x)))
- (and (math-beforep (nth 2 expr) (nth 1 expr))
- (or (math-known-scalarp (nth 1 expr) t)
- (math-known-scalarp (nth 2 expr) t))
- (let ((x (nth 2 expr)))
- (setcar (cdr (cdr expr)) (nth 1 expr))
- (setcar (cdr expr) x))))
- (let ((aa expr)
+ (if (eq (car-safe (nth 2 math-simplify-expr)) '*)
+ (and (math-beforep (nth 1 (nth 2 math-simplify-expr)) (nth 1 math-simplify-expr))
+ (or (math-known-scalarp (nth 1 math-simplify-expr) t)
+ (math-known-scalarp (nth 1 (nth 2 math-simplify-expr)) t))
+ (let ((x (nth 1 math-simplify-expr)))
+ (setcar (cdr math-simplify-expr) (nth 1 (nth 2 math-simplify-expr)))
+ (setcar (cdr (nth 2 math-simplify-expr)) x)))
+ (and (math-beforep (nth 2 math-simplify-expr) (nth 1 math-simplify-expr))
+ (or (math-known-scalarp (nth 1 math-simplify-expr) t)
+ (math-known-scalarp (nth 2 math-simplify-expr) t))
+ (let ((x (nth 2 math-simplify-expr)))
+ (setcar (cdr (cdr math-simplify-expr)) (nth 1 math-simplify-expr))
+ (setcar (cdr math-simplify-expr) x))))
+ (let ((aa math-simplify-expr)
aaa temp
- (safe t) (scalar (math-known-scalarp (nth 1 expr))))
- (if (and (Math-ratp (nth 1 expr))
- (setq temp (math-common-constant-factor (nth 2 expr))))
+ (safe t) (scalar (math-known-scalarp (nth 1 math-simplify-expr))))
+ (if (and (Math-ratp (nth 1 math-simplify-expr))
+ (setq temp (math-common-constant-factor (nth 2 math-simplify-expr))))
(progn
- (setcar (cdr (cdr expr))
- (math-cancel-common-factor (nth 2 expr) temp))
- (setcar (cdr expr) (math-mul (nth 1 expr) temp))))
+ (setcar (cdr (cdr math-simplify-expr))
+ (math-cancel-common-factor (nth 2 math-simplify-expr) temp))
+ (setcar (cdr math-simplify-expr) (math-mul (nth 1 math-simplify-expr) temp))))
(while (and (eq (car-safe (setq aaa (nth 2 aa))) '*)
safe)
- (if (setq temp (math-combine-prod (nth 1 expr) (nth 1 aaa) nil nil t))
+ (if (setq temp (math-combine-prod (nth 1 math-simplify-expr)
+ (nth 1 aaa) nil nil t))
(progn
- (setcar (cdr expr) temp)
+ (setcar (cdr math-simplify-expr) temp)
(setcar (cdr aaa) 1)))
(setq safe (or scalar (math-known-scalarp (nth 1 aaa) t))
aa (nth 2 aa)))
- (if (and (setq temp (math-combine-prod aaa (nth 1 expr) nil nil t))
+ (if (and (setq temp (math-combine-prod aaa (nth 1 math-simplify-expr) nil nil t))
safe)
(progn
- (setcar (cdr expr) temp)
+ (setcar (cdr math-simplify-expr) temp)
(setcar (cdr (cdr aa)) 1)))
- (if (and (eq (car-safe (nth 1 expr)) 'frac)
- (memq (nth 1 (nth 1 expr)) '(1 -1)))
- (math-div (math-mul (nth 2 expr) (nth 1 (nth 1 expr)))
- (nth 2 (nth 1 expr)))
- expr)))
+ (if (and (eq (car-safe (nth 1 math-simplify-expr)) 'frac)
+ (memq (nth 1 (nth 1 math-simplify-expr)) '(1 -1)))
+ (math-div (math-mul (nth 2 math-simplify-expr)
+ (nth 1 (nth 1 math-simplify-expr)))
+ (nth 2 (nth 1 math-simplify-expr)))
+ math-simplify-expr)))
(math-defsimplify /
(math-simplify-divide))
(defun math-simplify-divide ()
- (let ((np (cdr expr))
+ (let ((np (cdr math-simplify-expr))
(nover nil)
- (nn (and (or (eq (car expr) '/) (not (Math-realp (nth 2 expr))))
- (math-common-constant-factor (nth 2 expr))))
+ (nn (and (or (eq (car math-simplify-expr) '/)
+ (not (Math-realp (nth 2 math-simplify-expr))))
+ (math-common-constant-factor (nth 2 math-simplify-expr))))
n op)
(if nn
(progn
- (setq n (and (or (eq (car expr) '/) (not (Math-realp (nth 1 expr))))
- (math-common-constant-factor (nth 1 expr))))
+ (setq n (and (or (eq (car math-simplify-expr) '/)
+ (not (Math-realp (nth 1 math-simplify-expr))))
+ (math-common-constant-factor (nth 1 math-simplify-expr))))
(if (and (eq (car-safe nn) 'frac) (eq (nth 1 nn) 1) (not n))
(progn
- (setcar (cdr expr) (math-mul (nth 2 nn) (nth 1 expr)))
- (setcar (cdr (cdr expr))
- (math-cancel-common-factor (nth 2 expr) nn))
+ (setcar (cdr math-simplify-expr)
+ (math-mul (nth 2 nn) (nth 1 math-simplify-expr)))
+ (setcar (cdr (cdr math-simplify-expr))
+ (math-cancel-common-factor (nth 2 math-simplify-expr) nn))
(if (and (math-negp nn)
- (setq op (assq (car expr) calc-tweak-eqn-table)))
- (setcar expr (nth 1 op))))
+ (setq op (assq (car math-simplify-expr) calc-tweak-eqn-table)))
+ (setcar math-simplify-expr (nth 1 op))))
(if (and n (not (eq (setq n (math-frac-gcd n nn)) 1)))
(progn
- (setcar (cdr expr)
- (math-cancel-common-factor (nth 1 expr) n))
- (setcar (cdr (cdr expr))
- (math-cancel-common-factor (nth 2 expr) n))
+ (setcar (cdr math-simplify-expr)
+ (math-cancel-common-factor (nth 1 math-simplify-expr) n))
+ (setcar (cdr (cdr math-simplify-expr))
+ (math-cancel-common-factor (nth 2 math-simplify-expr) n))
(if (and (math-negp n)
- (setq op (assq (car expr) calc-tweak-eqn-table)))
- (setcar expr (nth 1 op))))))))
+ (setq op (assq (car math-simplify-expr)
+ calc-tweak-eqn-table)))
+ (setcar math-simplify-expr (nth 1 op))))))))
(if (and (eq (car-safe (car np)) '/)
- (math-known-scalarp (nth 2 expr) t))
+ (math-known-scalarp (nth 2 math-simplify-expr) t))
(progn
- (setq np (cdr (nth 1 expr)))
+ (setq np (cdr (nth 1 math-simplify-expr)))
(while (eq (car-safe (setq n (car np))) '*)
(and (math-known-scalarp (nth 2 n) t)
- (math-simplify-divisor (cdr n) (cdr (cdr expr)) nil t))
+ (math-simplify-divisor (cdr n) (cdr (cdr math-simplify-expr)) nil t))
(setq np (cdr (cdr n))))
- (math-simplify-divisor np (cdr (cdr expr)) nil t)
+ (math-simplify-divisor np (cdr (cdr math-simplify-expr)) nil t)
(setq nover t
- np (cdr (cdr (nth 1 expr))))))
+ np (cdr (cdr (nth 1 math-simplify-expr))))))
(while (eq (car-safe (setq n (car np))) '*)
(and (math-known-scalarp (nth 2 n) t)
- (math-simplify-divisor (cdr n) (cdr (cdr expr)) nover t))
+ (math-simplify-divisor (cdr n) (cdr (cdr math-simplify-expr)) nover t))
(setq np (cdr (cdr n))))
- (math-simplify-divisor np (cdr (cdr expr)) nover t)
- expr))
+ (math-simplify-divisor np (cdr (cdr math-simplify-expr)) nover t)
+ math-simplify-expr))
+
+;; The variables math-simplify-divisor-nover and math-simplify-divisor-dover
+;; are local variables for math-simplify-divisor, but are used by
+;; math-simplify-one-divisor.
+(defvar math-simplify-divisor-nover)
+(defvar math-simplify-divisor-dover)
-(defun math-simplify-divisor (np dp nover dover)
+(defun math-simplify-divisor (np dp math-simplify-divisor-nover
+ math-simplify-divisor-dover)
(cond ((eq (car-safe (car dp)) '/)
- (math-simplify-divisor np (cdr (car dp)) nover dover)
+ (math-simplify-divisor np (cdr (car dp))
+ math-simplify-divisor-nover
+ math-simplify-divisor-dover)
(and (math-known-scalarp (nth 1 (car dp)) t)
(math-simplify-divisor np (cdr (cdr (car dp)))
- nover (not dover))))
- ((or (or (eq (car expr) '/)
+ math-simplify-divisor-nover
+ (not math-simplify-divisor-dover))))
+ ((or (or (eq (car math-simplify-expr) '/)
(let ((signs (math-possible-signs (car np))))
(or (memq signs '(1 4))
- (and (memq (car expr) '(calcFunc-eq calcFunc-neq))
+ (and (memq (car math-simplify-expr) '(calcFunc-eq calcFunc-neq))
(eq signs 5))
math-living-dangerously)))
(math-numberp (car np)))
(let ((n (car np))
- d dd temp op
+ d dd
(safe t) (scalar (math-known-scalarp n)))
(while (and (eq (car-safe (setq d (car dp))) '*)
safe)
(math-simplify-one-divisor np dp))))))
(defun math-simplify-one-divisor (np dp)
- (if (setq temp (math-combine-prod (car np) (car dp) nover dover t))
- (progn
- (and (not (memq (car expr) '(/ calcFunc-eq calcFunc-neq)))
- (math-known-negp (car dp))
- (setq op (assq (car expr) calc-tweak-eqn-table))
- (setcar expr (nth 1 op)))
- (setcar np (if nover (math-div 1 temp) temp))
- (setcar dp 1))
- (and dover (not nover) (eq (car expr) '/)
- (eq (car-safe (car dp)) 'calcFunc-sqrt)
- (Math-integerp (nth 1 (car dp)))
- (progn
- (setcar np (math-mul (car np)
- (list 'calcFunc-sqrt (nth 1 (car dp)))))
- (setcar dp (nth 1 (car dp)))))))
+ (let ((temp (math-combine-prod (car np) (car dp) math-simplify-divisor-nover
+ math-simplify-divisor-dover t))
+ op)
+ (if temp
+ (progn
+ (and (not (memq (car math-simplify-expr) '(/ calcFunc-eq calcFunc-neq)))
+ (math-known-negp (car dp))
+ (setq op (assq (car math-simplify-expr) calc-tweak-eqn-table))
+ (setcar math-simplify-expr (nth 1 op)))
+ (setcar np (if math-simplify-divisor-nover (math-div 1 temp) temp))
+ (setcar dp 1))
+ (and math-simplify-divisor-dover (not math-simplify-divisor-nover)
+ (eq (car math-simplify-expr) '/)
+ (eq (car-safe (car dp)) 'calcFunc-sqrt)
+ (Math-integerp (nth 1 (car dp)))
+ (progn
+ (setcar np (math-mul (car np)
+ (list 'calcFunc-sqrt (nth 1 (car dp)))))
+ (setcar dp (nth 1 (car dp))))))))
(defun math-common-constant-factor (expr)
(if (Math-realp expr)
(math-simplify-mod))
(defun math-simplify-mod ()
- (and (Math-realp (nth 2 expr))
- (Math-posp (nth 2 expr))
- (let ((lin (math-is-linear (nth 1 expr)))
+ (and (Math-realp (nth 2 math-simplify-expr))
+ (Math-posp (nth 2 math-simplify-expr))
+ (let ((lin (math-is-linear (nth 1 math-simplify-expr)))
t1 t2 t3)
(or (and lin
(or (math-negp (car lin))
- (not (Math-lessp (car lin) (nth 2 expr))))
+ (not (Math-lessp (car lin) (nth 2 math-simplify-expr))))
(list '%
(list '+
(math-mul (nth 1 lin) (nth 2 lin))
- (math-mod (car lin) (nth 2 expr)))
- (nth 2 expr)))
+ (math-mod (car lin) (nth 2 math-simplify-expr)))
+ (nth 2 math-simplify-expr)))
(and lin
(not (math-equal-int (nth 1 lin) 1))
(math-num-integerp (nth 1 lin))
- (math-num-integerp (nth 2 expr))
- (setq t1 (calcFunc-gcd (nth 1 lin) (nth 2 expr)))
+ (math-num-integerp (nth 2 math-simplify-expr))
+ (setq t1 (calcFunc-gcd (nth 1 lin) (nth 2 math-simplify-expr)))
(not (math-equal-int t1 1))
(list '*
t1
(nth 2 lin))
(let ((calc-prefer-frac t))
(math-div (car lin) t1)))
- (math-div (nth 2 expr) t1))))
- (and (math-equal-int (nth 2 expr) 1)
+ (math-div (nth 2 math-simplify-expr) t1))))
+ (and (math-equal-int (nth 2 math-simplify-expr) 1)
(math-known-integerp (if lin
(math-mul (nth 1 lin) (nth 2 lin))
- (nth 1 expr)))
+ (nth 1 math-simplify-expr)))
(if lin (math-mod (car lin) 1) 0))))))
(math-defsimplify (calcFunc-eq calcFunc-neq calcFunc-lt
calcFunc-gt calcFunc-leq calcFunc-geq)
- (if (= (length expr) 3)
+ (if (= (length math-simplify-expr) 3)
(math-simplify-ineq)))
(defun math-simplify-ineq ()
- (let ((np (cdr expr))
+ (let ((np (cdr math-simplify-expr))
n)
(while (memq (car-safe (setq n (car np))) '(+ -))
- (math-simplify-add-term (cdr (cdr n)) (cdr (cdr expr))
+ (math-simplify-add-term (cdr (cdr n)) (cdr (cdr math-simplify-expr))
(eq (car n) '-) nil)
(setq np (cdr n)))
- (math-simplify-add-term np (cdr (cdr expr)) nil (eq np (cdr expr)))
+ (math-simplify-add-term np (cdr (cdr math-simplify-expr)) nil
+ (eq np (cdr math-simplify-expr)))
(math-simplify-divide)
- (let ((signs (math-possible-signs (cons '- (cdr expr)))))
- (or (cond ((eq (car expr) 'calcFunc-eq)
+ (let ((signs (math-possible-signs (cons '- (cdr math-simplify-expr)))))
+ (or (cond ((eq (car math-simplify-expr) 'calcFunc-eq)
(or (and (eq signs 2) 1)
(and (memq signs '(1 4 5)) 0)))
- ((eq (car expr) 'calcFunc-neq)
+ ((eq (car math-simplify-expr) 'calcFunc-neq)
(or (and (eq signs 2) 0)
(and (memq signs '(1 4 5)) 1)))
- ((eq (car expr) 'calcFunc-lt)
+ ((eq (car math-simplify-expr) 'calcFunc-lt)
(or (and (eq signs 1) 1)
(and (memq signs '(2 4 6)) 0)))
- ((eq (car expr) 'calcFunc-gt)
+ ((eq (car math-simplify-expr) 'calcFunc-gt)
(or (and (eq signs 4) 1)
(and (memq signs '(1 2 3)) 0)))
- ((eq (car expr) 'calcFunc-leq)
+ ((eq (car math-simplify-expr) 'calcFunc-leq)
(or (and (eq signs 4) 0)
(and (memq signs '(1 2 3)) 1)))
- ((eq (car expr) 'calcFunc-geq)
+ ((eq (car math-simplify-expr) 'calcFunc-geq)
(or (and (eq signs 1) 0)
(and (memq signs '(2 4 6)) 1))))
- expr))))
+ math-simplify-expr))))
(defun math-simplify-add-term (np dp minus lplain)
(or (math-vectorp (car np))
(setcar dp (setq n (math-neg temp)))))))))
(math-defsimplify calcFunc-sin
- (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin)
- (nth 1 (nth 1 expr)))
- (and (math-looks-negp (nth 1 expr))
- (math-neg (list 'calcFunc-sin (math-neg (nth 1 expr)))))
+ (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsin)
+ (nth 1 (nth 1 math-simplify-expr)))
+ (and (math-looks-negp (nth 1 math-simplify-expr))
+ (math-neg (list 'calcFunc-sin (math-neg (nth 1 math-simplify-expr)))))
(and (eq calc-angle-mode 'rad)
- (let ((n (math-linear-in (nth 1 expr) '(var pi var-pi))))
+ (let ((n (math-linear-in (nth 1 math-simplify-expr) '(var pi var-pi))))
(and n
(math-known-sin (car n) (nth 1 n) 120 0))))
(and (eq calc-angle-mode 'deg)
- (let ((n (math-integer-plus (nth 1 expr))))
+ (let ((n (math-integer-plus (nth 1 math-simplify-expr))))
(and n
(math-known-sin (car n) (nth 1 n) '(frac 2 3) 0))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos)
- (list 'calcFunc-sqrt (math-sub 1 (math-sqr (nth 1 (nth 1 expr))))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan)
- (math-div (nth 1 (nth 1 expr))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccos)
+ (list 'calcFunc-sqrt (math-sub 1 (math-sqr
+ (nth 1 (nth 1 math-simplify-expr))))))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctan)
+ (math-div (nth 1 (nth 1 math-simplify-expr))
(list 'calcFunc-sqrt
- (math-add 1 (math-sqr (nth 1 (nth 1 expr)))))))
- (let ((m (math-should-expand-trig (nth 1 expr))))
+ (math-add 1 (math-sqr
+ (nth 1 (nth 1 math-simplify-expr)))))))
+ (let ((m (math-should-expand-trig (nth 1 math-simplify-expr))))
(and m (integerp (car m))
(let ((n (car m)) (a (nth 1 m)))
(list '+
(list 'calcFunc-sin a))))))))
(math-defsimplify calcFunc-cos
- (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos)
- (nth 1 (nth 1 expr)))
- (and (math-looks-negp (nth 1 expr))
- (list 'calcFunc-cos (math-neg (nth 1 expr))))
+ (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccos)
+ (nth 1 (nth 1 math-simplify-expr)))
+ (and (math-looks-negp (nth 1 math-simplify-expr))
+ (list 'calcFunc-cos (math-neg (nth 1 math-simplify-expr))))
(and (eq calc-angle-mode 'rad)
- (let ((n (math-linear-in (nth 1 expr) '(var pi var-pi))))
+ (let ((n (math-linear-in (nth 1 math-simplify-expr) '(var pi var-pi))))
(and n
(math-known-sin (car n) (nth 1 n) 120 300))))
(and (eq calc-angle-mode 'deg)
- (let ((n (math-integer-plus (nth 1 expr))))
+ (let ((n (math-integer-plus (nth 1 math-simplify-expr))))
(and n
(math-known-sin (car n) (nth 1 n) '(frac 2 3) 300))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin)
- (list 'calcFunc-sqrt (math-sub 1 (math-sqr (nth 1 (nth 1 expr))))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan)
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsin)
+ (list 'calcFunc-sqrt
+ (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr))))))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctan)
(math-div 1
(list 'calcFunc-sqrt
- (math-add 1 (math-sqr (nth 1 (nth 1 expr)))))))
- (let ((m (math-should-expand-trig (nth 1 expr))))
+ (math-add 1
+ (math-sqr (nth 1 (nth 1 math-simplify-expr)))))))
+ (let ((m (math-should-expand-trig (nth 1 math-simplify-expr))))
(and m (integerp (car m))
(let ((n (car m)) (a (nth 1 m)))
(list '-
(t nil))))))
(math-defsimplify calcFunc-tan
- (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan)
- (nth 1 (nth 1 expr)))
- (and (math-looks-negp (nth 1 expr))
- (math-neg (list 'calcFunc-tan (math-neg (nth 1 expr)))))
+ (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctan)
+ (nth 1 (nth 1 math-simplify-expr)))
+ (and (math-looks-negp (nth 1 math-simplify-expr))
+ (math-neg (list 'calcFunc-tan (math-neg (nth 1 math-simplify-expr)))))
(and (eq calc-angle-mode 'rad)
- (let ((n (math-linear-in (nth 1 expr) '(var pi var-pi))))
+ (let ((n (math-linear-in (nth 1 math-simplify-expr) '(var pi var-pi))))
(and n
(math-known-tan (car n) (nth 1 n) 120))))
(and (eq calc-angle-mode 'deg)
- (let ((n (math-integer-plus (nth 1 expr))))
+ (let ((n (math-integer-plus (nth 1 math-simplify-expr))))
(and n
(math-known-tan (car n) (nth 1 n) '(frac 2 3)))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin)
- (math-div (nth 1 (nth 1 expr))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsin)
+ (math-div (nth 1 (nth 1 math-simplify-expr))
(list 'calcFunc-sqrt
- (math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos)
+ (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr)))))))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccos)
(math-div (list 'calcFunc-sqrt
- (math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))
- (nth 1 (nth 1 expr))))
- (let ((m (math-should-expand-trig (nth 1 expr))))
+ (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr)))))
+ (nth 1 (nth 1 math-simplify-expr))))
+ (let ((m (math-should-expand-trig (nth 1 math-simplify-expr))))
(and m
(if (equal (car m) '(frac 1 2))
(math-div (math-sub 1 (list 'calcFunc-cos (nth 1 m)))
(list 'calcFunc-sin (nth 1 m)))
- (math-div (list 'calcFunc-sin (nth 1 expr))
- (list 'calcFunc-cos (nth 1 expr))))))))
+ (math-div (list 'calcFunc-sin (nth 1 math-simplify-expr))
+ (list 'calcFunc-cos (nth 1 math-simplify-expr))))))))
(defun math-known-tan (plus n mul)
(setq n (math-mul n mul))
(t nil))))))
(math-defsimplify calcFunc-sinh
- (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh)
- (nth 1 (nth 1 expr)))
- (and (math-looks-negp (nth 1 expr))
- (math-neg (list 'calcFunc-sinh (math-neg (nth 1 expr)))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh)
+ (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsinh)
+ (nth 1 (nth 1 math-simplify-expr)))
+ (and (math-looks-negp (nth 1 math-simplify-expr))
+ (math-neg (list 'calcFunc-sinh (math-neg (nth 1 math-simplify-expr)))))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccosh)
math-living-dangerously
- (list 'calcFunc-sqrt (math-sub (math-sqr (nth 1 (nth 1 expr))) 1)))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh)
+ (list 'calcFunc-sqrt
+ (math-sub (math-sqr (nth 1 (nth 1 math-simplify-expr))) 1)))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctanh)
math-living-dangerously
- (math-div (nth 1 (nth 1 expr))
+ (math-div (nth 1 (nth 1 math-simplify-expr))
(list 'calcFunc-sqrt
- (math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))))
- (let ((m (math-should-expand-trig (nth 1 expr) t)))
+ (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr)))))))
+ (let ((m (math-should-expand-trig (nth 1 math-simplify-expr) t)))
(and m (integerp (car m))
(let ((n (car m)) (a (nth 1 m)))
(if (> n 1)
(list 'calcFunc-sinh a)))))))))
(math-defsimplify calcFunc-cosh
- (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh)
- (nth 1 (nth 1 expr)))
- (and (math-looks-negp (nth 1 expr))
- (list 'calcFunc-cosh (math-neg (nth 1 expr))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh)
+ (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccosh)
+ (nth 1 (nth 1 math-simplify-expr)))
+ (and (math-looks-negp (nth 1 math-simplify-expr))
+ (list 'calcFunc-cosh (math-neg (nth 1 math-simplify-expr))))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsinh)
math-living-dangerously
- (list 'calcFunc-sqrt (math-add (math-sqr (nth 1 (nth 1 expr))) 1)))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh)
+ (list 'calcFunc-sqrt
+ (math-add (math-sqr (nth 1 (nth 1 math-simplify-expr))) 1)))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctanh)
math-living-dangerously
(math-div 1
(list 'calcFunc-sqrt
- (math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))))
- (let ((m (math-should-expand-trig (nth 1 expr) t)))
+ (math-sub 1 (math-sqr (nth 1 (nth 1 math-simplify-expr)))))))
+ (let ((m (math-should-expand-trig (nth 1 math-simplify-expr) t)))
(and m (integerp (car m))
(let ((n (car m)) (a (nth 1 m)))
(if (> n 1)
(list 'calcFunc-sinh a)))))))))
(math-defsimplify calcFunc-tanh
- (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh)
- (nth 1 (nth 1 expr)))
- (and (math-looks-negp (nth 1 expr))
- (math-neg (list 'calcFunc-tanh (math-neg (nth 1 expr)))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh)
+ (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arctanh)
+ (nth 1 (nth 1 math-simplify-expr)))
+ (and (math-looks-negp (nth 1 math-simplify-expr))
+ (math-neg (list 'calcFunc-tanh (math-neg (nth 1 math-simplify-expr)))))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arcsinh)
math-living-dangerously
- (math-div (nth 1 (nth 1 expr))
+ (math-div (nth 1 (nth 1 math-simplify-expr))
(list 'calcFunc-sqrt
- (math-add (math-sqr (nth 1 (nth 1 expr))) 1))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh)
+ (math-add (math-sqr (nth 1 (nth 1 math-simplify-expr))) 1))))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-arccosh)
math-living-dangerously
(math-div (list 'calcFunc-sqrt
- (math-sub (math-sqr (nth 1 (nth 1 expr))) 1))
- (nth 1 (nth 1 expr))))
- (let ((m (math-should-expand-trig (nth 1 expr) t)))
+ (math-sub (math-sqr (nth 1 (nth 1 math-simplify-expr))) 1))
+ (nth 1 (nth 1 math-simplify-expr))))
+ (let ((m (math-should-expand-trig (nth 1 math-simplify-expr) t)))
(and m
(if (equal (car m) '(frac 1 2))
(math-div (math-sub (list 'calcFunc-cosh (nth 1 m)) 1)
(list 'calcFunc-sinh (nth 1 m)))
- (math-div (list 'calcFunc-sinh (nth 1 expr))
- (list 'calcFunc-cosh (nth 1 expr))))))))
+ (math-div (list 'calcFunc-sinh (nth 1 math-simplify-expr))
+ (list 'calcFunc-cosh (nth 1 math-simplify-expr))))))))
(math-defsimplify calcFunc-arcsin
- (or (and (math-looks-negp (nth 1 expr))
- (math-neg (list 'calcFunc-arcsin (math-neg (nth 1 expr)))))
- (and (eq (nth 1 expr) 1)
+ (or (and (math-looks-negp (nth 1 math-simplify-expr))
+ (math-neg (list 'calcFunc-arcsin (math-neg (nth 1 math-simplify-expr)))))
+ (and (eq (nth 1 math-simplify-expr) 1)
(math-quarter-circle t))
- (and (equal (nth 1 expr) '(frac 1 2))
+ (and (equal (nth 1 math-simplify-expr) '(frac 1 2))
(math-div (math-half-circle t) 6))
(and math-living-dangerously
- (eq (car-safe (nth 1 expr)) 'calcFunc-sin)
- (nth 1 (nth 1 expr)))
+ (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-sin)
+ (nth 1 (nth 1 math-simplify-expr)))
(and math-living-dangerously
- (eq (car-safe (nth 1 expr)) 'calcFunc-cos)
+ (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-cos)
(math-sub (math-quarter-circle t)
- (nth 1 (nth 1 expr))))))
+ (nth 1 (nth 1 math-simplify-expr))))))
(math-defsimplify calcFunc-arccos
- (or (and (eq (nth 1 expr) 0)
+ (or (and (eq (nth 1 math-simplify-expr) 0)
(math-quarter-circle t))
- (and (eq (nth 1 expr) -1)
+ (and (eq (nth 1 math-simplify-expr) -1)
(math-half-circle t))
- (and (equal (nth 1 expr) '(frac 1 2))
+ (and (equal (nth 1 math-simplify-expr) '(frac 1 2))
(math-div (math-half-circle t) 3))
- (and (equal (nth 1 expr) '(frac -1 2))
+ (and (equal (nth 1 math-simplify-expr) '(frac -1 2))
(math-div (math-mul (math-half-circle t) 2) 3))
(and math-living-dangerously
- (eq (car-safe (nth 1 expr)) 'calcFunc-cos)
- (nth 1 (nth 1 expr)))
+ (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-cos)
+ (nth 1 (nth 1 math-simplify-expr)))
(and math-living-dangerously
- (eq (car-safe (nth 1 expr)) 'calcFunc-sin)
+ (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-sin)
(math-sub (math-quarter-circle t)
- (nth 1 (nth 1 expr))))))
+ (nth 1 (nth 1 math-simplify-expr))))))
(math-defsimplify calcFunc-arctan
- (or (and (math-looks-negp (nth 1 expr))
- (math-neg (list 'calcFunc-arctan (math-neg (nth 1 expr)))))
- (and (eq (nth 1 expr) 1)
+ (or (and (math-looks-negp (nth 1 math-simplify-expr))
+ (math-neg (list 'calcFunc-arctan (math-neg (nth 1 math-simplify-expr)))))
+ (and (eq (nth 1 math-simplify-expr) 1)
(math-div (math-half-circle t) 4))
(and math-living-dangerously
- (eq (car-safe (nth 1 expr)) 'calcFunc-tan)
- (nth 1 (nth 1 expr)))))
+ (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-tan)
+ (nth 1 (nth 1 math-simplify-expr)))))
(math-defsimplify calcFunc-arcsinh
- (or (and (math-looks-negp (nth 1 expr))
- (math-neg (list 'calcFunc-arcsinh (math-neg (nth 1 expr)))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-sinh)
+ (or (and (math-looks-negp (nth 1 math-simplify-expr))
+ (math-neg (list 'calcFunc-arcsinh (math-neg (nth 1 math-simplify-expr)))))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-sinh)
(or math-living-dangerously
- (math-known-realp (nth 1 (nth 1 expr))))
- (nth 1 (nth 1 expr)))))
+ (math-known-realp (nth 1 (nth 1 math-simplify-expr))))
+ (nth 1 (nth 1 math-simplify-expr)))))
(math-defsimplify calcFunc-arccosh
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-cosh)
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-cosh)
(or math-living-dangerously
- (math-known-realp (nth 1 (nth 1 expr))))
- (nth 1 (nth 1 expr))))
+ (math-known-realp (nth 1 (nth 1 math-simplify-expr))))
+ (nth 1 (nth 1 math-simplify-expr))))
(math-defsimplify calcFunc-arctanh
- (or (and (math-looks-negp (nth 1 expr))
- (math-neg (list 'calcFunc-arctanh (math-neg (nth 1 expr)))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-tanh)
+ (or (and (math-looks-negp (nth 1 math-simplify-expr))
+ (math-neg (list 'calcFunc-arctanh (math-neg (nth 1 math-simplify-expr)))))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-tanh)
(or math-living-dangerously
- (math-known-realp (nth 1 (nth 1 expr))))
- (nth 1 (nth 1 expr)))))
+ (math-known-realp (nth 1 (nth 1 math-simplify-expr))))
+ (nth 1 (nth 1 math-simplify-expr)))))
(math-defsimplify calcFunc-sqrt
(math-simplify-sqrt))
(defun math-simplify-sqrt ()
- (or (and (eq (car-safe (nth 1 expr)) 'frac)
- (math-div (list 'calcFunc-sqrt (math-mul (nth 1 (nth 1 expr))
- (nth 2 (nth 1 expr))))
- (nth 2 (nth 1 expr))))
- (let ((fac (if (math-objectp (nth 1 expr))
- (math-squared-factor (nth 1 expr))
- (math-common-constant-factor (nth 1 expr)))))
+ (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'frac)
+ (math-div (list 'calcFunc-sqrt
+ (math-mul (nth 1 (nth 1 math-simplify-expr))
+ (nth 2 (nth 1 math-simplify-expr))))
+ (nth 2 (nth 1 math-simplify-expr))))
+ (let ((fac (if (math-objectp (nth 1 math-simplify-expr))
+ (math-squared-factor (nth 1 math-simplify-expr))
+ (math-common-constant-factor (nth 1 math-simplify-expr)))))
(and fac (not (eq fac 1))
(math-mul (math-normalize (list 'calcFunc-sqrt fac))
(math-normalize
(list 'calcFunc-sqrt
- (math-cancel-common-factor (nth 1 expr) fac))))))
+ (math-cancel-common-factor
+ (nth 1 math-simplify-expr) fac))))))
(and math-living-dangerously
- (or (and (eq (car-safe (nth 1 expr)) '-)
- (math-equal-int (nth 1 (nth 1 expr)) 1)
- (eq (car-safe (nth 2 (nth 1 expr))) '^)
- (math-equal-int (nth 2 (nth 2 (nth 1 expr))) 2)
- (or (and (eq (car-safe (nth 1 (nth 2 (nth 1 expr))))
+ (or (and (eq (car-safe (nth 1 math-simplify-expr)) '-)
+ (math-equal-int (nth 1 (nth 1 math-simplify-expr)) 1)
+ (eq (car-safe (nth 2 (nth 1 math-simplify-expr))) '^)
+ (math-equal-int (nth 2 (nth 2 (nth 1 math-simplify-expr))) 2)
+ (or (and (eq (car-safe (nth 1 (nth 2 (nth 1 math-simplify-expr))))
'calcFunc-sin)
(list 'calcFunc-cos
- (nth 1 (nth 1 (nth 2 (nth 1 expr))))))
- (and (eq (car-safe (nth 1 (nth 2 (nth 1 expr))))
+ (nth 1 (nth 1 (nth 2 (nth 1 math-simplify-expr))))))
+ (and (eq (car-safe (nth 1 (nth 2 (nth 1 math-simplify-expr))))
'calcFunc-cos)
(list 'calcFunc-sin
- (nth 1 (nth 1 (nth 2 (nth 1 expr))))))))
- (and (eq (car-safe (nth 1 expr)) '-)
- (math-equal-int (nth 2 (nth 1 expr)) 1)
- (eq (car-safe (nth 1 (nth 1 expr))) '^)
- (math-equal-int (nth 2 (nth 1 (nth 1 expr))) 2)
- (and (eq (car-safe (nth 1 (nth 1 (nth 1 expr))))
+ (nth 1 (nth 1 (nth 2
+ (nth 1 math-simplify-expr))))))))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) '-)
+ (math-equal-int (nth 2 (nth 1 math-simplify-expr)) 1)
+ (eq (car-safe (nth 1 (nth 1 math-simplify-expr))) '^)
+ (math-equal-int (nth 2 (nth 1 (nth 1 math-simplify-expr))) 2)
+ (and (eq (car-safe (nth 1 (nth 1 (nth 1 math-simplify-expr))))
'calcFunc-cosh)
(list 'calcFunc-sinh
- (nth 1 (nth 1 (nth 1 (nth 1 expr)))))))
- (and (eq (car-safe (nth 1 expr)) '+)
- (let ((a (nth 1 (nth 1 expr)))
- (b (nth 2 (nth 1 expr))))
+ (nth 1 (nth 1 (nth 1 (nth 1 math-simplify-expr)))))))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) '+)
+ (let ((a (nth 1 (nth 1 math-simplify-expr)))
+ (b (nth 2 (nth 1 math-simplify-expr))))
(and (or (and (math-equal-int a 1)
- (setq a b b (nth 1 (nth 1 expr))))
+ (setq a b b (nth 1 (nth 1 math-simplify-expr))))
(math-equal-int b 1))
(eq (car-safe a) '^)
(math-equal-int (nth 2 a) 2)
(and (eq (car-safe (nth 1 a)) 'calcFunc-tan)
(list '/ 1 (list 'calcFunc-cos
(nth 1 (nth 1 a)))))))))
- (and (eq (car-safe (nth 1 expr)) '^)
+ (and (eq (car-safe (nth 1 math-simplify-expr)) '^)
(list '^
- (nth 1 (nth 1 expr))
- (math-div (nth 2 (nth 1 expr)) 2)))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-sqrt)
- (list '^ (nth 1 (nth 1 expr)) (math-div 1 4)))
- (and (memq (car-safe (nth 1 expr)) '(* /))
- (list (car (nth 1 expr))
- (list 'calcFunc-sqrt (nth 1 (nth 1 expr)))
- (list 'calcFunc-sqrt (nth 2 (nth 1 expr)))))
- (and (memq (car-safe (nth 1 expr)) '(+ -))
- (not (math-any-floats (nth 1 expr)))
+ (nth 1 (nth 1 math-simplify-expr))
+ (math-div (nth 2 (nth 1 math-simplify-expr)) 2)))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-sqrt)
+ (list '^ (nth 1 (nth 1 math-simplify-expr)) (math-div 1 4)))
+ (and (memq (car-safe (nth 1 math-simplify-expr)) '(* /))
+ (list (car (nth 1 math-simplify-expr))
+ (list 'calcFunc-sqrt (nth 1 (nth 1 math-simplify-expr)))
+ (list 'calcFunc-sqrt (nth 2 (nth 1 math-simplify-expr)))))
+ (and (memq (car-safe (nth 1 math-simplify-expr)) '(+ -))
+ (not (math-any-floats (nth 1 math-simplify-expr)))
(let ((f (calcFunc-factors (calcFunc-expand
- (nth 1 expr)))))
+ (nth 1 math-simplify-expr)))))
(and (math-vectorp f)
(or (> (length f) 2)
(> (nth 2 (nth 1 f)) 1))
fac)))
(math-defsimplify calcFunc-exp
- (math-simplify-exp (nth 1 expr)))
+ (math-simplify-exp (nth 1 math-simplify-expr)))
(defun math-simplify-exp (x)
(or (and (eq (car-safe x) 'calcFunc-ln)
(list '+ c (list '* s '(var i var-i))))))))
(math-defsimplify calcFunc-ln
- (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-exp)
+ (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-exp)
(or math-living-dangerously
- (math-known-realp (nth 1 (nth 1 expr))))
- (nth 1 (nth 1 expr)))
- (and (eq (car-safe (nth 1 expr)) '^)
- (equal (nth 1 (nth 1 expr)) '(var e var-e))
+ (math-known-realp (nth 1 (nth 1 math-simplify-expr))))
+ (nth 1 (nth 1 math-simplify-expr)))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) '^)
+ (equal (nth 1 (nth 1 math-simplify-expr)) '(var e var-e))
(or math-living-dangerously
- (math-known-realp (nth 2 (nth 1 expr))))
- (nth 2 (nth 1 expr)))
+ (math-known-realp (nth 2 (nth 1 math-simplify-expr))))
+ (nth 2 (nth 1 math-simplify-expr)))
(and calc-symbolic-mode
- (math-known-negp (nth 1 expr))
- (math-add (list 'calcFunc-ln (math-neg (nth 1 expr)))
+ (math-known-negp (nth 1 math-simplify-expr))
+ (math-add (list 'calcFunc-ln (math-neg (nth 1 math-simplify-expr)))
'(* (var pi var-pi) (var i var-i))))
(and calc-symbolic-mode
- (math-known-imagp (nth 1 expr))
- (let* ((ip (calcFunc-im (nth 1 expr)))
+ (math-known-imagp (nth 1 math-simplify-expr))
+ (let* ((ip (calcFunc-im (nth 1 math-simplify-expr)))
(ips (math-possible-signs ip)))
(or (and (memq ips '(4 6))
(math-add (list 'calcFunc-ln ip)
(defun math-simplify-pow ()
(or (and math-living-dangerously
- (or (and (eq (car-safe (nth 1 expr)) '^)
+ (or (and (eq (car-safe (nth 1 math-simplify-expr)) '^)
(list '^
- (nth 1 (nth 1 expr))
- (math-mul (nth 2 expr) (nth 2 (nth 1 expr)))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-sqrt)
+ (nth 1 (nth 1 math-simplify-expr))
+ (math-mul (nth 2 math-simplify-expr)
+ (nth 2 (nth 1 math-simplify-expr)))))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-sqrt)
(list '^
- (nth 1 (nth 1 expr))
- (math-div (nth 2 expr) 2)))
- (and (memq (car-safe (nth 1 expr)) '(* /))
- (list (car (nth 1 expr))
- (list '^ (nth 1 (nth 1 expr)) (nth 2 expr))
- (list '^ (nth 2 (nth 1 expr)) (nth 2 expr))))))
- (and (math-equal-int (nth 1 expr) 10)
- (eq (car-safe (nth 2 expr)) 'calcFunc-log10)
- (nth 1 (nth 2 expr)))
- (and (equal (nth 1 expr) '(var e var-e))
- (math-simplify-exp (nth 2 expr)))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-exp)
+ (nth 1 (nth 1 math-simplify-expr))
+ (math-div (nth 2 math-simplify-expr) 2)))
+ (and (memq (car-safe (nth 1 math-simplify-expr)) '(* /))
+ (list (car (nth 1 math-simplify-expr))
+ (list '^ (nth 1 (nth 1 math-simplify-expr))
+ (nth 2 math-simplify-expr))
+ (list '^ (nth 2 (nth 1 math-simplify-expr))
+ (nth 2 math-simplify-expr))))))
+ (and (math-equal-int (nth 1 math-simplify-expr) 10)
+ (eq (car-safe (nth 2 math-simplify-expr)) 'calcFunc-log10)
+ (nth 1 (nth 2 math-simplify-expr)))
+ (and (equal (nth 1 math-simplify-expr) '(var e var-e))
+ (math-simplify-exp (nth 2 math-simplify-expr)))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-exp)
(not math-integrating)
- (list 'calcFunc-exp (math-mul (nth 1 (nth 1 expr)) (nth 2 expr))))
- (and (equal (nth 1 expr) '(var i var-i))
+ (list 'calcFunc-exp (math-mul (nth 1 (nth 1 math-simplify-expr))
+ (nth 2 math-simplify-expr))))
+ (and (equal (nth 1 math-simplify-expr) '(var i var-i))
(math-imaginary-i)
- (math-num-integerp (nth 2 expr))
- (let ((x (math-mod (math-trunc (nth 2 expr)) 4)))
+ (math-num-integerp (nth 2 math-simplify-expr))
+ (let ((x (math-mod (math-trunc (nth 2 math-simplify-expr)) 4)))
(cond ((eq x 0) 1)
- ((eq x 1) (nth 1 expr))
+ ((eq x 1) (nth 1 math-simplify-expr))
((eq x 2) -1)
- ((eq x 3) (math-neg (nth 1 expr))))))
+ ((eq x 3) (math-neg (nth 1 math-simplify-expr))))))
(and math-integrating
- (integerp (nth 2 expr))
- (>= (nth 2 expr) 2)
- (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-cos)
- (math-mul (math-pow (nth 1 expr) (- (nth 2 expr) 2))
+ (integerp (nth 2 math-simplify-expr))
+ (>= (nth 2 math-simplify-expr) 2)
+ (or (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-cos)
+ (math-mul (math-pow (nth 1 math-simplify-expr)
+ (- (nth 2 math-simplify-expr) 2))
(math-sub 1
(math-sqr
(list 'calcFunc-sin
- (nth 1 (nth 1 expr)))))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-cosh)
- (math-mul (math-pow (nth 1 expr) (- (nth 2 expr) 2))
+ (nth 1 (nth 1 math-simplify-expr)))))))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-cosh)
+ (math-mul (math-pow (nth 1 math-simplify-expr)
+ (- (nth 2 math-simplify-expr) 2))
(math-add 1
(math-sqr
(list 'calcFunc-sinh
- (nth 1 (nth 1 expr)))))))))
- (and (eq (car-safe (nth 2 expr)) 'frac)
- (Math-ratp (nth 1 expr))
- (Math-posp (nth 1 expr))
- (if (equal (nth 2 expr) '(frac 1 2))
- (list 'calcFunc-sqrt (nth 1 expr))
- (let ((flr (math-floor (nth 2 expr))))
+ (nth 1 (nth 1 math-simplify-expr)))))))))
+ (and (eq (car-safe (nth 2 math-simplify-expr)) 'frac)
+ (Math-ratp (nth 1 math-simplify-expr))
+ (Math-posp (nth 1 math-simplify-expr))
+ (if (equal (nth 2 math-simplify-expr) '(frac 1 2))
+ (list 'calcFunc-sqrt (nth 1 math-simplify-expr))
+ (let ((flr (math-floor (nth 2 math-simplify-expr))))
(and (not (Math-zerop flr))
- (list '* (list '^ (nth 1 expr) flr)
- (list '^ (nth 1 expr)
- (math-sub (nth 2 expr) flr)))))))
- (and (eq (math-quarter-integer (nth 2 expr)) 2)
+ (list '* (list '^ (nth 1 math-simplify-expr) flr)
+ (list '^ (nth 1 math-simplify-expr)
+ (math-sub (nth 2 math-simplify-expr) flr)))))))
+ (and (eq (math-quarter-integer (nth 2 math-simplify-expr)) 2)
(let ((temp (math-simplify-sqrt)))
(and temp
- (list '^ temp (math-mul (nth 2 expr) 2)))))))
+ (list '^ temp (math-mul (nth 2 math-simplify-expr) 2)))))))
(math-defsimplify calcFunc-log10
- (and (eq (car-safe (nth 1 expr)) '^)
- (math-equal-int (nth 1 (nth 1 expr)) 10)
+ (and (eq (car-safe (nth 1 math-simplify-expr)) '^)
+ (math-equal-int (nth 1 (nth 1 math-simplify-expr)) 10)
(or math-living-dangerously
- (math-known-realp (nth 2 (nth 1 expr))))
- (nth 2 (nth 1 expr))))
+ (math-known-realp (nth 2 (nth 1 math-simplify-expr))))
+ (nth 2 (nth 1 math-simplify-expr))))
(math-defsimplify calcFunc-erf
- (or (and (math-looks-negp (nth 1 expr))
- (math-neg (list 'calcFunc-erf (math-neg (nth 1 expr)))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-conj)
- (list 'calcFunc-conj (list 'calcFunc-erf (nth 1 (nth 1 expr)))))))
+ (or (and (math-looks-negp (nth 1 math-simplify-expr))
+ (math-neg (list 'calcFunc-erf (math-neg (nth 1 math-simplify-expr)))))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-conj)
+ (list 'calcFunc-conj
+ (list 'calcFunc-erf (nth 1 (nth 1 math-simplify-expr)))))))
(math-defsimplify calcFunc-erfc
- (or (and (math-looks-negp (nth 1 expr))
- (math-sub 2 (list 'calcFunc-erfc (math-neg (nth 1 expr)))))
- (and (eq (car-safe (nth 1 expr)) 'calcFunc-conj)
- (list 'calcFunc-conj (list 'calcFunc-erfc (nth 1 (nth 1 expr)))))))
+ (or (and (math-looks-negp (nth 1 math-simplify-expr))
+ (math-sub 2 (list 'calcFunc-erfc (math-neg (nth 1 math-simplify-expr)))))
+ (and (eq (car-safe (nth 1 math-simplify-expr)) 'calcFunc-conj)
+ (list 'calcFunc-conj
+ (list 'calcFunc-erfc (nth 1 (nth 1 math-simplify-expr)))))))
(defun math-linear-in (expr term &optional always)
thing))
;;; Substitute all occurrences of old for new in expr (non-destructive).
-(defun math-expr-subst (expr old new)
+
+;; The variables math-expr-subst-old and math-expr-subst-new are local
+;; for math-expr-subst, but used by math-expr-subst-rec.
+(defvar math-expr-subst-old)
+(defvar math-expr-subst-new)
+
+(defun math-expr-subst (expr math-expr-subst-old math-expr-subst-new)
(math-expr-subst-rec expr))
(defalias 'calcFunc-subst 'math-expr-subst)
(defun math-expr-subst-rec (expr)
- (cond ((equal expr old) new)
+ (cond ((equal expr math-expr-subst-old) math-expr-subst-new)
((Math-primp expr) expr)
((memq (car expr) '(calcFunc-deriv
calcFunc-tderiv))
(if (= (length expr) 2)
- (if (equal (nth 1 expr) old)
- (append expr (list new))
+ (if (equal (nth 1 expr) math-expr-subst-old)
+ (append expr (list math-expr-subst-new))
expr)
(list (car expr) (nth 1 expr)
(math-expr-subst-rec (nth 2 expr)))))
expr)))
;;; If expr is of the form "a + bx + cx^2 + ...", return the list (a b c ...),
-;;; else return nil if not in polynomial form. If "loose", coefficients
-;;; may contain x, e.g., sin(x) + cos(x) x^2 is a loose polynomial in x.
-(defun math-is-polynomial (expr var &optional degree loose)
- (let* ((math-poly-base-variable (if loose
- (if (eq loose 'gen) var '(var XXX XXX))
+;;; else return nil if not in polynomial form. If "loose" (math-is-poly-loose),
+;;; coefficients may contain x, e.g., sin(x) + cos(x) x^2 is a loose polynomial in x.
+
+;; The variables math-is-poly-degree and math-is-poly-loose are local to
+;; math-is-polynomial, but are used by math-is-poly-rec
+(defvar math-is-poly-degree)
+(defvar math-is-poly-loose)
+
+(defun math-is-polynomial (expr var &optional math-is-poly-degree math-is-poly-loose)
+ (let* ((math-poly-base-variable (if math-is-poly-loose
+ (if (eq math-is-poly-loose 'gen) var '(var XXX XXX))
math-poly-base-variable))
(poly (math-is-poly-rec expr math-poly-neg-powers)))
- (and (or (null degree)
- (<= (length poly) (1+ degree)))
+ (and (or (null math-is-poly-degree)
+ (<= (length poly) (1+ math-is-poly-degree)))
poly)))
(defun math-is-poly-rec (expr negpow)
(n pow)
(accum (list 1)))
(and p1
- (or (null degree)
- (<= (* (1- (length p1)) n) degree))
+ (or (null math-is-poly-degree)
+ (<= (* (1- (length p1)) n) math-is-poly-degree))
(progn
(while (>= n 1)
(setq accum (math-poly-mul accum p1)
(and p1
(let ((p2 (math-is-poly-rec (nth 2 expr) negpow)))
(and p2
- (or (null degree)
- (<= (- (+ (length p1) (length p2)) 2) degree))
+ (or (null math-is-poly-degree)
+ (<= (- (+ (length p1) (length p2)) 2)
+ math-is-poly-degree))
(math-poly-mul p1 p2))))))
((eq (car expr) '/)
(and (or (not (math-poly-depends (nth 2 expr) var))
(math-is-poly-rec (list '^ (nth 1 expr) '(frac 1 2)) negpow))
(t nil))
(and (or (not (math-poly-depends expr var))
- loose)
+ math-is-poly-loose)
(not (eq (car expr) 'vec))
(list expr)))))
(math-expr-depends expr var)))
;;; Find the variable (or sub-expression) which is the base of polynomial expr.
-(defun math-polynomial-base (mpb-top-expr &optional mpb-pred)
- (or mpb-pred
- (setq mpb-pred (function (lambda (base) (math-polynomial-p
+;; The variables math-poly-base-const-ok and math-poly-base-pred are
+;; local to math-polynomial-base, but are used by math-polynomial-base-rec.
+(defvar math-poly-base-const-ok)
+(defvar math-poly-base-pred)
+
+(defun math-polynomial-base (mpb-top-expr &optional math-poly-base-pred)
+ (or math-poly-base-pred
+ (setq math-poly-base-pred (function (lambda (base) (math-polynomial-p
mpb-top-expr base)))))
- (or (let ((const-ok nil))
+ (or (let ((math-poly-base-const-ok nil))
(math-polynomial-base-rec mpb-top-expr))
- (let ((const-ok t))
+ (let ((math-poly-base-const-ok t))
(math-polynomial-base-rec mpb-top-expr))))
(defun math-polynomial-base-rec (mpb-expr)
(math-polynomial-base-rec (nth 1 mpb-expr)))
(and (eq (car mpb-expr) 'calcFunc-exp)
(math-polynomial-base-rec '(var e var-e)))
- (and (or const-ok (math-expr-contains-vars mpb-expr))
- (funcall mpb-pred mpb-expr)
+ (and (or math-poly-base-const-ok (math-expr-contains-vars mpb-expr))
+ (funcall math-poly-base-pred mpb-expr)
mpb-expr))))
;;; Return non-nil if expr refers to any variables.